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Abstract

Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces 

(BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral 

cortex for long durations without suffering the host-tissue reaction to the extent that it is common 

with intracortical microelectrodes. Though the stability of signals obtained from chronically-

implanted ECoG electrodes has begun receiving attention, to date little work has characterized the 

effects of long-term implantation of ECoG electrodes on underlying cortical tissue. We implanted 

a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 

666 days. Histological analysis revealed minimal damage to the cortex underneath the implant, 

though the grid itself was encapsulated in collagenous tissue. We observed macrophages and 

foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body 

response. Despite this encapsulation, cortical modulation during reaching movements was 

observed more than 18 months post-implantation. These results suggest that ECoG may provide a 

means by which stable chronic cortical recordings can be obtained with comparatively little tissue 

damage, facilitating the development of clinically-viable brain-machine interface systems.
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1. Introduction

Brain-machine interfaces (BMIs) utilize cortical signals to directly control external devices 

for restoration of motor function in individuals with disabilities (Moran, 2010; Schwartz et 

al., 2006; Wolpaw et al., 2002; Leuthardt et al., 2006). A critical component of a BMI 

system is the neural recording modality used to extract meaningful information from the 

brain. The primary modalities used in clinical BMI systems are electroencephalography, 

electrocorticography (ECoG), local field potentials, and single/multi-unit activity. These 

methods can be characterized by factors such as performance, decoding stability, longevity, 

and invasiveness. The choice of a neural recording modality for a particular BMI application 

must appropriately weigh these factors.

Penetrating intracortical electrode arrays offer the highest spatial and temporal resolution in 

neural recording. However, the implantation of these arrays disrupts brain tissue and 

vasculature, and leads to a chronic inflammatory response hallmarked by an aggregation of 

astrocytes and microglia in a glial scar around the probe, as well as progressive neuronal 

degeneration at the vicinity of the implanted electrodes (Polikov et al., 2005; McConnell et 

al., 2009; Biran et al., 2005). This ultimately leads to recorded signal deterioration, 

manifested as a reduction in the number of electrodes recording individual neurons or a 

decrease in signal amplitude (Barrese et al., 2013; Schwartz et al., 2006; Moran, 2010; 

Freire et al., 2011; Collinger et al., 2012; Schwartz, 2004; Simeral et al., 2011; Chestek et 

al., 2011). Further, meningeal tissue proliferation and fibrous encapsulation have the 

potential to dislodge the implanted intracortical devices (Barrese et al., 2013).

ECoG is a recording modality where electrodes are placed either subdurally (below the dura) 

or epidurally (on the surface of the dura) to record electrical field potentials generated by 

aggregate cortical activity. Since ECoG arrays do not penetrate the cortex, they avoid blood-

brain barrier disruption and mechanical strain between the brittle electrode and soft neural 

tissue, which are common for intracortical electrodes. This potentially mitigates some 

inflammatory burden on the brain. ECoG signals have been found to encode information 

about arm and hand movements (Leuthardt et al., 2004; Schalk et al., 2007; Crone et al., 

1998; Miller et al., 2007; Pistohl et al., 2008; Wang et al., 2009; Kubánek et al., 2009; Ball 

et al., 2009; Miller et al., 2009; Chao et al., 2010; Acharya et al., 2010; Degenhart et al., 

2011a; Shimoda et al., 2012; Chestek et al., 2013; Nakanishi et al., 2013), as well as 

auditory (Edwards et al., 2005; Trautner et al., 2006), visual (Lachaux et al., 2005), language 

(Crone et al., 2001; Mainy et al., 2007; Kellis et al., 2010; Wang et al.; 2011, Pei et al., 

2011), and attentional processes (Tallon-Baudry et al., 2005; Jung et al., 2008; Ray et al., 

2008). Encouraged by these findings, researchers have begun to investigate ECoG as a 

potential source of control signals for BMI devices. Human and non-human primate subjects 

have demonstrated up to three-dimensional control of computer cursors or prosthetic limbs 

using ECoG (Leuthardt et al., 2011; Schalk and Leuthardt, 2011; Leuthardt et al., 2004; 

Schalk et al., 2008; Wilson et al., 2006; Yanagisawa et al., 2012; Wang et al., 2013; Hotson 

et al., 2016).

Despite the promise of ECoG in BMI and neuroscience applications, very few studies have 

evaluated the long-term host-tissue response to either epidural or subdural grids. In humans 
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and non-human primates, subdural and epidural arrays have been implanted for over one 

year with viable neural recording, however these studies did not report end-term tissue 

health (Shimoda et al., 2012; Morrell and RNS System in Epilepsy Study Group, 2011). 

Additionally, electrode grids are frequently implanted subdurally for up to 30 days in 

humans for purposes of epilepsy monitoring. While limited incidents of bleeding, infection, 

infarction, and functional deficits have been reported in association with these implants, no 

macroscopic fibrotic growth has been reported in otherwise uncomplicated surgeries 

(Fountas and Smith, 2007; Van Gompel et al., 2008; Wong et al., 2009). Some longer-term 

studies (> 1 year) of subdural spinal and cortical stimulators and probes reported 

encapsulation or dural thickening in the vicinity of the implants (Nashold and Friedman, 

1972; Pineda, 1978; Saitoh et al., 2000; Sillay et al., 2013). In rats, just one week after an 

epidural implantation, connective tissue overgrowth was observed (Schendel et al., 2014; 

Schendel et al., 2013). These studies followed tissue growth around epidural ECoG grids 

implanted in rats for up to 419 days, showing dural thickening under the arrays and tissue 

encapsulation over the top of the array as early as one month following implantation. 

(Schendel et al., 2014). These findings are corroborated by findings of dural thickening at 6 

months post subdural implant. Tissue proliferation was correlated with a rise in 1kHz 

electrical impedance as early as 1 week, with stabilization at 18 weeks post-implant (Henle 

et al., 2011). This would presumably reduce the quality of any neural signal recorded by the 

ECoG array, though no study has correlated long-term tissue reaction with neural signal 

quality. While Schendel et al. and Henle et al. investigated possible glial reaction to epidural 

and subdural implantation in the superficial layers of cortex, few studies explore the impact 

of subdural grids on deeper layers of the cortical tissue, particularly on neuronal health.

The current study explores the host-tissue response to a subdural ECoG grid implanted for 

666 days, focusing on both cortical tissue health and fibrosis at the implant site, while also 

validating device performance by examining neural responses to overt reaching movements. 

We found that cortical thickness and neuronal density was unaffected by array implantation. 

Furthermore, while microglial density was increased in superficial cortical layers, they were 

in a resting stage morphology, and astrocyte activation was consistent with tissue not under 

the implant. Finally, though the grid itself was found to be encapsulated in a fibrous 

envelope upon explantation, robust modulation of ECoG signals was observed over 18 

months post-implantation.

2. Methods

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh and were in accordance with the National 

Institutes of Health’s Guidelines for the Care and Use of Laboratory Animals.

2.1. ECoG grid implantation surgery

An adult male Rhesus monkey (macaca mulatta) was anesthetized, and a craniotomy was 

performed to expose the left motor and premotor cortex. The dura was retracted to expose an 

area approximately 2×2 cm between the arcuate and central sulci. A custom-built 15-

channel, 1 mm thick silicone ECoG grid with 2mm diameter platinum electrode sites (Figure 
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1A, PMT Corp, Chanhassen, MN, USA), identical in construction to FDA-approved 

electrode grids commonly used for epilepsy monitoring, was placed directly on the exposed 

brain surface (Figure 1B–C). After positionin, the dura and the bone were reapproximated. 

Wires from the grid were connected to a Cereport pedestal connector (Blackrock 

Microsystems, Salt Lake City, UT, USA) affixed to the skull.

2.2. Neural recording and task control

Signals from the ECoG grid were recorded with a g.USBamp Biosignal Amplifier (g.tec 

Medical Engineering) and sampled at 1200 Hz. All recording, online processing, task 

control and presentation was performed using the Craniux Brain Computer Interface system 

(Degenhart et al., 2011b). Dura-facing electrodes 4 and 13 were used as reference and 

ground electrodes, respectively, for all recordings (Figure 1A). Visual stimuli were presented 

on a 22-inch computer monitor placed approximately 0.8 meters from the monkey.

2.3. Hand control task

In order to validate device performance and ECoG signal modulation at long-term time 

points, we analyzed data recorded approximately 18 months post-implantation (day 542 to 

day 562 post-implant). During these experiments, the animal performed a standard 2D 

center-out task in a virtual environment, with the position of the hand controlling the 

location of a computer cursor in a two-dimensional frontoparallel plane. Hand position was 

tracked in real-time using an optical tracking system (Phasespace, San Leandro, CA) and 

rendered on a computer screen as a sphere in a virtual workspace. Trials began with the 

appearance of the cursor and central target; the animal was then required to move the cursor 

to the central target, and hold it there for 400–600 ms. One of eight peripheral targets would 

then appear, to which the animal was required to reach. A target hold time of 200 ms was 

enforced. The animal was provided a water reward immediately following successful 

completion of a trial.

Prior to offline analysis, hand control trials were visually examined for artifacts in both the 

time and time-frequency domains; all trials exhibiting artifacts during the central hold or 

target acquisition periods were excluded from further analysis. These artifacts were 

characterized by large-amplitude, broadband transients across the majority of recording 

electrodes, and are believed to be the result of jaw movements based on their consistent 

appearance during the reward period of each trial. Time domain data from the remaining 

trials were transformed into the time-frequency domain using the Burg autoregressive 

method (0 – 200Hz range, 2Hz frequency bands, 100th order, 100ms non-causal window, 

33ms step size), log-transformed, then normalized to pseudo Z-scores relative to the spectral 

power during the central target hold period. Trials were then manually aligned to movement 

onset using the cursor speed profile for each trial.

2.4. Explant

Electrodes remained implanted for a total of 666 days, after which the animal was sacrificed 

and the electrode grid removed. Surgical complications unrelated to the ECoG grid negated 

the possibility of perfusing the animal before removing the brain. After exposure of the 

skull, the original bone flap was removed to expose the dura. The skull proximal to the 
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connector, the dura, and the encapsulated electrode grid were then removed as a single piece 

and the entire brain was extracted. The brain and the encapsulated array were then placed in 

a 10% formalin + 10% glycerin solution for 8 days followed by 10% formalin + 20% 

glycerin for 26 days to fixate the tissue. The brain was bisected along the midline and 3D 

renderings of each hemisphere were generated with a 3D scanner (Faro Platinum Arm, Faro, 

Warwickshire, UK). Surface topography of the implanted hemisphere was quantitatively 

compared to the mirror image of the non-implanted hemisphere using Geomagic Studio 

(Geomagic. Rock Hill, SC). Fixated tissue was then frozen and sectioned into 50µm sections 

for staining. Sections were cut perpendicular to the central sulcus. The electrode grid was 

carefully removed from the encapsulation “envelope,” which was similarly fixed for 26 days 

and then stored in phosphate tris azide (PTA) solution until it was cut into 50µm sections for 

staining. Encapsulation tissue was cut perpendicular to the placement of the grid.

2.5. Immunohistochemistry

Cortical sections from implanted (left) and non-implanted (control, right) hemispheres were 

mounted on the same slide for comparison, and all slides were processed in the same session 

to minimize variability. A sample of dura mater distant from the edges of the tissue 

encapsulation (> 2cm) served as control dura mater for analysis of the encapsulation tissue.

Antibodies for cortical tissue were directed to neurons (NeuN, 1:200, Millipore), astrocytes 

(GFAP, 1:200, SeroTec), or microglia (Iba-1, 1:500, Fisher); antibodies for encapsulation/

dura mater tissue were directed to macrophages (Iba-1, 1:500, Fisher) or fibroblasts/

macrophages (Vimentin, 1:250, Millipore). Tissue was first blocked for 30 minutes in 

sodium citrate buffer (0.1M citric acid, 0.1M sodium citrate, pH 6.0) in room temperature 

followed by a peroxidase block (10% methanol, 3% hydrogen peroxide) for 20 minutes in 

room temperature on a shaker. Then, tissue was blocked in a serum containing blocking 

buffer (5% normal goat serum, Jackson Labs; 0.1% Triton X-100, Sigma) for one hour. 

Tissue was incubated in primary antibody for 12–24 hours. Following washes in phosphate 

buffer saline (PBS), tissue was incubated in 1:250 Alexa Fluor 488 and/or 633 (Invitrogen) 

for 2 hours at room temperature, followed by more PBS washes, 10 minute incubation in 

Hoescht 33342 (1uL/1mL; Invitrogen) stain, and more PBS washes. Coverslips were then 

mounted with Fluoromount-G (Southern-Biotech).

2.6. Confocal imaging

All confocal imaging was performed with an Olympus Fluoview 1000 confocal scanning 

microscope (Olympus Corporation, Tokyo, Japan). All images were taken with a 20× or 40× 

objective to optimize cellular resolution and image frame size. Images were taken at 

multiple focal depths for each frame in order to image the full depth of a tissue slice. This 

ensured that image analysis was not biased by choice of a single image depth. Confocal laser 

power, photomultiplier tube voltage (the sensitivity of the image detector), and 

photomultiplier offset (background level of image detector) were selected to ensure that 

image pixels did not exceed upper or lower detection limits. Images (n = 5 tissue sections 

per stain) were collected from cortical regions directly under electrode sites in Brodmann 

Area 4 (specific sites denoted by blue circles in Figure 1E) on the ECoG array or from the 

thickest region of both the dorsal and ventral sides of the center of the tissue encapsulation. 
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Images collected were only excluded from analysis on grounds of poor quality of signal, 

photobleaching, or severe tissue tears during processing. For cortical tissue imaging, images 

from the contralateral hemisphere were collected for comparison. Images were matched to 

the same sagittal slice depth and anterior-posterior region of interest as the ipsilateral 

hemisphere. Tissue encapsulation images were compared to images from random regions of 

interest of control dura mater retrieved from > 2cm from the tissue encapsulation.

To determine cortical layers and cortical thickness, disconnected images of cortex were 

stitched to create continuous high-resolution images of the entire cortical depth using Fiji, an 

Image-J (NIH) plug-in (Preibisch et al., 2009). Layers I/II–III were discerned from layer V 

by the location of layer V giant pyramidal cells (Matelli et al., 1991). Stitched images were 

used to measure cortical depth (n = 5) between conditions. Neuronal and microglial cell 

densities were determined for layers I/II–III and V with manual counting facilitated by 

Image J Cell Counter (n = 5). Layer I microglia morphology was assessed as previously 

described (Stence et al., 2001; Nimmerjahn et al., 2005; Kozai et al., 2012). Microglia were 

deemed to be ‘unresponsive’ if they were ramified (resting) or activated but not extending 

processes to the cortical surface, and ‘surface directed’ if they had activated or amoeboid 

morphology, with processes extended to or along the cortical surface. Because GFAP labels 

extensive networks of astrocytic processes, discerning individual cell bodies for cell 

counting was not possible. Instead, the proportion of cortex occupied by reactive astrocytic 

signal (% GFAP signal) was determined by first setting a pixel intensity threshold to the 

mean pixel value of layer I/II–III, where the most intense signal was localized. Because the 

majority of pixels in a given image are not GFAP-signal, the pixels below the mean can be 

discounted as noise. Once thresholded, the GFAP signal was determined by automating a 

count of the non-zero pixels (n = 5). Implanted cortex and contralateral cortex were 

compared for all metrics by t-tests with significance level of α = 0.05.

We identified cell-types in the encapsulation tissue based on morphology and antibody 

staining. Vimentin(+)/Iba-1(+) and vimentin(−)/Iba-1(+) cells were considered to be 

macrophages if found in the meninges or microglia if found in the parenchyma. 

Vimentin(+)/Iba-1(−) cells were considered to be fibroblasts. Multi-nucleated cells were 

considered cells that contained more than one Hoescht 33342 labeled nuclei in a single cell 

body. These cells are often found in pathological inflammatory conditions or in the presence 

of chronically implanted foreign bodies (Lynn et al., 2011; Brodbeck et al., 2002; Anderson 

et al., 2008).

2.7. Collagen-I imaging

Collagen I, a key component of tissue encapsulation, can be visualized using second-

harmonic generation (SHG) imaging. SHG imaging takes advantage of a second-order 

nonlinear optical property of collagen type I to visualize an intrinsically-generated optical 

signal that can be used to locate and quantify collagen I in tissue. This is preferred to 

traditional histological staining protocols, which have been shown to have less signal 

specificity and require chemical processing that may alter the tissue quality (Strupler et al., 

2007; Cox et al., 2003).
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SHG images of tissue encapsulation and dura mater were captured using a laser with a 

Nikon A1Plus multiphoton scanning confocal microscope and Nikon NIS- Elements 

Microscope Imaging Software. SHG was generated at an 830nm wavelength, and signal was 

collected via a bandpass filter that isolated tissue auto-fluorescence (435 − 700nm) and a 

low-pass filter that isolated SHG signal (<492nm). Images were taken with a 25× objective 

to maximize signal resolution and imaging frame; stitching software (EIS-Elements 

Microscope Imaging Software, Nikon) was used to consolidate disconnected images to make 

a seamless, high-resolution image of the encapsulation through the dorsal-ventral plane.

Encapsulation and dura mater thickness were determined by measuring average thickness of 

tissue extent as denoted by auto-fluorescence. Because SHG signal was confined within an 

uninterrupted, fibrous area, percent SHG-signal was measured by dividing the average 

thickness of SHG area by the total tissue thickness. Such measures were generated for 

encapsulation tissue from the ventral and dorsal sites, as well as for control dura mater (n = 

5 tissue sections for all groups). Encapsulation and dura mater thickness and percent SHG 

signal were compared between ventral encapsulation, dorsal encapsulation, and control dura 

mater groups by one-way ANOVA tests with Tukey’s post-hoc tests. Significance for all 

comparisons was defined to be α = 0.05.

3. Results

3.1. Cortical architecture

Upon sacrifice and explantation, we found that the ECoG grid was fully encapsulated in 

fibrous tissue that was contiguous with the dura mater (Figure 1F). The brain underneath the 

encapsulated ECoG grid was mechanically depressed. We assessed the extent of this 

depression by generating a 3D rendering of the brain’s surface topography. Then, the image 

of the implanted hemisphere was superimposed onto the non-implanted hemisphere. This 

allowed us to quantify the topographic differences between the two hemispheres (Figure 

1D). We found that the brain region under the ECoG grid was mechanically depressed by as 

much as 3.63 mm relative to the same region of the non-implanted hemisphere.

To determine if this gross morphological change resulted in alterations of cortical 

cytoarchitecture, we evaluated neuronal and glial density as well as cortical thickness under 

the grid. We compared these metrics of cortical structure to those of the corresponding 

cortex in the opposite hemisphere (Figure 2). The density of neurons labeled with the NeuN 

antibody in layers I/II–III or layer V was not significantly higher (Student’s t-test, p = 0.5 

and 0.32, respectively) in the cortex under the grid versus the contralateral cortex (Figure 

2A). Similarly, the signal intensity of GFAP antibody labeling of reactive astrocytes in layers 

I/II–III or layer V was not significantly different between the two hemispheres (Figure 2B; 

0.18 and 0.73, respectively). Only the density of microglia labeled with the Iba-1 antibody 

and located in the superficial layers (I/II–III) exhibited a significant increase under the array 

(Figure 3A; t-test p = 0.027 for layers I/II–III; 0.24 for layer V). The microglia both under 

the array and in the contralateral cortex exhibited a qualitatively similar morphology, with 

only cell density along the dorsal surface of the cortex of either hemisphere (7.6 ± 1.6 versus 

6.6 ± 1.8 cells/mm for the implanted and control cortical surface, respectively) showing 

surface-directed morphology (defined in Methods) (Figure 3B). These cells typically had 
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processes polarized parallel to the cortical surface. Finally, the thickness of the Nissl-stained 

cortical tissue under the grid (Figure 2C, top; 2.8 ± 0.04mm) was not statistically different 

from that of the contralateral cortex (Figure 2C, bottom; 2.7 ± 0.09mm; t-test: p = 0.34). 

These findings were qualitatively corroborated by observing the transition region of tissue at 

the edge of the ECoG array and tissue immediately adjacent to the implanted region, where 

limited changes were observed (Supplemental Figure A1). Taken together, these tests 

provide evidence of little to no cytological changes in the cortex underlying the ECoG array.

3.2. Fibrous encapsulation

Chronic subdural ECoG implantation resulted in fibrous encapsulation of the grid. The grid 

was removed by making an incision along the anterior portion of the encapsulation and 

pulling the grid with forceps. Surprisingly, the grid offered little mechanical resistance to 

removal, indicating that adhesion between the grid and encapsulation tissue was minimal. 

Using second-harmonic generation (SHG) imaging, we detected collagen I in sections of 

both the tissue encapsulation and control dura mater (> 2cm from implantation site). Using 

filters to image second-harmonic signals and tissue autofluorescence simultaneously, we 

quantified both the thickness of encapsulation tissue and the percentage of encapsulation 

tissue that was collagen I-positive (Figure 4). Because the dorsal portion of the 

encapsulation emerged from the original, autografted dura mater, we analyzed it separately 

from the ventral portion of the encapsulation, which grew de novo following initial 

implantation. Both sides of the tissue encapsulation were compared to control dura mater 

taken more than 2cm from the implantation site. There were statistically significant 

differences in the thicknesses of the tissues (one-way ANOVA: F (2, 14) = 136.13, p < 

0.001), with both dorsal encapsulation (0.82 ± 0.04mm) and ventral encapsulation (1.76 

± 0.09mm) being thicker than control dura mater (0.36 ± 0.03mm; Tukey’s post-test: p = 

0.001). The ventral encapsulation was also significantly thicker than dorsal encapsulation (p 

< 0.001). The encapsulation was presumably the major contributor to the visible depression 

of the cortex under the grid.

SHG imaging revealed encapsulation tissue to be comprised of a cellular region that did not 

express strong SHG signal and a collagenous region that was strongly SHG(+) (Figure 

4B,E). Using the tissue thickness derived above, we were able to assess the relative 

proportions of cellular and collagenous regions by measuring the area of collagenous region 

(SHG(+) region) and dividing it by tissue thickness. This showed that the proportion of 

collagenous region was significantly different between the tissues (one-way ANOVA: F (2, 

14) = 44.33; p < 0.001). Control dura mater had a significantly higher percentage of 

collagenous tissue (96.4 ± 0.33%) than either ventral encapsulation (82.5 ± 2.3%; Tukey’s 

post-test: p < 0.01) or dorsal encapsulation (58.9 ± 4.5%; p < 0.001). The percentage of 

collagenous tissue in the ventral encapsulation was also significantly greater than that of the 

dorsal encapsulation (p < 0.001).

In order to determine the cellular composition of the encapsulation we used 

immunohistochemistry (described in section 2.5). We identified fibroblasts and macrophages 

in all tissue groups. Control dura mater was largely composed of fibroblasts, many of which 

exhibited elongated nuclei (Figure 5C), consistent with previous literature (Adeeb et al., 
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2012). Macrophages were sparsely distributed. This resembled the “collagenous” region 

(>300µm from the array; Figure 5B) of the tissue encapsulation, which also contained 

elongated fibroblasts and macrophages. The “cellular” region of encapsulation (< 300µm 

from the array; Figure 5A) was highly cell dense with round, mononuclear macrophages as 

well as multinuclear, foreign body giant cells (vimentin(+)/Iba-1(+)). We made the 

mononuclear/multinuclear distinction based on nuclei count (Figure 5A inset). The 

encapsulation was organized as a gradient, with “cellular” tissue closest to the array 

exhibiting more inflammatory cell activity, and “collagenous” tissue more distal to the array 

more closely resembling healthy dura mater.

3.3. Physiological recordings

In order to validate long-term signal modulation, we examined ECoG signals during center-

out reaching task trials conducted between day 542 and 562 post-implantation. Signals 

exhibited clear modulation with target direction (Figure 6, Supplemental Figures B1, B2). 

Characteristic decreases in the mu and beta frequency bands (10–30 Hz), in conjunction with 

increases in the high-gamma band (> 60 Hz), were observed. High-gamma band modulation 

was found to be the strongest over the 70 – 100 Hz frequency range, and was tightly locked 

to movement onset. Thirteen of the fifteen electrodes exhibited reach-modulated signals. Of 

the two electrodes not exhibiting reach-related activity, one was a reference (dura-facing) 

electrode and the other an electrically intact electrode that was not recording due to a failure 

in the cabling connecting the Cereport adapter and neural recording amplifier.

Prior to hand control experiments, a number of recording sessions devoted to BMI control 

experiments were conducted. However, during post-hoc analysis of these data we discovered 

that the animal had developed a strategy of using artifacts, possibly the result of jaw 

movement, to generate directionally-modulated broadband increases in spectral power. We 

now believe that our earlier report of stable multi-day BMI control was due in part to this 

strategy (Ashmore et al., 2012). The presence of these artifacts precludes further analysis of 

the brain control data, apart from a baseline confirmation of the stability and robustness of 

the ECoG recordings. We have demonstrated this with representative mean electrode root-

mean speed (RMS) amplitude measurements of ECoG signals, which initially dropped, but 

stabilized by day 300 post-implant (Supplemental Figure C1C,D).

We also tracked mean 20Hz impedance of all functional electrode sites during some 

recording sessions from day 52–562 post-implant as well as after electrode grid explantation 

(Supplemental Section C). Impedance was relatively stable through this time frame, though 

it fluctuated following surgical interventions (Supplemental Figure C1A). Depending on the 

impedance measurement method, mean impedance of the grid dropped 6–36 kOhms 

following removal from the tissue encapsulation (Supplemental Figure C1B).

4. Discussion

4.1. Histological findings

We examined the foreign-body response to a subdural ECoG electrode grid nearly two years 

after implantation. There was fibrotic growth around the electrode grid, resulting in a 
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shallow mechanical depression of the cortex under the array. Despite this, the cellular 

characteristics of the cerebral cortex underneath the ECoG grid were consistent with that of 

the tissue of the contralateral hemisphere, where no grid had been placed. Most importantly, 

cortical thickness and neuronal density of the tissue under the array were statistically 

indistinguishable from the contralateral tissue, with no morphological differences apparent 

at any spatial scale. After accounting for discrepancies in methods, our measurements of 

thickness and neuronal density for both hemispheres agreed with those of previous 

anatomical studies of primate frontal cortex (Matelli et al., 1991; Gittins and Harrison, 

2004). Noting that cortical thickness and layering was unaffected by the gross mechanical 

deformation of the brain’s surface, it is plausible that the displaced brain was merely pushed 

into the ventricles, as is observed in cerebral edema and subdural hematoma (Kim and Gean, 

2011). Only the microglial density of the superficial cortical layers was significantly 

different between the implanted and non-implanted hemispheres. It is possible that the 

persistent, unactivated microglia population was part of the foreign body response to the 

implanted ECoG array, where increased macrophage density persists in the vicinity of the 

implant for its lifetime (Anderson, 2001; Sanders et al., 2000). It is also conceivable that this 

activation was not in response to a foreign body, but rather from pervasive mechanical stress 

caused by the fibrous encapsulation compressing the brain (Roth et al., 2014; Ding et al., 

2008). With the exception of a population of cells at the cortical surface of both 

hemispheres, layer I microglia were either ramified or polarized but without processes that 

extended to the cortical surface, indicating that these microglia were not actively responding 

to trauma or other noxious stimuli at the surface of the brain (Stence et al., 2001; Roth et al., 

2014; Nimmerjahn et al., 2005; Kozai et al., 2012). The microglia at the surface of the brain 

were polarized with processes extending parallel to the cortical surface, similar to a cell type 

that has been described in healthy mouse cerebellum and rat prefrontal cortex, suggesting 

the observed cell type is not a result of pathology (Vela et al., 1995; Kongsui et al., 2014). 

The astrocytic GFAP expression between control and implanted hemispheres was not 

different. For both hemispheres, we observed low GFAP expression in the gray matter and 

relatively strong expression in the glia limitans. This expression pattern has been well 

documented in healthy macaque brain, with gray matter GFAP expression increasing only in 

response to trauma or chronic foreign body implantation (Eng et al., 2000; Griffith and 

Humphrey, 2006; Peters and Sethares, 2002). Qualitatively, our finding of low levels of gray-

matter GFAP(+) cells under the array suggests that the array was not actively causing trauma 

to the cortex.

During the grid implantation surgery, we resected the dura mater, replaced it over the ECoG 

array, and sutured it in place. After the 666 days of implantation, dura mater/fibrous 

encapsulation tissue was found in a contiguous piece surrounding both the top and bottom of 

the ECoG. Since there were only leptomeninges separating the brain and array at the time of 

the implant, we assume that the ventral encapsulation grew de novo post-implantation. This 

is similar to recent findings by Schendel et al., who reported progressive fibrous overgrowth 

of epidural ECoG grids, with complete encapsulation as early as one month post-

implantation (Schendel et al., 2014; Schendel et al., 2013). The cellular distribution in the 

dorsal and ventral tissue encapsulation was distinct from dura mater elsewhere in the brain, 

and implied that the wound-healing response to implantation consisted of a stereotypic 
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foreign body response, which involves aggregation of mononuclear macrophages and 

multinucleated foreign body giant cells to the implant site and encapsulation of the device in 

a collagenous envelope. Aggregated cells and tissue encapsulation generally persist through 

the lifetime of an implant, with pro-inflammatory cytokine expression diminishing within 

the first month as anti-inflammatory/pro-wound healing cytokines are expressed (Lynn et al., 

2011; Brodbeck et al., 2002; Anderson et al., 2008). The fibrous encapsulation demarcates 

the final stage of wound healing in which the tissue disrupted by implantation is either 

regenerated from cells of the original cell type, or replaced with fibrous connective tissue. 

Given that dura mater is already largely fibrous connective tissue and mesenchymally 

derived fibroblasts, it was not clear to us the extent to which the tissue encapsulation was 

fibrous encapsulation or remodeled/regrown dura mater (Adeeb et al., 2012; Anderson, 

2001; Anderson et al., 2008). We observed a gradient where tissue proximal to the implant 

more closely resembled fibrous encapsulation, and tissue distal to the implant more closely 

resembled control dura mater.

Both the dorsal encapsulation and ventral encapsulation were thicker than the control dura 

mater, which would be expected of a foreign body tissue encapsulation. In the case of 

autografted, dorsal encapsulation, dural thickening may have also been an inevitable 

consequence of craniotomy and/or durotomy that was simply exacerbated by the presence of 

a foreign body. This is seen in epidural ECoG implants, where encapsulation with ventral 

and/or dorsal dural thickening has been reported in long-term implants (Schendel et al., 

2014). Merely performing a craniotomy triggered a 3.8 fold increase in dural thickness at 3 

weeks, with a reduction to a 2.6 fold increase at 3 months in New Zealand white rabbits 

(Nunamaker and Kipke, 2010). Replacing dura with an alginate hydrogel resulted in a 2.8 

fold increase of dural thickness of regrown dura at 3 weeks and a 3.1 fold increase at 3 

months. Dural thickening of 2mm 8 weeks after a 2cm dural incision has also been observed 

in coonhound dogs; following application of a poly(ethylene) glycol based dural sealant, the 

healed dura was found to have thickened as much as 4mm (Preul et al., 2003). Meningeal 

cells almost double collagen production following subarachnoid hemorrhage in rats (Sajanti 

et al., 1999); computational models of collagen I fibrosis following biomaterial implantation 

corroborate this (Su et al., 2011). In these experiment-validated models, increasing numbers 

of fibroblasts at the implant site results in significantly increased collagen deposition. Since 

the predominating cell type of dura mater is the fibroblast, it is plausible that we might 

expect pronounced collagen I production following implantation.

Despite the degree of encapsulation, the ECoG grid was extracted from the fibrous tissue 

with little effort, indicating relatively minor adhesions between the encapsulation and 

device. This is not surprising given the lack of porosity and surface features on the silicone 

grid. Previous studies have demonstrated that smooth, non-porous dural substitutes are less 

susceptible to fibrosis and adhesion formation (Barbolt et al., 2001; Sayama et al., 2014).

While we have shown that the foreign body response to chronic ECoG grid implantation can 

result in grid encapsulation after approximately 22 months, we were unable to determine its 

exact time course. It is unclear whether the encapsulation was stable, still growing, or 

perhaps shrinking, at the time of electrode explantation. Subdural ECoG electrodes 

implanted up to 30 days clinically for epilepsy monitoring do not exhibit such encapsulation 
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(Fountas and Smith, 2007, Van Gompel et al., 2008, Wong et al., 2009, Wang et al., 2013), 

so it is likely that the subdural implant encaspulation response occurs on the order of months 

rather than weeks. Meningeal thickening without encapsulation has been observed in mirco-

ECoG arrays in rats at 6 months post-implant, though no other time-points were assessed 

(Henle et al., 2011). In contrast, epidural implant encapsulation has been observed as soon as 

one month post-implant, with dramatically slower tissue encapsulation observed under an 

epidural array that had torn the dura mater during implantation (Schendel et al., 2014; 

Schendel et al., 2013). This suggests that there may be different foreign body response 

mechanisms for implants with different degrees of invasiveness. To our knowledge, there is 

no study directly comparing implantation depth to explore possible foreign body response 

mechanisms.

4.2. ECoG recording quality

ECoG electrodes provided recordings of physiological signals for nearly two years. Issues 

with the animal that were unrelated to the ECoG grid determined the termination date of the 

study, but we believe that signal quality may have persisted past two years. Of the fifteen 

electrodes on the array, only one lost recording capability during the course of our study. 

Post-explantation, we determined that failure was on account of a faulty wire connecting the 

Cereport adapter to the neural amplifier, and not due to the tissue response. We found that all 

functional electrodes showed signals that were temporally modulated and spatially tuned 

during a reaching task.

We conducted extensive BMI control tasks as part of this study. By the time we detected that 

the animal had developed a strategy of generating an electromyographic artifact (believed to 

be the result of jaw or face muscle contraction) to control the cursor, we were unable to train 

him to abandon this strategy. This made it difficult to study the functional properties of 

ECoG signals during the BMI control sessions. Despite the lack of longitudinal BCI 

performance data, both impedance and RMS amplitude measurements were relatively stable 

from day 56 (our earliest time-point measured) to day 562 post-implantation. The stable 

impedance and RMS amplitude suggest that the encapsulation did not significantly 

compromise the device functionality. However, future studies using a stereotypical 

experimental paradigm, such as the center-out task, will likely be able to better characterize 

changes in ECoG signal properties throughout the entire lifespan of an ECoG implant.

4.3. Implications and future directions

We believe our results have implications for the viability of ECoG for long-term high-

resolution brain recording. In addition to its use as a recording modality for brain-machine 

interfaces, ECoG has increasingly become a neuroimaging method of choice in a variety of 

neuroscience fields and non-BMI neural recording and neuromodulation applications. The 

potential for subdural ECoG grids to remain implanted for extended periods of time without 

damaging the cortex could facilitate the study of cognitive processes over long timescales. 

Lack of cortical damage combined with the ease of removal of the ECoG grid from 

encapsulation tissue may provide the possibility for re-implantation in case of device failure. 

This is not practical for intracortical electrodes, which typically damage neural tissue upon 

insertion (Barrese et al., 2013). While ECoG grid encapsulation presents as a potentially 
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detrimental consequence of implantation, many strategies can and have been pursued to 

minimize the foreign body response. These include altering the shape of array substrate 

(Schendel et al., 2014; Schendel et al., 2013; Yamakwa et al., 2010), increasing array 

flexibility (Kim et al., 2010; Yeager et al., 2008; Rubehn et al., 2009), applying anti-fouling 

or biomimetic surface treatments (Collier et al., 2004; Kolarcik et al., 2012), and releasing 

anti-inflammatory drugs from the array substrate or electrodes (Norton et al., 2005; Weaver 

et al., 2014). Use of such strategies may help to further increase the stability of long-term 

ECoG recordings by eliminating changes in recording quality resulting from the foreign 

body response to subdural ECoG grids.

As the presented work constitutes a case study of long-term grid implantation in a single 

animal, future studies are required to fully assess the impact of chronically-implanted ECoG 

electrodes. Nevertheless, our findings of meningeal thickening, encapsulation, and fibrosis 

echo studies on subdural and epidural implants in rats (Henle et al., 2011; Schendel et al., 

2013; Schendel et al., 2014) as well as in long-term (> 1 year) subdural and epidural 

implants in humans (Nashold and Friedman, 1972; Pineda, 1978; Saitoh et al., 2000; Sillay 

et al., 2013). There are fewer studies on the health of neural tissue underlying these 

implants. Additionally, we believe that our results provide an analytical framework for 

further investigation into the effects of chronic implantation of ECoG electrodes on the 

health of cortical tissue.

This study is an important first step toward fully assessing the long-term use of chronically-

implanted ECoG electrode grids. Minimal cortical tissue damage from chronic electrode 

implantation suggests that ECoG may provide the capability to record physiological signals 

from the cortex for extended periods of time. Ultimately, this highlights the utility of ECoG 

as a valuable tool for long-term BMI, clinical, and neuroscientific studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A). Top view of the electrode grid. The neural recording electrodes (gray) face the cortical 

surface. The reference (#4, green) and ground (#13, red) electrodes face the dura. (B). 

Exposure of the left motor cortex prior to implantation (ArS: arcuate sulcus, CeS: central 

sulcus). (C). Placement of the electrode grid. (D). 3D rendering of the left-hemisphere 

superimposed on the mirror image of the right-hemisphere. Heat map denotes difference in 

surface topography between hemispheres in mm. (E). ECoG grid location superimposed on 

the postmortem brain. Blue circles indicate electrode sites targeted for histological analysis. 

Black ink marks the observed location of the rostral-medial and caudal-lateral corners of the 

grid. (F). Underside of the encapsulated grid following explantation. The location of 

electrode 1 (e1) is indicated by the white arrow. All scale bars are approximately 2cm unless 

otherwise indicated.
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Figure 2. 
Long-term ECoG grid implantation causes minimal changes in cortical cytoarchitecture. (A–

B). Neither the density of NeuN-labeled neurons (A; green) nor the signal intensity of 

GFAP-labeling in astrocytes (B; green) located in layers I/II–III or layer V were significantly 

affected by implantation. Cell nuclei (red) counterstained with Hoescht 33342. Data 

presented as mean ± SEM; * denotes significant difference from control (p < 0.05). (C). 

Comparison of Nissl-stained motor cortex between implanted and control hemispheres. 

Cortical layers are indicated by roman numerals I– VI. Impl: implanted cortex. Ctl: control 

cortex.
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Figure 3. 
Chronic implantation yields higher microglial density with no change in cell morphology. 

(A). The density of microglia (green; nuclei in red) was significantly increased in layers I/II–

III but not in layer V following implantation. Data presented as mean ± SEM; * denotes 

significant difference from control (P < 0.05). (B). Layer I microglia show no morphological 

indication of inflammatory response. A small population at the cortical surface of implant 

and control cortices are polarized along the curvature of the brain, all microglia beneath the 

surface are unresponsive.
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Figure 4. 
Second-harmonic imaging of fibrous encapsulation reveals fibrous, cell-sparse regions and 

cell-dense regions in both dorsal and ventral aspects of encapsulation. (A). Sample image of 

full tissue encapsulation slice. (B) Schematic representation of encapsulation components. 

(C). Comparison of thickness of dorsal and ventral aspects of encapsulation tissue to control 

dura. (D). Percentage of SHG(+) tissue was significantly reduced in encapsulation tissue. 

(E). Sample images of dorsal encapsulation, central encapsulation, and control dura with 

SHG signal shown in blue and tissue autofluorescence shown in green. Data presented as 

mean ± SEM. Asterisks * and ** denote significant differences from control at p < 0.01 and 

p < 0.001, respectively.
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Figure 5. 
Immunohistochemical staining of encapsulation tissue. Tissue was stained for nuclei (blue; 

Hoescht 33342) and antibodies directed to macrophages (green; Iba-1) or macrophages/

fibroblasts (red; vimentin). (A). Array-contacting aspects of the encapsulation were highly 

cell dense, populated with macrophages (vimentin(+ or −)/ Iba-1(+)) as well as fibroblasts 

(vimentin(+)/Iba-1(−)). Boxes indicate multinucleated giant cells. Inset: Magnification of a 

multi-nucleated giant cell. (B). Distal portions of encapsulation were hallmarked by 

elongated fibroblasts and macrophages (vimentin(−)/Iba-1(+)). (C). Control dura mater is 

largely composed of elongated fibroblasts with infrequent macrophages.
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Figure 6. 
ECoG signal modulation during 8-target center-out reach tasks. Average time-frequency data 

are shown for a single electrode (e10) for all reach directions. Averaged (thick lines) and 

individual trajectories (thin lines) for each target are shown in the center panel. Time-

frequency data were normalized with respect to the spectral data during a central hold period 

preceding each trial. Black lines show average speed profiles for each target.
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