Abstract
Defective in vitro T helper cell (Th) function can occur in asymptomatic human immunodeficiency virus (HIV)-seropositive (HIV+) individuals. A characteristic, early finding is the loss of an in vitro response to recall antigens, such as influenza A virus (FLU), despite an intact Th response to alloantigen (ALLO). To determine whether suppressor cells and/or inhibitory factors could contribute to this HIV-associated Th immunodeficiency, coculture studies were performed using peripheral blood leukocytes (PBLs) from monozygotic twins, one of whom was HIV-infected (HIV+) and one of whom was uninfected (HIV-seronegative, HIV-). In vitro Th function was measured as interleukin 2 production or proliferation to FLU and ALLO. Two pairs of twins were repetitively studied. A single HIV+ individual with multiple samples of cryopreserved PBLs over 6 years (including a HIV- specimen) was also studied. PBLs from the HIV+, but not from the HIV-, individuals demonstrated defective in vitro Th function in response to FLU but not to ALLO. PBLs from HIV+ individuals could induce a similar defect in the Th function of syngeneic or autologous HIV- PBLs. This suppression was generated by CD4-depleted, but not by CD8-depleted, PBLs. A suppressive factor from CD8+ cells of HIV+ donors was generated by 24-hr unstimulated cultures of HIV+ PBLs. This factor inhibited FLU but not ALLO responses of autologous, syngeneic, or allogeneic HIV- PBLs. This suppressive effect could not be explained by HIV infection or replication during the culture period. These results demonstrate that selective abrogation of Th function to recall antigens in HIV+ individuals is associated with an inhibitory factor produced by CD8+ T cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammar A., Cibert C., Bertoli A. M., Tsilivakos V., Jasmin C., Georgoulias V. Biological and biochemical characterization of a factor produced spontaneously by adherent cells of human immunodeficiency virus-infected patients inhibiting interleukin-2 receptor alpha chain (Tac) expression on normal T cells. J Clin Invest. 1991 Jun;87(6):2048–2055. doi: 10.1172/JCI115235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carvalho E. M., Bacellar O., Barral A., Badaro R., Johnson W. D., Jr Antigen-specific immunosuppression in visceral leishmaniasis is cell mediated. J Clin Invest. 1989 Mar;83(3):860–864. doi: 10.1172/JCI113969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirmule N., Kalyanaraman V. S., Oyaizu N., Slade H. B., Pahwa S. Inhibition of functional properties of tetanus antigen-specific T-cell clones by envelope glycoprotein GP120 of human immunodeficiency virus. Blood. 1990 Jan 1;75(1):152–159. [PubMed] [Google Scholar]
- Clerici M., Stocks N. I., Zajac R. A., Boswell R. N., Lucey D. R., Via C. S., Shearer G. M. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J Clin Invest. 1989 Dec;84(6):1892–1899. doi: 10.1172/JCI114376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins M., Kuchroo V. K., Whitters M. J., O'Hara R. M., Jr, Kelleher K., Kubo R. T., Dorf M. E. Expression of functional alpha beta T cell receptor gene rearrangements in suppressor T cell hybridomas correlates with antigen binding, but not with suppressor cell function. J Immunol. 1990 Nov 1;145(9):2809–2819. [PubMed] [Google Scholar]
- Golding H., Robey F. A., Gates F. T., 3rd, Linder W., Beining P. R., Hoffman T., Golding B. Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II beta 1 domain. I. Monoclonal antibodies against the gp41-derived peptide and patients' sera react with native HLA class II antigens, suggesting a role for autoimmunity in the pathogenesis of acquired immune deficiency syndrome. J Exp Med. 1988 Mar 1;167(3):914–923. doi: 10.1084/jem.167.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. R., Flood P. M., Gershon R. K. Immunoregulatory T-cell pathways. Annu Rev Immunol. 1983;1:439–463. doi: 10.1146/annurev.iy.01.040183.002255. [DOI] [PubMed] [Google Scholar]
- Hofmann B., Odum N., Jakobsen B. K., Platz P., Ryder L. P., Nielsen J. O., Gerstoft J., Svejgaard A. Immunological studies in the acquired immunodeficiency syndrome. II. Active suppression or intrinsic defect--investigated by mixing AIDS cells with HLA-DR identical normal cells. Scand J Immunol. 1986 Jun;23(6):669–678. doi: 10.1111/j.1365-3083.1986.tb02003.x. [DOI] [PubMed] [Google Scholar]
- Joly P., Guillon J. M., Mayaud C., Plata F., Theodorou I., Denis M., Debre P., Autran B. Cell-mediated suppression of HIV-specific cytotoxic T lymphocytes. J Immunol. 1989 Oct 1;143(7):2193–2201. [PubMed] [Google Scholar]
- Kekow J., Wachsman W., McCutchan J. A., Cronin M., Carson D. A., Lotz M. Transforming growth factor beta and noncytopathic mechanisms of immunodeficiency in human immunodeficiency virus infection. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8321–8325. doi: 10.1073/pnas.87.21.8321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kronenberg M., Steinmetz M., Kobori J., Kraig E., Kapp J. A., Pierce C. W., Sorensen C. M., Suzuki G., Tada T., Hood L. RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5704–5708. doi: 10.1073/pnas.80.18.5704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurence J., Gottlieb A. B., Kunkel H. G. Soluble suppressor factors in patients with acquired immune deficiency syndrome and its prodrome. Elaboration in vitro by T lymphocyte-adherent cell interactions. J Clin Invest. 1983 Dec;72(6):2072–2081. doi: 10.1172/JCI111172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurence J., Mayer L. Immunoregulatory lymphokines of T hybridomas from AIDS patients: constitutive and inducible suppressor factors. Science. 1984 Jul 6;225(4657):66–69. doi: 10.1126/science.6328662. [DOI] [PubMed] [Google Scholar]
- Macatonia S. E., Patterson S., Knight S. C. Suppression of immune responses by dendritic cells infected with HIV. Immunology. 1989 Jul;67(3):285–289. [PMC free article] [PubMed] [Google Scholar]
- Miedema F., Petit A. J., Terpstra F. G., Schattenkerk J. K., de Wolf F., Al B. J., Roos M., Lange J. M., Danner S. A., Goudsmit J. Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest. 1988 Dec;82(6):1908–1914. doi: 10.1172/JCI113809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modlin R. L., Kato H., Mehra V., Nelson E. E., Fan X. D., Rea T. H., Pattengale P. K., Bloom B. R. Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions. 1986 Jul 31-Aug 6Nature. 322(6078):459–461. doi: 10.1038/322459a0. [DOI] [PubMed] [Google Scholar]
- Ottenhoff T. H., Elferink D. G., Klatser P. R., de Vries R. R. Cloned suppressor T cells from a lepromatous leprosy patient suppress Mycobacterium leprae reactive helper T cells. 1986 Jul 31-Aug 6Nature. 322(6078):462–464. doi: 10.1038/322462a0. [DOI] [PubMed] [Google Scholar]
- Salgame P., Convit J., Bloom B. R. Immunological suppression by human CD8+ T cells is receptor dependent and HLA-DQ restricted. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2598–2602. doi: 10.1073/pnas.88.6.2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnittman S. M., Lane H. C., Greenhouse J., Justement J. S., Baseler M., Fauci A. S. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6058–6062. doi: 10.1073/pnas.87.16.6058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel J. P., Djeu J. Y., Stocks N. I., Masur H., Gelmann E. P., Quinnan G. V., Jr Sera from patients with the acquired immunodeficiency syndrome inhibit production of interleukin-2 by normal lymphocytes. J Clin Invest. 1985 Jun;75(6):1957–1964. doi: 10.1172/JCI111912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smolen J. S., Bettelheim P., Köller U., McDougal S., Graninger W., Luger T. A., Knapp W., Lechner K. Deficiency of the autologous mixed lymphocyte reaction in patients with classic hemophilia treated with commercial factor VIII concentrate. Correlation with T cell subset distribution, antibodies to lymphadenopathy-associated or human T lymphotropic virus, and analysis of the cellular basis of the deficiency. J Clin Invest. 1985 Jun;75(6):1828–1834. doi: 10.1172/JCI111896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Via C. S., Tsokos G. C., Stocks N. I., Clerici M., Shearer G. M. Human in vitro allogeneic responses. Demonstration of three pathways of T helper cell activation. J Immunol. 1990 Apr 1;144(7):2524–2528. [PubMed] [Google Scholar]
- Viscidi R. P., Mayur K., Lederman H. M., Frankel A. D. Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science. 1989 Dec 22;246(4937):1606–1608. doi: 10.1126/science.2556795. [DOI] [PubMed] [Google Scholar]
- Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19;234(4783):1563–1566. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
- Weinhold K. J., Lyerly H. K., Stanley S. D., Austin A. A., Matthews T. J., Bolognesi D. P. HIV-1 GP120-mediated immune suppression and lymphocyte destruction in the absence of viral infection. J Immunol. 1989 May 1;142(9):3091–3097. [PubMed] [Google Scholar]
- van Noesel C. J., Gruters R. A., Terpstra F. G., Schellekens P. T., van Lier R. A., Miedema F. Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men. J Clin Invest. 1990 Jul;86(1):293–299. doi: 10.1172/JCI114698. [DOI] [PMC free article] [PubMed] [Google Scholar]