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Aim: Fabry disease is a lysosomal storage disorder leading to glycosphingolipid 
accumulation in different organs, tissues and biological fluids. The development of 
a Fabry disease gene therapy trial is underway in Canada. A tool to determine the 
distribution of Gb3 biomarkers in tissues of Fabry mice might be applicable to monitor 
the effect of gene therapy. Results & methodology: An ultra-performance LC–MS/MS 
(UPLC–MS/MS) method for the analysis of 22 Gb3 isoform/analogs in various Fabry 
mice tissues was developed and validated. Marked variation in biomarker organ 
distribution was found with higher levels in the spleen, followed by the small intestine, 
kidneys, lungs, heart, liver and brain. Conclusion: The devised method is sensitive and 
useful for the evaluation of biomarker profiles in Fabry mice.
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Fabry disease (OMIM 301500) is an 
X-linked lysosomal storage disorder charac-
terized by the accumulation of glycosphin-
golipids in organs, tissues and the vascular 
endothelium, as well as biological fluids. 
Various mutations in the GLA gene (locus 
Xq22.1) lead to deficiency of α-galactosidase 
A (α-gal A, EC 3.2.1.22) enzyme activity 
responsible for the metabolic catabolism of 
various glycosphingolipids [1–4]. The disease 
is associated with over 600 different muta-
tions [5] and characterized by heterogeneous 
clinical manifestations affecting the kidneys, 
the heart, the eyes, as well as cerebrovascu-
lar diseases (transient ischemic attacks and 
stroke) [3]. Other symptoms include gastro-
intestinal problems, intolerance to heat and 
cold, hypohidrosis and angiokeratomas [2–4]. 
Males are generally more severely affected 
with the disease than females, but women 
might also be severely affected [6]. Moreover, 
the variability of disease manifestations in 
females is due to Lyonization and skewed 

X-inactivation [7]. The incidence of Fabry dis-
ease is probably underestimated owing to the 
existence of multiple variants of the disease 
and the difficulty in confirming a diagnosis. 
It ranges from 1:117 000 to 1:1300 [8–10]. It 
is important to note that the high incidence 
of Fabry disease has been evaluated by new-
born screening programs, where mutations of 
uncertain pathogenicity were detected.

Regarding treatment, enzyme replacement 
therapy (ERT) has been shown to be benefi-
cial for Fabry patients [3,11], though not in all 
cases [12]. Development of antibodies against 
the infused enzyme has been observed in some 
patients [13–15]. Other treatments such as chap-
erone therapy [16,17] and substrate reduction 
therapy [18] are also under investigation.

Development of gene therapies have also 
been under investigation for Fabry dis-
ease [19,20] and among others, metachromatic 
leukodystrophy [21,22]. In Canada, a clinical 
trial of gene therapy (FACTs project) for 
Fabry patients is in progress using recombi-
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Figure 1.  Chemical structure of globotriaosylceramide biomarkers with the example of Gb3[(d18:1)(C22:0)] 
from Group 1. Groups 2–5 show the possible modifications on the sphingosine and/or fatty acid chain.Gb3: 
Globotriaosylceramide.
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nant lentiviruses targeting hematopoietic stem cells 
for the sustained systemic correction of the enzyme 
deficiency [23]. Animal models have been extensively 
used for the study of human genetic diseases, includ-
ing for Fabry disease. In fact, mouse models have been 
developed for biochemical, behavioral and neurophysi-
ological Fabry disease studies [24–29]. A mouse model 
has been developed for the FACTs project (JA Medin) 
using a nonobese diabetic (NOD)/severe combined 
immune deficiency (SCID)/Fabry mouse (NSF) [23]. 
This mouse model shows marked deficiency of α-gal A 
enzyme activity, but no clinical manifestations of the 
disease. An efficient method was necessary to evalu-
ate Fabry disease biomarkers in the NSF mouse tissues 
from different organs and plasma samples originating 
from the gene therapy project.

Accumulation of glycosphingolipids, such as globo-
triaosylceramide (Gb

3
) isoforms/analogs [30–35], globo-

triaosylsphingosine (lyso-Gb
3
) and analogs [36–41], and 

galabiosylceramide (Ga
2
) isoforms/analogs [42], have 

been described in human plasma and urine. Metabo-
lomic studies using biological fluids from Fabry disease 
patients have led to the discovery of various isoforms 
and analogs of Gb

3
 [32,33]. Modifications on the Gb

3
 fatty 

acid chain are called ‘isoforms,’ while modifications on 
the sphingosine chain are referred to as ‘analogs’ [34]. 
Figure 1 shows five groups of Gb

3
 isoforms/analogs that 

are characterized as follows: Group 1: Gb
3
 isoforms 

with saturated fatty acids; Group 2: Gb
3
 isoforms/ana-

logs with one extra-double bond (on the sphingosine 
or fatty acid); Group 3: Gb

3
 isoforms/analogs with 

two extra-double bonds (on the sphingosine and fatty 

acid or both on the fatty acid); Group 4: Gb
3
 isoforms 

hydroxylated fatty acid and Group 5: methylated Gb
3
 

isoforms [32]. For Groups 2 and 3, previous MS/MS 
experiments demonstrated the existence of structural 
isomers with the extra-double bond on the sphingosine 
(analogs) or on the fatty acid (isoforms) moieties [32,33]. 
However, the exact positions of the extra-double 
bond(s) on the sphingosine or the fatty acid moieties 
are not known and might be variable. For Group 4, 
the position of the hydroxyl chemical function is not 
known and might be variable. Finally, the position of 
the methylation on Gb

3
 isoforms of Group 5 was con-

firmed by MS/MS to be located on the nitrogen atom 
of the amide linkage [32]. These studies revealed a large 
number of glycosphingolipids, but there is yet a spe-
cific biomarker that is validated for the monitoring of 
therapy and the optimal time to initiate treatment.

Previous results for the analysis of some organs 
from NSF mice showed variations in the concentra-
tion of Gb

3
 isoforms and analogs for each organ com-

pared with controls [43]. A recent study with a differ-
ent Fabry mouse model (C57BL/6 GLA knockout) 
also showed variations in organ concentration of Gb

3
 

isoforms/analogs; however, this study was limited to 
heart, kidney, liver and plasma biomarkers [44]. The 
main objectives of this study were: first, to develop 
and validate an efficient and robust ultra-performance 
LC–MS/MS (UPLC–MS/MS) methodology for the 
analysis of Gb

3
 isoforms/analogs in a wide range of 

mouse tissues, including brain, heart, liver, kidneys, 
small intestine, spleen, lungs, as well as urine and 
plasma and second, to evaluate the relative distribution 
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of Gb
3
 isoforms/analogs in each organ and biological 

fluids of NSF mice and controls.

Materials & methods
Chemicals & reagents
N-Octadecanoyl-D3-ceramide trihexoside 
(Gb

3
[(d18:1)(C18:0)D3]) (98+%), heptadecanoyl-

ceramide trihexoside (Gb
3
(d18:1)(C17:0)) (98+%) 

and ceramide trihexoside (Gb
3
 isoform/analog mix-

ture) were purchased from Matreya (PA, USA). HPLC 
grade tert-butyl methyl ether (MTBE) was from Sigma-
Aldrich (MO, USA). HPLC grade methanol (MeOH) 
was from EMD Chemicals Inc. (Darmstadt, Germany). 
Optima LC–MS grade water, ammonium formate 
(Amm. Form.) (99%), ACS Reagent grades for both 
glacial acetic acid and potassium hydroxide (KOH) pel-
lets were from Fisher Scientific (NJ, USA). Formic acid 
(FA) (+99%) was from Acros Organics (NJ, USA).

Nomenclature
As mentioned previously, Gb

3
 is a neutral glycosphingo-

lipid composed of an oligosaccharide (galactose α1–4 
galactose β1–4 glucose) linked to a ceramide, which 
is composed of a sphingosine and a fatty acid chain 
coupled by amide linkage (Figure 1). A nomenclature 
system for Gb

3
 isoforms and analogs already exists [32]:

Gb
3
[(du:v)W(Cx:y)z]M

where,

•	 d = referring to the sphingosine group

•	 u = number of carbons in the sphingosine moiety

•	 v = number of double bond(s) in the sphingosine 
moiety

•	 W = modification on the sphingosine chain

•	 C = referring to the fatty acid group

•	 x = number of carbon atoms in the fatty acid moiety

•	 y = number of carbon–carbon double bond(s) in 
the fatty acid moiety

•	 z = modification of the fatty acid

•	 M = modification on the nitrogen of the amide 
linkage

Instrumentation & parameters
LC parameters
An Acquity I-class UPLC system (Waters Corp., MA, 
USA) was used for Gb

3
 isoform/analog analysis for all 

mice tissues in various organs. The HSS T3 C18 col-
umn (Waters) offered the best separation for all 22 bio-

markers under the study. The chromatography param-
eters for the multiplex relative quantification analysis 
of Gb

3
 isoforms/analogs are shown in Tables 1 & 2.

MS parameters
The detection of all Gb

3
 isoforms/analogs and the 

Gb
3
[(d18:1)(C18:0)D3] internal standard (IS) was 

performed simultaneously on a Xevo TQ-S (Waters) 
triple quadrupole MS/MS. ESI was performed in posi-
tive mode. Data were acquired by multiple reaction 
monitoring. The method run time was 11.25 min and 
the total analysis between each injection was 12.25 
min. Table 3 & Supplementary Table 1 show the MS 
parameters.

Tissue homogenization
The Bead Ruptor 12 Homogenizer was purchased 
from Omni International (GA, USA). This system 
allowed uniform homogenization of all types of organ 
tissues without overheating of samples, thus prevent-
ing degradation of metabolites. The homogenization 
process was done using 2 ml reinforced plastic tubes 
(Omni International) with five zirconium oxide beads 
(1.4 mm diameter, Omni) added to each tube.

IS preparation
The preparation of the (Gb

3
[(d18:1)(C18:0)D3]) IS 

was done by adding 1 ml of chloroform/MeOH solu-
tion (2:1) directly to 0.5 mg of the IS in a commercial 
vial. The solution was then quantitatively transferred 
into a 10-ml volumetric flask and the volume was com-
pleted with MeOH in order to obtain a concentration 
of 1 μg/20 μl. A fivefold dilution with MeOH was done 
to achieve a final working solution of 1 μg/100 μl. This 
solution is stable at 4°C for at least 2 months.

Table 1. Ultra-performance LC parameters for the relative 
quantitation of globotriaosylceramide isoforms/analogs in mice 
tissues.

Parameters Description

Column Acquity UPLC HSS T3

Dimensions 2.1 mm × 50 mm (1.8 μm)

Column temperature 30°C

Injection mode Partial loop with needle overfill

Injection volume 7.5 μl

Autosampler temperature 10°C

Mobile phase A MeOH + 5 mM Amm. Form. + 0.1% FA

Mobile phase B H2O + 5% MeOH + 5 mM Amm. Form. + 
0.1% FA

Weak wash 50:50 phase A:phase B

Strong wash MeOH + 0.2% FA
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Murine tissue samples
NOD/SCID/Fabry (NSF) mice were produced in the 
laboratory of JA Medin by the crossing of a homozy-
gous female Fabry (α-gal A −/− SCID +/+) with a male 
NOD/SCID (NS) (α-gal A +/0 SCID −/−) for 11 genera-
tions. Confirmation of purity of the NSF mice (α-gal 
A −/− SCID −/−) (n = 24) strain was achieved by geno-
typing, enzyme assays and flow analyses [23]. For this 
study, we analyzed tissues and biological fluids from 
24-week-old male NSF mice (n = 9), male NS control 
mice (n = 2), female NSF mice (n = 9) and female NS 
control mice (n = 3). All experiments on animal were 
carried out within the regulatory requirements. The 
analysis of tissues from the brain, heart, liver, spleen, 
lungs, small intestine, kidney and biological fluids, 
such as plasma and urine, from NSF and control mice 
(NS) was performed. All samples were stored at -80°C 
prior to analysis.

Sample preparation & extraction
Tissue sample preparation
Mouse tissue samples were cut into pieces using a razor 
blade on a microscope slide over dry ice to maintain 
the tissue frozen. Approximately 100 mg of tissue was 
deposited in a 2-ml tube (Omni International) with 
five ceramic beads. Four hundred microliters (400 μl) 
of MeOH were added and tissues homogenized for 45 s 
using the Bead Ruptor 12 at high intensity (5 m/s). The 
volume made up with 100% MeOH to obtain a final 

concentration of 100 mg of tissue/ml. A second homog-
enization was performed for 45 s at low intensity (3 m/s). 
Samples were afterward stored at -20°C until extraction.

Tissue sample & biological fluid extraction
The sample extraction was performed by adding 300 μl 
of MeOH to 100 μl of the homogenate to obtain a 
working concentration of 25 μg tissue/ml. One hundred 
microliters (100 μl) of urine and plasma samples were 
processed in an identical manner as the homogenate. 
One hundred (100 μl) of the homogenate (25 μg/ml), 
100 μl of the Gb

3
[(d18:1)(C18:0)D3] IS (1 μg/100 μl), 

900 μl of MeOH, 2 ml of MTBE and 300 μl of KOH 
(1 M in MeOH) were deposited in a glass tube. After 
15 s of vortex shaking, the samples were incubated at 
37°C for 30 min. After neutralizing the pH with 20 μl 
of glacial acetic acid, 2.6 ml of H

2
O and 2 ml of MTBE 

were added, tubes were vortexed and centrifuged at 
4470 g for 5 min. We collected the organic upper phase 
and dried it under a stream of nitrogen. We reconsti-
tuted the sample into 500 μl of phase A (MeOH/5 mM 
Amm. Form./0.1% FA) and 7.5 μl was injected onto the 
UPLC–MS/MS system.

Matrix effect evaluation
Since the quantity of tissues for some organs was lim-
ited, we assessed the intra-organ matrix effect specifi-
cally for the brain, heart, kidney, liver, lung, small intes-
tine, spleen tissues and also for plasma by evaluating 
the MS results obtained after the injection of a sample 
from each tissue before and after a twofold dilution. 
The variation upon analysis of the samples of less than 
15% for each tissue from each organ was considered to 
be acceptable. The inter-organ matrix effect was inves-
tigated by evaluating the increase in the response for 
each biomarker between each organ by adding 50 μl of 
a commercial Gb

3
 isoform mixture at a concentration 

of 1.25 mg/50 ml to control matrices prior to analysis 
(Gb

3
 isoforms/analogs from the matrix were subtracted 

from these results). The increase in the response for 
inter-organ matrix assays needed to be constant from 
one tissue to the other, so that the results would not 
be affected. This process was necessary because of the 
reduced quantity of tissue available per organ for the 
validation process.

Method validation
Intraday (five replicates in a day) and interday (five dif-
ferent days) precision assays (RSD%) were performed 
with low- (reduced biomarker concentration levels) and 
high (high biomarker concentration levels) quality con-
trols (QCs) for biomarkers in NSF liver tissue. We used 
the same liver tissue from a single NSF male mouse for 
the preparation of all high-quality controls (HQCs). For 

Table 2. Ultra-performance LC gradient for the relative 
quantitation of globotriaosylceramide isoforms/analogs in mice 
tissues.

Flow rate Time Mobile phases (%)

0.5 ml/min 0.00 → 0.25 min 75% phase A–85% phase A (linear)

0.5 ml/min 0.25 → 1.25 min 85% phase A

0.5 ml/min 1.25 → 7.00 min 85% phase A–100% phase A (linear)

0.5 ml/min 7.00 → 11.00 min 100% phase A

0.5 ml/min 11.00 → 11.25 min 100% phase A–75% phase A (linear)

Table 3. ESI-MS/MS parameters for the relative quantitation of 
globotriaosylceramide isoforms/analogs in mice tissues.

Parameters Description

Operating mode Multiple reaction monitoring

Ionization mode ESI+

Capillary voltage 3.2 kV

Source temperature 150°C

Desolvation gas temperature 400°C

Cone gas flow 150 l/h

Desolvation gas flow 550 l/h
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Figure 3.  Biomarker profile for globotriaosylceramide isoforms/analogs for different male (n = 9) and female (n = 9) nonobese 
diabetic/severe combined immune deficiency/Fabry mice organ tissues: brain, liver, heart, lung, kidney, small intestine and spleen; 
and plasma samples (females: n = 9, males: n = 9) (see facing page). Results are expressed as the area of each compound/area of 
the Gb3[(d18:1)(C18:0)D3] IS, which is the response factor. The number before each biomarker refers to: Group 1: Gb3 isoforms with 
saturated fatty acids; Group 2: Gb3 isoforms/analogs with one extra-double bond (on the sphingosine or fatty acid); Group 3: Gb3 
isoforms/analogs with two extra-double bonds (on the sphingosine and fatty acid or both on the fatty acid); Group 4: Gb3 isoforms 
hydroxylated fatty acid; and Group 5: methylated Gb3 isoforms. 
*For Gb3 isoforms/analogs with one or two extra-double bonds, the isoforms with the extra-double bond(s) on the fatty acids were 
analyzed together with their structural isomers with one extra-double bond on the sphingosine moiety (analogs). 
Error bars correspond to the mean plus one standard deviation. 
Gb3: Globotriaosylceramide; IS: Internal standard; nd: Not detected.
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low-quality controls (LQCs), NSF heterozygote female 
mice were used. All interday assays were performed in 
triplicate and the intraday assay was performed in quin-
tuplicate. The precision was evaluated by measuring 
the RSD as a percentage. During intraday and interday 
precision assays, we identified all Gb

3
 isoforms/analogs 

using urine and plasma specimens from an untreated, 
high-excretor Fabry male patient as positive controls. 
Analyte recoveries from the liquid–liquid extraction 
process were evaluated by comparing areas of a com-
mercial pool of Gb

3
 isoforms/analogs spiked (50 μl of 

a solution of 1.25 mg/50 ml) in each tissue before and 
after the extraction.

The stability was performed in triplicate with 
HQCs and LQCs using NSF liver tissue samples left 
for 3, 6 and 24 h at room temperature (22°C), stored 
for 3, 6, 24 and 48 h in a refrigerator (4°C), kept for 
1, 4 and 7 weeks in a freezer (-20°C) and after three 
freeze–thaw cycles. The stability of the sample post-
preparation was also evaluated for 24 h in the UPLC 
autosampler. Adhesion of the analytes to glass and 
plasticware was also evaluated by performing four 
consecutive transfers of a mixture of the commercial 
Gb

3
 standard (50 μl of a solution of 1.25 mg/50 ml) in 

liver tissues with analysis of an aliquot between each 
transfer.

Relative quantification
No calibration curves were used for these biomarker 
analyses because there were no commercially available 
standard for each biomarker analyzed. The LOD was 
thus defined as the response equivalent to three-times 
the signal-to-noise ratio, and ten-times for the LOQ 
using a low biomarker concentration sample. There-
fore, any peaks showing a signal less than ten-times, 
the noise level was not considered for quantification.

Statistical analyses
We performed the Mann–Whitney U test to show 
differences between NSF versus NS control mice and 
differences between NSF males and females. The Wil-
coxon–Friedman Test was used to compare profiles 
from each organ to plasma profiles of NSF. A prin-
cipal component analysis test was done to determine 

the importance of each biomarker in a specific organ. 
The mean of the response for all organs and biologi-
cal fluids was also performed to establish profiles of 
biomarker distribution.

Results & discussion
LC
The HSS T3 C18 column allowed a good separation of 
Gb

3
 isoforms and analogs based on hydrophobic inter-

actions. Gb
3
 isoforms with longer fatty acid chains, 

such as Gb
3
[(d18:1)(C24:0)], were the molecules with 

the longest retention times owing to their stronger 
hydrophobic interactions with the column stationary 
phase. Shorter retention times were observed for iso-
forms/analogs with the same length of fatty acid chain, 
but with a higher unsaturation number. The same situ-
ation occurred for hydroxylated isoforms. The addition 
of a methyl group on the amide (Group 5) resulted in 
a longer retention time. A chromatogram of Gb

3
 iso-

forms/analogs in kidney tissues from a NSF mouse is 
shown in Figure 2.

Since no commercial standards were available for 
all Gb

3
 isoforms/analogs, we used the Matreya com-

mercial standard for Gb
3
 and positive controls consist-

ing of urine and plasma specimens from high-excretor 
male Fabry patients to establish the optimal gradient 
and retention time for each isoform/analog.

MS
Supplementary Table 1 shows all Gb

3
 isoform/analog 

MS acquisition parameters for the relative quantifi-
cation of 22 Gb

3
 isoforms/analogs and IS, including 

transitions (m/z), retention times, cone voltages, col-
lision energies and dwell times. Since no commercial 
standards exist for all Gb

3
 isoforms/analogs, we again 

used the standard Gb
3
 Matreya commercial mixture 

and positive Fabry controls as described previously in 
the chromatography section. A scan of all the prod-
uct ions was performed at different collision energies 
to establish which one was produced with the highest 
intensity. We excluded uncharacteristic fragments such 
as the loss of a water molecule. Moreover, we excluded 
fragments corresponding to the sphingosine or to the 
fatty acid in order to analyze together the structural 



1800 Bioanalysis (2016) 8(17) future science group

Research Article    Provençal, Boutin, Dworski, Au, Medin & Auray-Blais

Response (area biomarker/area internal standard)

0.
0

0.
1

10
.0

10
0.

0

10
,0

00
.0

10
00

.0 1.
0

0.
0

nd nd nd

0.
1

1.
0

10
.0

10
0.

0

0.
0

0.
1

10
.0

10
0.

0

10
00

.0 1.
0

1) Gb3[(d18:1)(C18:0)]

1) Gb3[(d18:1)(C20:0)]

1) Gb3[(d18:1)(C22:0)]

1) Gb3[(d18:1)(C24:0)]

2) Gb3[(d18:1)(C16:1)]*

2) Gb3[(d18:1)(C18:1)]*

2) Gb3[(d18:1)(C20:1)]*

2) Gb3[(d18:1)(C22:1)]*

2) Gb3[(d18:1)(C24:1)]*

3) Gb3[(d18:1)(C22:2)]*

3) Gb3[(d18:1)(C24:2)]*

4) Gb3[(d18:1)(C16:0)OH]

4) Gb3[(d18:1)(C18:0)OH]

5) Gb3[(d18:1)(C16:0)]Me

5) Gb3[(d18:1)(C18:0)]Me

5) Gb3[(d18:1)(C20:0)]Me

5) Gb3[(d18:1)(C22:0)]Me

5) Gb3[(d18:1)(C24:0)]Me

5) Gb3[(d18:1)(C22:1)]Me*

5) Gb3[(d18:1)(C24:1)]Me*

1) Gb3[(d18:1)(C16:0)]

1) Gb3[(d18:1)(C14:0)]

11
.7

8.
5

10
.5

9.
1

34
.4

0.
1

0.
9

0.
8

16
.6

0.
3

4.
0

0.
2

0.
4

0.
1

0.
3

0.
8

0.
1

0.
1

0.
1

0.
3

44
.7

44
.1

40
6.

7
64

5.
3

27
0.

4

0.
8

2.
3

6.
1

85
7.

2

1.
2

43
.2

2.
0

0.
7

1.
1

6.
8

12
9.

8

8.
7

0.
1

3.
8

3.
6

28
2.

9

15
58

.8

69
95

.2
14

,2
87

.1
47

83
.3

1.
3

19
.9

79
.1

11
,5

40
.2

9.
4

16
72

.1

3.
1

3.
0

3.
5

14
3.

0

44
53

.4

21
2.

6

0.
7

58
.0

67
.6

S
p

le
en

H
ea

rt

B
ra

in

nd nd nd



www.future-science.com 1801

Figure 4.  Biomarker profile comparison for globotriaosylceramide isoforms/analogs for brain, heart and spleen of NSF male (n = 9) 
and female Fabry mice tissues (n = 9) (see facing page). Results are expressed as the area of each compound/area of the Gb3[(d18:1)
(C18:0)D3] IS, which is the response factor. The number before each biomarker refers to: Group 1: Gb3 isoforms with saturated fatty 
acids; Group 2: Gb3 isoforms/analogs with one extra-double bond (on the sphingosine or fatty acid); Group 3: Gb3 isoforms/analogs 
with two extra-double bonds (on the sphingosine and fatty acid or both on the fatty acid); Group 4: Gb3 isoforms hydroxylated fatty 
acid; and Group 5: methylated Gb3 isoforms. 
*For Gb3 isoforms/analogs with one or two extra-double bonds, the isoforms with the extra-double bond(s) on the fatty acids were 
analyzed together with their structural isomers with one extra-double bond on the sphingosine moiety (analogs). 
Error bars correspond to the mean plus one standard deviation. 
Gb3: Globotriaosylceramide; IS: Internal standard; nd: Not detected.
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isomers with extra double bond(s) on the sphingosine 
and/or on the fatty acid moieties. The fragments moni-
tored for different molecules analyzed corresponded to 
the dehydrated ceramide fragments. A high sensitivity 
for each peak was obtained by establishing a precise 
multiple reaction monitoring transition schedule. A 
window of ±1 min was found to be the optimal time 
for MS data acquisition.

Matrix effects
Supplementary Table 2 shows the intra-organ matrix 
effects for 22 Gb

3
 isoforms/analogs in brain, heart, 

kidney, liver, lung, small intestine, spleen tissues and 
plasma. Following are percentages (%) of the varia-
tion of the response (area of a compound/area of the 
Gb

3
[(d18:1)(C18:0)D3] IS) after a twofold dilution 

for each tissue. The intra-organ matrix variation was 
calculated by dividing the response of each biomarker 
before and after a twofold dilution, which was expressed 
in percentage. There is a small, but acceptable bias. 
Examples for each isoform/analog of the five groups 
of biomarkers revealed that Gb

3
[(d18:1)(C16:0)] 

varied from 5.8 to 12.9% for this specific isoform; 
for Gb

3
[(d18:1)(C18:0)], the range was from 3.0 to 

10.6%; for Gb
3
[(d18:1)(C20:0)], the range was from 

6.6 to 12.7%; for Gb
3
[(d18:1)(C22:0)], the range was 

from 6.9 to 10.1%; for Gb
3
[(d18:1)(C24:0)], the range 

was from 5.9 to 10.9%; for Gb
3
[(d18:1)(C18:1)] + 

Gb
3
[(d18:2)(C18:0)], the range was from 4.1 to 11.4%; 

for Gb
3
[(d18:1)(C22:2)] + Gb

3
[(d18:2)(C22:1)], the 

range was from 6.4 to 9.3%; for Gb
3
[(d18:1)(C24:2)] 

+ Gb
3
[(d18:2)(C24:1)], the range was from 7.7 to 

10.8%; for Gb
3
[(d18:1)(C16:0)OH], the range was 

from 5.6 to 12.4%; and for Gb
3
[(d18:1)(C22:0)]Me, 

the range varied from 7.3 to 11.1%. In summary, the 
overall intra-organ matrix effect was less than 13.5% 
for the twofold dilution.

Supplementary Table 3 shows the inter-organ matrix 
effects for 22 Gb

3
 isoforms/analogs. The response vari-

ation was evaluated by calculating the ratio of the mean 
of the responses (n = 3) from each tissue divided by 
the mean of the response for all tissues added together, 
then multiplied by one hundred. Examples for each iso-
form/analog of the five groups of biomarkers show that 
for Gb

3
[(d18:1)(C16:0)], the response varied from -5.4 

to 9.4%; for Gb
3
[(d18:1)(C18:0)], the range was from 

-11.1 to 10.4%; for Gb
3
[(d18:1)(C20:0)], the range 

was from -10.4 to 10.5%; for Gb
3
[(d18:1)(C22:0)], 

the range was from -10.7 to 10.8%; for Gb
3
[(d18:1)

(C24:0)], the range was from -10.3 to 11.3%; for 
Gb

3
[(d18:1)(C18:1)] + Gb

3
[(d18:2)(C18:0)], the range 

was from -9.8 to 10.1%; for Gb
3
[(d18:1)(C22:2)] + 

Gb
3
[(d18:2)(C22:1)], the range was from -8.5 to 10.3%; 

for Gb
3
[(d18:1)(C24:2)] + Gb

3
[(d18:2)(C24:1)], the 

range was from -5.5 to 10.5%; for Gb
3
[(d18:1)(C16:0)

OH], the range was -7.7 to 9.9%; and for Gb
3
[(d18:1)

(C22:0)]Me, the range varied from -6.1 to 12.5%. In 
summary, the overall inter-organ matrix effect was less 
than ±13.5% that provided the possibility to perform 
the validation process in only one tissue.

Method validation
The precision for intraday (n = 5) and interday (n = 5) 
assays for low (a female heterozygote NSF mouse) and 
high (a male hemizygote NSF mouse) QCs in liver tis-
sues is shown in Supplementary Table 4. Our results 
indicate that the precision for intraday and interday 
assays with relative standard deviations (RSDs) is less 
than 13.7% for all biomarkers. Recovery assays revealed 
a range varying from 82 to 96% for all biomarkers 
under the study. The LODs and LOQs were expressed 
as relative response factors for signal-to-noise ratios of 
3 and 10, respectively. LODs ranged from 0.001 to 
0.005, and LOQs from 0.003 to 0.015 (area/area IS). 
The stability results for HQC and LQC samples left 
for 24 h at room temperature (22°C), stored for 48 h 
in a refrigerator (4°C) and kept for 7 weeks in a freezer 
(-20°C) showed bias of less than 15% for all biomark-
ers. Samples left in the UPLC autosampler were stable 
for 24 h (bias <15%). The stability of biomarkers in 
liver tissues after three freeze–thaw cycles was less 
than 15%. No evidence of adsorption of the analytes 
to glass and plasticware was detected.

Analysis of NSF & control mice tissues in 
different organs
The Mann–Whitney U test performed to evalu-
ate differences between biomarker profiles of NSF 
and NS control mice revealed, as expected, signifi-
cant differences (p < 0.05) between the two cohorts. 
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Figure 3 shows combined biomarker profiles for Gb
3
 

isoforms/analogs for tissues of different male (n = 9) 
and female (n = 9) NSF mice organs: brain, liver, heart, 
lung, kidney, small intestine and spleen, and plasma. 
The highest levels of Gb

3
 isoforms/analogs in tissues 

were found in the spleen, small intestine and kidneys, 
followed by reduced levels in the lungs, heart, liver and 
brain. Supplementary Tables 5 & 6 show all the data 
obtained for each Gb

3
 isoform/analog for each organ. 

Data from urine samples (n = 6 NSF males, 1 control) 
are shown in Supplementary Tables 5 & 6. But, due to the 
small number of samples available, it was not possible to 

perform comparison analysis. These profiles provide an 
overview of the distribution of all the biomarkers under 
study. Taking into account all groups, our results show 
that biomarkers of Group 1 corresponding to Gb

3
 iso-

forms with C16:0 to C24:0 fatty acids and the isomer 
mixture (Gb

3
[(d18:1)(C24:1)]+ Gb

3
[(d18:2)(C24:0)]) 

from Group 2 were the most abundant. Overall, iso-
forms and analogs with longer fatty acid chain were the 
most abundant within each group.

Figure 4 shows the relative abundance (or response 
factor = area of each compound/area of the Gb

3
[(d18:1)

(C18:0)D3] IS) of Gb
3
 isoforms/analogs for brain, 

Table 4. Response for each globotriaosylceramide isoform/analog biomarker from different organ tissues of NSF 
compared to the NSF plasma of the same mice (n = 18).

Gb3 isoforms/analogs Brain Heart Kidney Liver Lung Small 
intestine

Spleen

Gb3[(d18:1)(C14:0)] Not detected

Gb3[(d18:1)(C16:0)]        

Gb3[(d18:1)(C18:0)]        

Gb3[(d18:1)(C20:0)]        

Gb3[(d18:1)(C22:0)]        

Gb3[(d18:1)(C24:0)]        

Gb3[(d18:1)(C16:1)] 
+ Gb3[(d18:2)(C16:0)]

       

Gb3[(d18:1)(C18:1)] 
+ Gb3[(d18:2)(C18:0)]

       

Gb3[(d18:1)(C20:1)] 
+ Gb3[(d18:2)(C20:0)]

       

Gb3[(d18:1)(C22:1)] 
+ Gb3[(d18:2)(C22:0)]

       

Gb3[(d18:1)(C24:1)] 
+ Gb3[(d18:2)(C24:0)]

       

Gb3[(d18:1)(C22:2)] 
+ Gb3[(d18:2)(C22:1)]

       

Gb3[(d18:1)(C24:2)] 
+ Gb3[(d18:2)(C24:1)]

       

Gb3[(d18:1)(C16:0)OH]        

Gb3[(d18:1)(C18:0)OH] Not detected

Gb3[(d18:1)(C16:0)]Me        

Gb3[(d18:1)(C18:0)]Me        

Gb3[(d18:1)(C20:0)]Me        

Gb3[(d18:1)(C22:0)]Me        

Gb3[(d18:1)(C24:0)]Me        

Gb3[(d18:1)(C22:1)]Me + 
Gb3[(d18:2)(C22:0)]Me

       

Gb3[(d18:1)(C24:1)]Me  
+ Gb3[(d18:2)(C24:0)]Me

       

All shaded squares correspond to significant p-values (<0.05) and white squares correspond to nonsignificant p-values (>0.05).
Gb

3
: Globotriaosylceramide.
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heart and spleen tissues from 18 NSF mice (males: 
n = 9, and females: n = 9). The overall distribution pat-
tern for each Gb

3
 isoforms/analogs is quite similar for 

the brain, heart and spleen, but major differences in the 
relative abundance levels were detected for each of these 
tissues. For example, some Gb

3
 isoforms or analogs were 

a 1000-times more abundant in the spleen compared 
with brain tissues. It is also important to highlight the 
presence of methylated Gb

3
 isoforms in all the different 

tissues analyzed suggesting that this biochemical modi-
fication is generated directly in the tissues and is not 
only a metabolization process of Gb

3
 in the liver prior 

to its urinary excretion. It supports our hypothesis that 
methylated Gb

3
 might be an intermediate compound 

conducting to the formation of lyso-Gb
3
 [32].

A comparison between the relative levels of Gb
3
 iso-

forms/analogs in plasma from male (n = 9) and female 
(n = 9) NOD/SCID/Fabry mice, and NS control mice 
(n = 5) is shown in Figure 5. The Mann–Whitney 
U test of the results showed significant differences 
between NSF mice and NS (controls). However, some 
Gb

3
 isoforms/analogs, such as Gb

3
[(d18:1)(C16:0)], 

Gb
3
[(d18:1)(C18:0)] and Gb

3
[(d18:1)(C24:1)] + 

Gb
3
[(d18:2)(C24:0)], were detected in control mice. 

This figure also shows increased relative levels of biomark-
ers from Group 1 for both male and female Fabry mice. 
Analyses of plasma showed that Gb

3
[(d18:1)(C14:0)], 

Gb
3
[(d18:1)(C18:0)OH] andGb

3
[(d18:1)(C22:1)]Me + 

Gb
3
[(d18:2)(C22:0)]Me were not detected.

We performed the Wilcoxon–Friedman test in order 
to compare the relative levels of each Gb

3
 isoform/

analog from each organ to the relative plasma level for 
each Gb

3
 isoform/analog from NSF mice (see Table 4). 

Plasma Gb
3
 isoform/analog levels were thus considered 

as the reference value. We also found that biomark-
ers from Group 3 Gb

3
[(d18:1)(C22:2)] + Gb

3
[(d18:2)

(C22:1)] were not statistically significantly increased 
in the heart, kidneys and liver, as well as Gb

3
[(d18:1)

(18:0)]Me in the heart and liver. In the brain, half of 
the biomarker relative quantification levels were not 
significant. The rest of the isoforms/analogs from each 
tissue showed a significant difference when compared 
with plasma. Our data show that, in general, each organ 
has a unique profile, which is different from the profile 
in plasma. This might provide an insight into the rea-
son why some organs are more affected than others by 
the accumulation of Gb

3
 isoforms/analogs.

The results of the principal component analysis test 
performed on each organ revealed that for all organs, 
there was no specific biomarker which showed statis-
tical differences compared with another. Thus, we 
did not observe a tendency in the variation of a bio-
marker, which might lead to a physiological explanation 
(Supplementary Figure 1).

Conclusion
This study reports an efficient and robust UPLC–MS/
MS methodology for the analysis of 22 Gb

3
 isoforms/

analogs in various mouse tissues, such as the brain, 
heart, liver, kidneys, small intestine, spleen, lungs, 
as well as urine and plasma. The validation of this 
method showed a precision for intraday and interday 
assays with RSDs less than 13.7% and recoveries vary-
ing from 82 to 96%. All validation criteria have been 
met, and the assay is robust. This MS/MS multiplex 
method allowed the relative quantification of various 
Gb

3
 isoform/analog biomarkers in 11.25 min for tis-

sue extracts and biological fluids of NSF mice and NS 
controls under the study.

We found that Gb
3
-related isoforms with saturated 

fatty acids from Group 1 were highly increased in all 
NSF tissues. Moreover, isoforms and analogs with 
longer fatty acid chains were found to be the most 
abundant in all groups.

The study results reveal higher relative levels of Gb
3
 

isoforms/analogs in the spleen, small intestine and kid-
neys, followed by the lungs, heart and liver. Among 
the tissues analyzed, the brain showed the lowest level 
for Gb

3
 isoforms/analogs. The distribution profile for 

each Gb
3
 isoform/analog is quite similar for the brain, 

heart and spleen, but major relative quantification 
differences were observed between each of these tis-
sues. In fact, some Gb

3
 isoforms or analogs showed a 

1000-fold increase in the spleen tissues compared with 
brain tissues. Methylated Gb

3
 isoforms were detected 

in every NSF tissue samples analyzed suggesting that 
these molecules are produced directly in the tissues and 
are not only metabolites generated at the liver level.

By comparing biomarker profile of each organ, we 
established significant differences for the majority of 
Gb

3
 isoforms/analogs. If the same applies to humans, 

Fabry patients presenting higher biomarker Gb
3
 con-

centration levels in tissues of some organs (and eventu-
ally in biological fluids) might have persistent clinical 
manifestations due to insufficient lowering of these 
high levels even with ERT.

In summary, the marked deficiency of lysosomal 
α-galactosidase A in the NOD/SCID/Fabry mouse 
is associated with statistically significant differences 
between biomarker profiles from NSF compared 
with NS control mice despite the observation that the 
enzyme defect does not appear to affect the health or 
longevity of the mutant animals. It is tempting to spec-
ulate that the tissue damage occurring as a result of the 
enzyme defect in humans is caused by the accumula-
tion of Gb

3
 isoforms/analogs that are quantitatively less 

important and therefore less toxic in the NSF mouse. 
A comparison of the biomarker profiles of tissues from 
patients affected with Fabry disease with the biomarker 
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profiles of tissues from NSF mice might be particularly 
illuminating. Similarly, a comparison of the biomarker 
profiles of patients with clinically severe Fabry disease 
compared with the profiles of patients with the same 
GLA mutation, but significantly less severe clinical dis-
ease, may reveal an important difference in the rela-
tive tissue toxicity of different Gb

3
 isoforms/analogs. 

Therefore, the MS method developed herein achieved 
its goal by providing a powerful tool for the analysis 
of tissue samples from mice organs, which might be 
applicable to plasma of patients recruited for a Fabry 
disease gene therapy clinical trial. It might also lead 
to better biomarkers for monitoring patients affected 
with Fabry disease.

Future perspective
A technological transfer of this method will be done 
to analyze biological fluids of Fabry patients receiving 
gene therapy. This method also provides the possibil-
ity to analyze kidney biopsies from Fabry patients. 
Correlation studies between the genotype from Fabry 
patients and their biomarker profiles will be performed 
for a better understanding of the disease. Further-
more, the main goal for this study was to apply this 
methodology to gene therapy with a specific Fabry 
mouse model. However, this biomarker methodology 
could be applied to evaluate other treatment options 
for Fabry patients, such as substrate reduction therapy 
or chaperone therapy. Indeed, research trials involving 
the evaluation of the efficacy of various treatments will 
necessitate robust biomarker analysis. One interesting 
perspective would be to evaluate the diurnal variation 
of each Gb

3
 isoform/analog in urine over three ERT 

cycles, which might explain some variations encoun-
tered in Fabry patients specimens collected at different 

times of day. Moreover, we decided to focus first on 
Gb

3
 isoforms/analogs, since lyso-Gb

3
 is about 1000-

times less abundant in Fabry patients. Nevertheless, 
lyso-Gb

3
 and its analogs are part of future work.
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Executive summary

Background
•	 The distribution of glycosphingolipids in different organs and biological fluids from Fabry mice remains an 

important step toward better understanding the pathophysiology of this complex disease and the treatment 
of affected patients.

Experimental
•	 Homogenization of tissues of the brain, heart, liver, kidneys, small intestine, spleen, lungs resulted in efficient 

extraction of biomarkers and the subsequent MS analysis of globotriaosylceramide (Gb3) isoforms/analogs in 
Fabry mice and controls.

Results & discussion
•	 Twenty-two Gb3 isoforms/analogs analyzed in a short 11.25 min MS validated assay showed major differences 

in organ tissue distributions in Fabry mice compared with normal controls, the highest relative levels being 
found in the spleen, followed by the small intestine, kidneys, lungs, heart, liver and brain. Marked differences 
in the relative quantitative levels were also observed between various isoforms in different organs.

Conclusion
•	 The proposed method allows efficient glycosphingolipid analysis of murine tissues and biological fluids and 

provides useful information about organ tissue distributions for these biomarkers. This powerful MS tool will 
be applicable to plasma samples from Fabry patients in order to monitor the efficacy of Fabry patients treated 
in a clinical gene therapy trial.
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