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Abstract The ubiquitously expressed plasma membrane

Na?–H? exchanger NHE1 is a 12 transmembrane-span-

ning protein that directs important cell functions such as

homeostatic intracellular volume and pH control. The 315

amino acid cytosolic tail of NHE1 binds plasma membrane

phospholipids and multiple proteins that regulate addi-

tional, ion-translocation independent functions. This

review focuses on NHE1 structure/function relationships,

as well as the role of NHE1 in kidney proximal tubule

functions, including pH regulation, vectorial Na? transport,

cell volume control and cell survival. The implications of

these functions are particularly critical in the setting of

progressive, albuminuric kidney diseases, where the accu-

mulation of reabsorbed fatty acids leads to disruption of

NHE1-membrane phospholipid interactions and tubular

atrophy, which is a poor prognostic factor for progression

to end stage renal disease. This review amplifies the vital

role of the proximal tubule NHE1 Na?–H? exchanger as a

kidney cell survival factor.

Keywords Na?–H? exchange � Ion transport �
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Abbreviations

AE2 Anion exchange protein 2

AKI Acute kidney injury

CHP1 Calcineurin-homologous protein 1

CKD Chronic kidney disease

ERM Ezrin/radixin/moesin

ESRD End stage renal disease

JAK2 Janus kinase 2

LC-CoA Long chain fatty acyl-CoA

MDCK Madin-Darby canine kidney cell line

NaPi-IIa Na?-phosphate co-transporter

NBC Na?/HCO3
- co-transporter

NCX1 Na?–Ca2? exchanger 1

NHE Na?–H? exchanger

NIK Nck (non-catalytic region of tyrosine kinase

adaptor protein 1)-interacting kinase

NKCC1 Na?/K?/Cl- co-transporter 1

pHi Intracellular pH

PI(4,5)P2 Phosphatidylinositol 4,5-bisphosphate

ROCK1 Rho-associated, coiled-coil-containing protein

kinase 1

RVI Regulatory volume increase

SGK1 Serum and glucocorticoid-regulated kinase 1

SGLT Sodium-glucose co-transporter

TM Transmembrane-spanning domain
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Introduction

Discovery of Na?–H? exchange

In 1966 Mitchell hypothesized the existence of an elec-

troneutral transport mechanism that couples the exchange,

or antiport, of cations and protons across the mitochondrial

inner membrane [1]. Subsequent studies of bacterial

membrane transport processes provided the first evidence

of an electroneutral Na?–H? exchanger [2, 3], and Na?–

H? exchanger activity was described shortly thereafter in

mammals; specifically in apical membrane preparations

from the small intestines and renal proximal tubules of rats

[4].

The SLC9A family

The first mammalian Na?–H? exchanger gene to be

cloned, now known as SLC9A1, encodes the ubiquitously

expressed, amiloride-sensitive Na?–H? exchanger NHE1

(sometimes notated as NHE-1) [5]. SLC9A1 maps to hu-

man chromosome 1p36.11 and to chromosome 4D2.3 in

mice. We now know that the SLC9A gene family includes

nine members encoding NHE1-NHE9,1 all of which are

bona fide Na?–H? exchangers. NHE1-5 localize primarily

to the plasma membrane, in contrast to NHE6-9 that reside

in organelle membrane compartments [6, 7]. Of the plasma

membrane NHEs, NHE1 and NHE2 are expressed in

multiple tissues, whereas NHE3 is restricted primarily to

kidney and intestine [8], NHE4 mainly to stomach and

kidney [9] and NHE5 predominantly to brain, testis and

spleen [10, 11]. Following the cloning of numerous Na?–

H? exchanger genes from multiple species, it is now ap-

preciated that mammalian NHE proteins share no

substantial amino acid sequence identity with their bacte-

rial, fungal, or plantal counterparts. However, three-

dimensional modeling predictions based on the crystal

structure of a bacterial electrogenic Na?–2H? antiporter

(NhaA) [12] indicate that all NHEs are likely to adopt a

similar three-dimensional conformation and thus may share

common ancestry and transport mechanisms [13, 14].

The SLC9B and SLC9C families

The wider mammalian SLC9 superfamily includes two

other, smaller gene families: SLC9B and SLC9C. Each

family includes two members, neither of which exhibit

substantial sequence homology to NHEs of the SLC9A

family. However, the two SLC9B family members do

exhibit sequence similarity to cation/proton exchangers

from lower organisms [15]. No functional data is available

for the testes-expressed SLC9B1 product, aka the Na?–H?

exchanger domain-containing protein NHEDC1 [16]. The

SLC9B2 product NHEDC2, also known as NHA2, exhibits

a broader expression pattern and appears capable of NHE

activity inasmuch as it promotes Na? tolerance at acidic

extracellular pH when heterologously expressed in yeast

[17]. In the kidney, NHA2 localizes to the distal convo-

luted tubule, where it has been speculated to play a role in

blood pressure control [6, 17]. The SLC9C1 product

‘NHE10’ is expressed in osteoclasts and sperm [18].

Although innate NHE10-regulated Na?–H? activity has

been difficult to demonstrate, when expressed as a chimeric

protein that includes the first transmembrane span of

NHE1, trafficking to the plasma membrane was enhanced

and Na?–H? exchange was detectable [19]. The function

of SLC9C2 is yet to be determined.

NHE1 action

Substrates and inhibitors

NHE1, in common with NHE2-5, mediates the elec-

troneutral (1:1 stoichiometry) exchange of Na? and H?

across the plasma membrane of cells, typically exploiting

the inwardly directed Na? gradient established by the

Na?–K? ATPase to extrude H?, especially when intra-

cellular pH is acidic. NHE1 is quiescent in resting cells [20,

21], but can be activated by a variety of stimuli, as dis-

cussed later. The Km for extracellular Na? is *6–10 mM,

and the pKi (reporting the Km for intracellular H? in pH

units) is *6.6–6.8 [22, 23]. 2 It has also been demonstrated

that NHE1 is capable of operating in reverse mode [24],

and also as a Na?–Li? exchanger [25, 26]. NHE1, like

NHE2-5, is inhibited by amiloride and its derivatives [e.g.,

5-(N-ethyl-N-isopropyl)amiloride EIPA] [27], enabling the

pharmacological distinction of NHEs from amiloride-in-

sensitive Na?/HCO3
- co-transporters (NBCs), one of

which (NBCe1-A) sits alongside NHE1 and regulates in-

tracellular Na? and pH in the kidney proximal tubule [28].

Furthermore, NHE1 can be pharmacologically distin-

guished from other NHEs by virtue of differences in

inhibitory constants for amiloride. For example, EIPA is at

least one order of magnitude more selective for NHE1

(Ki * 0.02 lM) [29, 30] compared to any of the other

plasma membrane expressed NHEs (Ki * 0.5–500 lM)

[23, 29–33]; benzoyl guanidine derivatives, such as

1 NHE3 is the transporter responsible for the activity originally

detected in the apical membranes preparations from rat proximal

tubules.

2 The Km for intracellular H? in pH units is sometimes referred to as

pKi. Note that ‘pKi’ is not defined as the protonation state of titratable

groups in the protein.
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cariporide (aka HOE692) exhibit even greater NHE1

specificity (reviewed in Ref. [27]). The precise mode of

action of these drugs is unknown, but mutagenesis studies

reveal that hydrophobic residues in the vicinity of the

fourth transmembrane-spanning domain (TM4, NHE1

residues 160–180)3 of NHE1 are major, albeit not exclu-

sive, determinants of amiloride and cariporide sensitivity

[34–39]. It is interesting to note that a non-canonical splice

variant of NHE1 from reticulocytes, which lacks this TM

region, is thought to contribute to the amiloride-insensitive

Na?–Li? exchange activity evident in erythrocytes [26].

Mode of action

NHE1 is hypothesized to operate via an alternating access

model whereby Na? binding to an extracellular NHE1 site

triggers a conformational change that translocates Na?

across the membrane. The NHE1 structural alteration si-

multaneously exposes a cytoplasmic substrate-binding site

for intracellular H?, permitting H? binding, reversal of the

conformational change, and export of H? [40]. NHE1

forms homodimers with inter-monomer interfaces between

adjacent TM domains and between adjacent cytosolic do-

mains [41–43]. Component monomers within a dimer are

capable of acting independently; inactivating mutations in

one monomer do not exert a dominant negative effect on

NHE1 activity, at least at acidic cytosolic pH [41, 44].

However, dimers may co-operate to perform coupled ex-

change (i.e., 2Na?–2H? exchange) at neutral or alkaline

pH [44, 45], a mode of action that is supported by the

crystal structures of the distantly related bacterial Na?–H?

antiporter NhaA [46]. NHE1 can also functionally couple

with other transporters, influencing their actions and pro-

ducing novel net transport functions. Examples of

transporters influenced or functionally linked to NHE1

including Na?–Ca2? exchangers (NHE1 loads intracellular

Na?, thereby promoting Ca2? influx) [47, 48], Cl-–HCO3
-

exchangers (extruded H? and HCO3
- titrate each other,

resulting in net NaCl influx) [49], and the H?-coupled

peptide transporter PEPT2 (NHE1 disposes of intracellular

H?, promoting peptide influx) [50].

NHE1 distribution

The number of cell types that express NHE1 is so diverse

that the transporter is often described as being ubiquitous.

Reports of mammalian cell types that lack NHE1 (e.g., some

dopaminergic neurons and microglia) [51, 52] are an

exception, making immortalized cell lines that do not ex-

press NHE1 a valuable commodity for heterologous NHE1

expression studies [53]. Within the kidney, NHE1 exhibits

the broadest distribution of the plasma membrane expressed

NHEs, with documented expression in all nephron segments

with the exception of the macula densa and intercalated cells

of the distal nephron [54, 55]. In some cell types, NHE1

expression coincides with that of other NHEs. For example,

proximal tubules express basolateral NHE1 and apical

NHE2 and NHE3, while renal thick ascending limb epithelia

express basolateral NHE1 and NHE4, as well as apical

NHE2 and NHE3 [54, 56–58]. The half-life of plasma

membrane NHE1 is relatively long (*24 h) and, unlike

NHE3, NHE1 surface expression is not significantly

regulated by trafficking or recycling [59–61]. However, a

recent report demonstrated NHE1 expression may be

regulated to some extent by ubiquitination and proteasomal

degradation [62]. Although typically located in the basolat-

eral membrane of diverse epithelia, NHE1 is found in the

apical membrane of choroid plexus epithelia [63]. Besides

diverse epithelia, other notable NHE1-expressing cell types

include neurons, astrocytes [64], peripheral blood cells [65],

myocytes [66], and sperm [67].

NHE1 structure–function

Domain structure

No high-resolution crystal structures exist for any SLC9

family members, but circular dichroism, electron paramag-

netic resonance, nuclear magnetic resonance and

mutagenesis studies have yielded some insights [68]. The

biggest potential breakthrough has arisen from solving the

structures of the bacterial Na?–H? exchangers NhaA [12]

and NapA [46]. Although sequence homology between

bacterial Na?–H? exchangers and mammalian NHEs at the

amino acid level is very low, there are significant structural

similarities, and efforts are underway to create a model

NHE1 structure extrapolated from NhaA, which can then be

reconciled with the wealth of NHE1 structure–function

studies [13, 40, 69]. Extrapolation from NhaA confirms

common features such as a short N-terminal cytosolic tail, an

ion-translocating domain with 12 TMs, and a relatively long

carboxy-terminal cytosolic domain that serves a regulatory

function. The features of the NHE1 transport and regulatory

domains are considered below and shown in Fig. 1.

N-terminal tail

This short 15 amino acid sequence, which extends into the

cytosol, has no known role other than presumably to anchor

TM1 in the membrane.

3 Another determinant, Gly346 at the extracellular end of TM9, is

hypothesized to be in three-dimensional proximity to the clustered

determinants in TM4 [24].
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Transmembrane-spanning ion-translocation domain

This 485 amino acid sequence is composed of 12 TMs

joined by short loops as well as a long re-entrant loop that

dips into the plane of the membrane between TM9 and

TM10. The first extracellular loop that joins TM1 to TM2

contains both N- and O-linked glycosylation sites [70, 71],

with N-glycosylation assisting in the targeting of mature

NHE1 to the basolateral membrane of polarized epithelial

cells [59]. Once at the plasma membrane, the extracellular

loops joining TM1 to TM2 and TM3 to TM4 can be pro-

teolytically cleaved without any obvious detriment to Na?–

H? exchange activity [71]. However, it has not been de-

termined whether it is the entire region encompassed by

TM1-TM3, or just the integrity of the extracellular loops in

that region, that is dispensable for basal NHE1 activity.

Interpretations of current homology models indicate

that TM4, in addition to being a major determinant of

inhibitor sensitivity (see above), contributes residues that

line the intracellular and extracellular substrate access

pathways [13, 40]. Both models also predict that disor-

dered regions in the middle of TM11 and one other span

(either TM4 or TM6, depending on the model) come to-

gether to form the transport ‘gate’/catalytic core that

occludes the extracellular and intracellular substrate ac-

cess pathways [13, 40]. However, the identity of the other

spans that contributes to the access pathways of specific

residues that form the substrate-binding sites remain

controversial and are not readily reconciled by structure–

function studies [69]. In addition to a substrate–H?

binding site, residues in the vicinity of the cytoplasmic

loops that join TM2 to TM3 and TM10 to TM11

contribute to allosteric regulation of NHE1 by pHi (acti-

vation by H?), either by directly supporting the action of

an allosteric H?-modifier site or by influencing the in-

teraction of the membrane domain with the carboxy-

terminal regulatory domain, which itself can influence the

set-point of the modifier site [22, 72].

Carboxy-terminal regulatory domain

The 315 amino acid cytosolic carboxy-terminal domain of

NHE1 is the site of numerous regulatory events that can

activate NHE1. The initial juxtamembrane portion of the

carboxy terminus contains two polybasic motifs (at resi-

dues 513–520 and 556–564 of NHE1) that bind inner

leaflet phosphoinositides such as phosphatidylinositol 4,5-

bisphosphate [PI(4,5)P2] [73–77], consistent with NHE1

compartmentalization to lipid rafts [78–80], which may be

enriched for phosphoinositides [81]. The cytoskeletal

adaptor proteins ezrin/radixin/moesin (ERM) bind the

same NHE1 residues [82–84], but this interaction, as well

as downstream ramifications, appear to be independent of

Na?–H? translocation, whereas PI(4,5)P2 binding to the

same sites is required for Na?–H? exchange [73, 82, 83].

The 4.1 adaptor protein family shares sequence homology

to ERM, and multiple splice variants are expressed in

kidney, including 4.1B in the proximal tubule and 4.1R in

the thick ascending limb of Henle’s loop [85]. The 4.1R

isoform interacts with the same C-terminal NHE1 residues

as ERM and PI(4,5)P2, with KD = 100–200 nM [86].

Calmodulin binding to NHE1 (see below) lowers the affi-

nity of the 4.1R-NHE1 interaction, which permits

PI(4,5)P2 binding and NHE1 activation. Experiments using

PI(4,5)P2PI(4,5)P2

121110987654321

CHP1

CaM CaMS648

Akt
S703

p90
RSK

T718S723S726
S729

S771
S770 p38 MAPK

ERK

ERM

NH2
COOH

Na
+

H
+

SGK1

Glc-N- -O-Glc

Fig. 1 Schematic diagram of NHE1 Na?–H? exchanger structure.

Numbers represent predicted transmembrane domains. Phosphoryla-

tion sites are depicted by the amino acid abbreviation and residue

numbers. CaM calmodulin, CHP1 calcineurin-homologous protein 1,

ERK extracellular signal-related kinase, ERM ezrin/radixin/moesin,

MAPK mitogen-activated protein kinase, p90RSK p90 ribosomal S6

kinase, PI(4,5)P2 phosphatidylinositol 4,5-bisphosphate, SGK1 serum

and glucocorticoid-regulated kinase 1
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NHE1 constructs with K/A and R/A mutations at the

513–520 and 556–564 sites, as well as ATP depletion to

modulate PI(4,5)P2 levels, indicate that PI(4,5)P2 binding

elicits an alkaline shift in NHE1 Km for intracellular H?,

thereby causing an alkaline shift in pHi [73]. Although the

activating NHE1–PI(4,5)P2 interaction has been confirmed

by many labs, the selectivity of NHE1 binding to other

phospholipids remains unclear. One report, using co-

sedimentation methods, demonstrated promiscuous binding

between an NHE1 cytosolic domain polypeptide and

PI(4,5)P2, phosphatidylinositol, phosphatidylserine, phos-

phatidylglycerol and phosphatidic acid [74]. Another

report, using membrane overlay assays and surface plas-

mon resonance, identified specific interactions between th

NHE1 cytosolic domain and phosphatidylinositol

polyphosphates, with negligible binding between NHE1

and other membrane phospholipids [75]. In addition to

differences in assay methods, the NHE1 polypeptide se-

quences used for the binding studies differed—mouse

peptide, residues 546–602 [74]; rat peptide, residues

501–815 [75]— which may account for some discrep-

ancy. The NHE1-phosphoinositide interactions are low

affinity [5.2 9 10-5 M for PI(4,5)P2; 2.5 9 10-5 M for

PI(3,4,5)P3] [75], which is likely to be relevant in vivo, by

facilitating rapid on–off binding, as opposed to higher

affinity interactions, which tend to be irreversible.

The Ca2?-stimulated binding of either calcineurin-ho-

mologous protein CHP1 (to residues 515–530 of NHE1;

[87–89]) or calmodulin (to residues 636–656; [90–93])

also enhances NHE1 activity, by eliciting an alkaline shift

in Km for intracellular H?. In the case of calmodulin, this

occurs by the masking of an autoinhibitory domain in the

cytosolic tail that, when unoccupied, promotes an acidic

shift in the pH-dependent Km for NHE1 [91, 92]. A

truncated NHE1 that lacks the distal cytosolic tail also

exhibits a substantially more acidic Km for intracellular

H? than the intact protein [94, 95], perhaps due to loss of

the influence of several phosphorylatable serine and

threonine residues. These sites are constitutively phos-

phorylated in quiescent cells [96], but can then be further

phosphorylated in response to many extracellular stimuli,

including growth factors, hormones, extracellular matrix–

integrin interactions, and sustained intracellular acidosis

(Fig. 1) [97]. NHE1 phosphorylation by MAP kinases

[98–100], p90RSK [101], NIK [102], ROCK1 [103], JAK2

[93], Akt [104, 105] and SGK1 [106] regulate many cell

phenotypes, such as proliferation [107–109], differen-

tiation [110, 111], adhesion [112] and migration [113,

114]. An exception is NHE1 activation by extracellular

hypertonic stimuli, which does not require NHE1 phos-

phorylation [115, 116]. Many of the phosphorylation and

binding partner studies have previously been extensively

reviewed [47, 117, 118].

Cellular mechanisms of NHE1 function

pH regulation

NHE1 harnesses the inwardly directed Na? gradient to re-

move H? from the intracellular milieu, thereby resisting

acidosis. Virtually all physiological processes are pH sen-

sitive and the importance of NHE1 in the protection of these

processes is reflected in its near ubiquitous expression and

frequent reference to the role of NHE1 as an important

housekeeping protein. A critical NHE1 function, which is

discussed below, is resistance to proximal tubule apoptotic

stress in the context of chronic kidney diseases (CKDs),

such as diabetic nephropathy. A universal feature of apop-

tosis is the activation of endonucleases and executioner

caspases, which catalyze degradation of DNA and intra-

cellular proteins, respectively. Many of these enzymes are

maximally catalyzed at pH values that are encountered in

apoptosis, but well below physiologic intracellular pH

range, which serves as a safeguard to prevent accidental

activation, with lethal consequences [119–122]. By per-

petually extruding H?, in exchange for Na?, NHE1 plays an

important housekeeping role by maintaining homeostatic

intracellular pH that is sufficiently high to allow optimal

function of most enzymes and structural proteins, while

preventing activation of endonucleases and caspases.

Additional examples of the impact of NHE1 action on pH

are maintenance of neuronal excitability by influence upon

pH-sensitive ion channels and receptors (reviewed in [123]),

support of the inflammatory response by disposing of the

intracellular acid load that accompanies the respiratory burst

in immune cells (reviewed in [124]), and promotion of cell

migration by influencing pH-dependent protein–protein in-

teractions within focal adhesion complexes that link the

cytoskeleton to the extracellular matrix. In the case of mi-

gration, NHE1 is recruited to focal adhesion complexes, and

an interaction with integrins stimulates NHE1 action,

thereby creating pH nanodomains around these structures

[125, 126]. The NHE1 action generates an intracellular al-

kaline nanodomain that could influence actin remodeling

and promote focal adhesion turnover at the leading edge of

migrating cells [127, 128], but also causes a complementary

extracellular acidic nanodomain that strengthens the inter-

action between integrins and their extracellular matrix

ligands [129]. NHE1 activity also facilitates migration by

promoting the degradation of matrix proteins via enhance-

ment of the expression and activity of pericellular matrix

metalloproteinases [130, 131].

Vectorial Na? transport

A major function of the kidney is maintenance of extra-

cellular fluid volume, and this is mediated predominantly

NHE1 regulation in kidney proximal tubule 2065
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through proximal tubule isosmotic reabsorption of

50–90 % of filtered Na?. Because of the large amounts of

solute and water transported by the proximal tubule, con-

siderable coordination is required between multiple apical

and basolateral transporters to maintain cell volume and pH

(see Fig. 2).

Of the luminal Na? transporters NHE3 is responsible for

the greatest quantitative uptake of Na? from ultrafiltrate,

with most reabsorption occurring within the initial S1

segment [132, 133]. NHE2 is also expressed in the prox-

imal tubule brush border, but in comparative studies with

microperfused proximal tubules derived from NHE2 and

NHE3 knockout mice, relatively little Na?–H? transloca-

tion was mediated by NHE2 [134]. The Na?–glucose

transporters, SGLT1 and SGLT2 are expressed within

proximal tubule brush border, and also contribute to lu-

minal Na? reabsorption. SLGT1 is a high affinity, low

capacity transporter, with a 2:1 stoichiometry for Na? and

glucose. SGLT2 is low affinity, high capacity, and trans-

ports Na? and glucose in a 1:1 ratio. The NaPi-IIa Na?-

phosphate co-transporter is a minor contributor to luminal

Na? uptake, but a major effector of inorganic phosphate

reabsorption, with approximately 80 % of filtered phos-

phate reabsorbed by proximal tubule NaPi-IIa, which is

localized primarily in the S1 segment brush border [135].

The low cytosolic Na? and high K? relative to plasma

concentrations is largely attributable to Na?–K? ATPase

activity, which is localized exclusively to the basolateral

proximal tubule membrane. As shown in Fig. 2, the Na?

pump is the major basolateral Na? transporter, and is highly

regulated by intracellular Na? concentration [136], implying

that luminal Na? uptake represents the rate-limiting step in

net proximal tubule Na? reabsorption. The Na?/HCO3
- co-

transporter NBCe1-A, which localizes to the basolateral

membrane, is also a source of proximal tubule Na? reab-

sorption, and the major pathway for HCO3
- exit across the

peritubular membrane [137]. The relatively small contribu-

tion of NHE1 to basolateral Na? transport highlights the

importance of its biological functions that are mediated by

ion transport-independent mechanisms. However, in contrast

to proximal tubule NHE3 and Na?–K? ATPase, which are

responsible for large transcellular Na? fluxes to maintain

extracellular fluid volume, relatively small changes in

NHE1-regulated Na? flux can have a large impact on other

physiologic functions, such as maintenance of cell volume

(discussed later).

Although the direction of NHE1-dependent Na? flux is

opposite to Na?–K? ATPase and NBCe1-A mediated Na?

translocation, NHE1 may play a regulatory role in proximal

tubule vectorial Na? transport through functional interac-

tion with these transporters. Stimulation of proximal tubule

Na?–K? ATPase concomitantly increased NHE1 expres-

sion and activity, as well as physical association of NHE1

with the Na?–K? ATPase a1 subunit [138]. NHE1 was

required for Na?–K? ATPase activity, as well as a1 sub-

unit phosphorylation and Na? pump trafficking to the

plasma membrane. The mechanism by which NHE1 en-

hances proximal tubule Na?–K? ATPase was not

identified, but the authors noted that it was unlikely to be

related to Na? entry across the basolateral membrane, and

speculated that dual phosphorylation by common kinases

could foster protein–protein interactions, or that non-

transport NHE1 scaffolding properties could be responsible

[138].

Despite co-localization to the basolateral membrane,

and common teleology for regulating intracellular Na? and

pH, we are unaware of functional interactions between

NHE1 and NBCe1-A in the proximal tubule. However,

cooperation between NHE1 and NBCe1 has been described

in cardiac tissue. The two transporters are spatially separate

in the heart (NHE1 is expressed at the intercalated disc and

gap junctions; NBCe1 and NBCn1 are expressed in trans-

verse tubules), but they nevertheless coordinately facilitate

Na? influx, intracellular alkalinization, and ultimately

Ca2? loading of the sarcoplasmic reticulum for excitation–

contraction coupling [139]. In studies of NHE1-deficient

MDCK cells, which more closely resemble distal, rather

than proximal tubule cells, NBCe1 expression was

upregulated, which compensated for defects in intracellular

volume and pH regulation [140]. However, a cell migration

phenotype was not rescued, indicating that not all NHE1

and NBCe1 functions are redundant.

Cell volume regulation

NHE1 contributes to a cell volume control mechanism—

regulatory volume increase (RVI)—under hypertonic stress

3Na+

2K+
Na+-K+

ATPase

Na+

H+

NHE1
H+

Na+

NHE3

Na+

3HCO3

NBCe1-A3Na+

HPO4
2-

Na-Pi IIa

Na+

Glucose
SGLT1/2

Pr
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im
al
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m
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rs
��
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H+
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NHE2

Fig. 2 Major proximal tubule Na? transporters. For simplicity,

‘‘pure’’ anion transporters, paracellular pathways, and distinction

between S1, S2 and S3 proximal tubule segments have been omitted.

The thickness of the arrows is intended to reflect the relative,

quantitative transport of the indicated ion. NHE Na?–H? exchanger,

NaPi IIa renal Na?-phosphate co-transporter, NBCe1-A electrogenic

Na?/HCO3
- co-transporter
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NHE1 promotes the net uptake of osmolytes, and thence

water, thereby tending to counter cell shrinkage (reviewed

in [141]). Other transporters have been implicated in RVI,

such as NKCC1 Na?/K?/2Cl- and the AE2 Cl-–HCO3
-

exchangers [142, 143], but neither is expressed in the

proximal tubule [144, 145], thereby rendering NHE1 as a

major regulator of proximal tubule RVI. Interestingly, in

proximal tubular epithelial cells, as well as fibroblasts,

acute cell shrinkage causes opposite effects on NHE1

(activation) and NHE3 (inhibition) [78, 146, 147]. In the

case of NHE1, extracellular hypertonicity increases ty-

rosine kinase activity in challenged cells that signal via a

number of intermediates, such as JAK2 and calmodulin, to

activate NHE1 via the C-terminal portion of its regulatory

cytosolic domain [95, 148]. The extrusion of H? results in

an increase in intracellular HCO3
- concentration that then

stimulates Cl-–HCO3
- exchange in AE2-expressing cell

types. Because changes in intracellular pH and HCO3
- are

buffered, the counter-transported Na? and Cl- produce a

net increase in intracellular osmolality that promotes RVI.

The in vivo relevance of RVI to the proximal tubule has

been difficult to discern, though it is plausible that constant

fine tuning of cell volume is important for multiple intra-

cellular processes, such as regulation of cell membrane

curvature and proper approximation between interacting in-

tracellular proteins. As discussed in the next section, RVI

may also be critical for counteracting multiple cell volume

perturbations, including apoptotic shrinkage [143, 149].

NHE1 has been implicated in pathophysiology of cell hy-

pertrophy, particularly involving the cardiomyocyte, in the

context of congestive heart failure [118]. In circulating

leukocytes, studies that originated primarily from Sergio

Grinstein’s lab indicated a role for NHE1, both in cell vol-

ume and intracellular pH changes associated with

phagocytosis [148, 150, 151]. Moreover, phagocytic cup

formation is mediated by dynamic changes in plasma

membrane morphology and cell volume, which require

electrostatic interactions between anionic membrane phos-

pholipids and poly-cationic intracellular proteins [152].

Although NHE1 has not specifically been shown to be a

phospholipid binding partner for phagocytosis, we speculate

that it is a plausible candidate, considering its known inter-

action with inner leaflet membrane phospholipids [74, 75].

NHE1 function at the systemic level

Genetic studies

In 1997 Cox et al. [153] characterized mice with an ataxia

phenotype that was caused by a spontaneous NHE1 mu-

tation of residue 441, between TM11 and TM12, which

resulted in the insertion of a premature stop codon and

unstable mRNA encoding a transporter without the C-ter-

minal tail. These mice die within a few weeks of birth due

to lethal seizures. Electroencephalography revealed a ‘‘s-

low wave epilepsy’’ pattern, hence the moniker Swe/Swe

for these mice. Shortly thereafter Bell et al. [154] reported

a virtually identical phenotype in mice with global NHE1

gene deletion. In contrast to NHE3 knockout mice or hu-

mans with loss of function NBCe1 mutations, which result

in proximal tubule salt and HCO3
- wasting [155, 156],

neither Swe/Swe nor NHE1 knockout mice demonstrate a

renal phenotype.

Human NHE1 mutations had not been identified until

recently, when a non-synonymous Gly305Arg substitution

was shown to cause Lichtenstein-Knorr syndrome, a rare,

autosomal recessive disorder characterized by ataxia and

neurosensory deafness, with onset of symptoms typically

by 1–2 years of age [157]. The mutation removes a critical

NHE1 glycosylation site, resulting in loss of NHE1 tar-

geting to the plasma membrane and a consequent absence

of NHE1 Na?–H? exchange activity.

A recent report describes that gene deletions of either

NHE1 or huntingtin, the gene mutated in Huntington’s

disease, resulted in a similar chemotaxis phenotype in

Dictyostelium amoebae in response to extracellular K?-

regulated cAMP and Ca2? stimuli [158]. Although this is

consistent with the well-established role of NHE1 in cell

migration [113], the novel finding is that in huntingtin-

null organisms, actin filaments were disorganized, re-

sulting in defective NHE1 trafficking to the plasma

membrane [158]. Instead of normal expression at the

leading edge of migrating cells, NHE1 was mislocalized

to a perinuclear region in huntingtin knockout cells.

Taken together, these data imply that there is a functional

relationship between huntingtin and NHE1. However,

human NHE1 mutations in Huntington’s disease have not

been described.

The reason for predominant brain phenotypes in NHE1-

deficient, despite ubiquitous expression, is unclear. We

speculate that the threshold may be lower for neuron dys-

function when some of the previously mentioned NHE1

functions, such as homeostatic intracellular pH or intra-

cellular volume control are aberrant, perhaps due to less

redundancy with NHE1-regulated pathways.

Kidney proximal tubule NHE1 function in animal

models

Although neither the NHE1-deficient mice nor humans

with loss of function NHE1 mutations display an overt

renal phenotype, multiple groups have utilized animal

models to test the effects of a stressor ‘‘second hit’’ to

unmask NHE1 functions in vivo. In studies designed to

identify the role of NHE1 in tubular atrophy, a critical
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pathologic predictor of chronic, progressive kidney dis-

eases [159–161], which is regulated by apoptosis [162],

Wu et al. [149] showed that Swe/Swe mice receiving tail

vein injections of adriamycin, a chemotherapeutic agent

that is toxic to murine glomerular epithelial cells, devel-

oped an augmented renal phenotype that included proximal

tubular epithelial cell apoptosis. Swe/Swe mice injected

with streptozotocin to induce diabetes, developed hall-

marks of diabetic nephropathy, including albuminuria,

azotemia, and tubular epithelial cell apoptosis [84]. Im-

portantly, the Swe/Swe mice were bred onto a C57BL/6

genetic background, which is resistant to adriamycin and

streptozotocin toxicity, indicating that the ‘‘two hit’’ com-

bination of NHE1 loss of function and glomerular injury

was sufficient to overcome the protective C57BL/6 back-

ground. In a rat model of obstructive nephropathy, the

resulting tubular epithelial cell apoptosis was associated

with diminished NHE1 expression, and pharmacologic in-

hibition of NHE1 enhanced apoptosis [163]. Recent in vitro

studies suggest that one mechanism for NHE1 suppression

is through mechanical stretch-induced RhoA and MAP

kinase activation [164]. Taken together, multiple studies in

models of CKD suggest that tubular epithelial cell NHE1 is

cytoprotective [47].

NHE1-regulated mechanisms of proximal tubule

epithelial cell survival

Further support of NHE1 in the defense against apoptosis

includes multiple in vitro studies demonstrating that

apoptotic stress activates NHE1 [47, 83, 84, 149]. An in-

variant feature of apoptosis is cell volume decrease, and as

previously mentioned, NHE1 might relieve apoptotic stress

through activation of RVI pathways [143, 149]. Apoptotic

cells also undergo cytosol acidification, which catalyzes

pro-apoptotic enzymes [120, 121, 165, 166], suggesting

that NHE1-regulated Na?–H? exchange, which is

regulated by the N-terminal, transmembrane domain of

NHE1, might defend against renal tubular epithelial cell

apoptosis by alkalinizing cytosolic pH, as well as ex-

panding cell volume.

As mentioned previously, two polybasic juxtamembrane

domains anchor NHE1 to the plasma membrane inner

leaflet through binding to PI(4,5)P2 [73–75, 78] and ERM

adaptor proteins [82, 83]. Both ERM and PI(4,5)P2 are

substrates for PI-3 kinase, and the PI(3,4,5)P3 product

docks the pro-survival kinase Akt, leading to its activation

and phosphorylation of downstream targets that block

apoptosis. This scaffolding function of NHE1, which is

independent of Na?–H? exchange activity, represents one

mechanism of proximal tubule defense against apoptotic

stress and tubular atrophy [75]. NHE1 activation of PI-3

kinase and Akt has also been implicated in glomerular

epithelial cell (podocyte) survival, although in this case, the

downstream effects of Akt activation are augmentation of

autophagy and reduction in endoplasmic reticulum stress

[167].

Consistent with the notion that NHE1 acts as a proximal

tubule cell survival factor, multiple studies have demon-

strated that tubular epithelial cell NHE1 becomes

inactivated during apoptosis [83, 149, 163, 164]. However,

the mechanisms of inactivation have been elusive until

recently. Initial studies indicated that the NHE1 cytosolic

tail undergoes caspase-3-dependent degradation [149, 168],

but there are no consensus caspase cleavage sequences

within the cytosolic tail, and relevant non-consensus sites

have not been mapped. Decreased NHE1 mRNA and

protein expression was noted in ureteral obstruction models

[163, 164]. More recently, using animal models of kidney

diseases characterized by glomerular damage and albu-

minuria, Khan et al. [76] have postulated that the aberrantly

filtered albumin-bound fatty acids are reabsorbed by the

proximal tubule. The intracellular fatty acids are then

rapidly catalyzed to long chain acyl-CoA (LC-CoA), in

preparation for b-oxidation and ATP generation (Fig. 3).

However, the rate-limiting enzyme for LC-CoA transport

into mitochondria, carnitine palmitoyl transferase-1a

(CPT1a) becomes saturated by the large LC-CoA flux,

resulting in extensive lipid droplet deposition within the

proximal tubule cytoplasm [76, 169, 170]. Although the

lipid droplets represent a non-toxic intracellular depot, the

storage capacity in non-adipocytes is limited. The overflow

LC-CoA, which bear structural similarity to PI(4,5)P2 bind

the NHE1 cytosolic tail with greater affinity compared to

PI(4,5)P2 [76]. If LC-CoA reach sufficiently high (low-mid

lM) intracellular concentration, they compete with

PI(4,5)P2 for binding to NHE1, and uncoupling of the

NHE1-PI(4,5)P2 interaction leads to loss of NHE1 activity

[76] (Fig. 3). In this scheme, proximal tubule NHE1 fulfills

a unique role by serving as a metabolic sensor for

lipotoxicity.

Acute kidney injury

The role of proximal tubule NHE1 appears to be quite

different in the pathophysiology of acute kidney injury

(AKI), which is most commonly induced by ischemia

(reviewed in [47]). In particular, the S3 proximal tubule

segment, which delicately balances high O2 demand and

low basal O2 tension in the cortico-medullary region, is the

nephron portion most vulnerable to ischemia. The diver-

gent mechanisms of NHE1 in the pathophysiology of CKD

and AKI are illustrated by reports that NHE1 inhibitors

improve renal blood flow and ameliorate the clinical course

of ischemic AKI [171, 172], whereas NHE1 inhibition

exacerbates apoptosis in the context of CKD [75, 76, 83,
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149, 163]. A plausible explanation for the discrepancy is

that in CKD the stimulus for NHE1 activation is likely cell

volume shrinkage due to an apoptotic stimulus, whereas in

ischemic conditions anaerobic metabolism causes intra-

cellular acidosis, which triggers NHE1 activity. While Na?

influx in shrunken cells may restore cell volume and

function (in CKD), Na? and H2O movement into proximal

tubule cells with normal volume leads to swelling, which is

a cardinal feature of necrosis (in AKI). In ischemic cells

that express the NCX1 Na?–Ca2? exchanger, NCX1 is

activated in the reverse mode, to extrude excess intracel-

lular Na?, which can then perpetuate Ca2?-dependent

necrosis and apoptosis pathways (reviewed in [47]).

Conclusions

NHE1 is a ubiquitously expressed ion exchanger, which

regulates electroneutral Na?–H? translocation that is cri-

tical for many cell functions, most notably maintenance of

intracellular pH and cell volume. NHE1 was the initially

discovered Na?–H? exchanger over 25 years ago, and is

commonly and perhaps pejoratively referred to as a

‘‘housekeeping protein’’, implying that it is uninteresting or

unworthy of scientific inquiry. However, extensive map-

ping and functional studies involving the regulatory NHE1

cytosolic domain have revealed that multiple protein and

lipid binding partners direct an expanding list of NHE1

housekeeping chores. Among these is relief of proximal

tubule apoptotic stress and CKD progression, which is

accomplished by a novel mechanism, whereby NHE1

serves as a metabolic sensor for aberrantly accumulated

fatty acid metabolites. We are optimistic that NHE1-

regulated pathways may be exploited for further investi-

gation of the pathophysiology of tubular atrophy, since it is

a strong predictor of CKD progression, for which there are

currently no specific diagnostic tests or therapies.
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