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Abstract
Melanopsin expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) entirely

control the post-illumination pupil response (PIPR) from 6 s post-stimulus to the plateau dur-

ing redilation after light offset. However, the photoreceptor contributions to the early redila-

tion phase of the PIPR (< 6 s post-stimulus) have not been reported. Here, we evaluated the

photoreceptor contributions to the early phase PIPR (0.6 s to 5.0 s) by measuring the spec-

tral sensitivity of the criterion PIPR amplitude in response to 1 s light pulses at five narrow-

band stimulus wavelengths (409, 464, 508, 531 and 592 nm). The retinal irradiance

producing a criterion PIPR was normalised to the peak and fitted by either a single photopig-

ment nomogram or the combined melanopsin and rhodopsin spectral nomograms with the

+L+M cone photopic luminous efficiency (Vλ) function. We show that the PIPR spectral sen-

sitivity at times� 1.7 s after light offset is best described by the melanopsin nomogram. At

times < 1.7 s, the peak PIPR sensitivity shifts to longer wavelengths (range: 482 to 498 nm)

and is best described by the combined photoreceptor nomogram, with major contributions

from melanopsin and rhodopsin. This first report of melanopsin and rhodopsin contributions

to the early phase PIPR is in line with the electrophysiological findings of ipRGC and rod sig-

nalling after the cessation of light stimuli and provides a cut-off time for isolating photorecep-

tor specific function in healthy and diseased eyes.

Introduction
In macaques, the pupil light reflex (PLR) measured during continuous light exposure and post
light offset after pharmacological blockade of outer retinal rod and cone photoreceptors shows
a sustained constriction that closely matches the spectral sensitivity of inner retinal melanopsin
expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) (peak ~482 nm) [1]. In
humans, the spectral sensitivity of the post-illumination pupil response (PIPR) measured at
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the plateau of the sustained constriction [1,2] and at a single time 6-second after light offset
[3], is entirely described by the melanopsin spectral nomogram. Together these measurements
confirm that when the PLR is measured in the dark (i.e. no light adapting background field),
the PIPR quantified using the plateau and/or 6 s PIPR metrics represents the activity of the
melanopsin photopigment alone.

The PIPR has been measured in many studies using a high irradiance, short wavelength
stimulus light near the melanopsin peak spectral response to directly assess melanopsin func-
tion as a biomarker for retinal disease (for review; Feigl and Zele [2]). Researchers evaluating
the PIPR have used different metrics for analysis [1,4–15], with the plateau and the 6 s PIPR
metrics showing the least variability [3]. The rationale for quantifying the PIPR at 6 s was
that it identified the largest net PIPR amplitude difference between the PIPR in response to
short (467 nm) and long (640 nm) wavelength lights [6]. No prior study evaluated photore-
ceptor contributions to the early redilation phase of the PIPR before 6 s post-stimulus to
determine the first post-stimulus time when melanopsin completely mediates the PIPR.
Outer retinal rod and cone photoreceptors provide extrinsic inputs to ipRGCs [16,17], how-
ever it is not known if the PIPR receives such extrinsic inputs in the early pupil redilation
phase after light offset. Here, we evaluate the spectral sensitivity of the PIPR at a range of
times after light offset to determine the inner and outer retinal photoreceptor contributions
to the early redilation phase of the PIPR. We use spectral sensitivity measurements to deter-
mine the first time after light offset when the PIPR is solely controlled by melanopsin input
to ipRGCs.

Methods

Participants and Ethics Statement
The data presented in this study are the results from a new analysis of previously recorded
pupil traces [3,18]. The PIPR spectral sensitivity was derived from the pupil traces of two par-
ticipants (32 year old female, 31 year old male) with no ocular pathology and not under any
prescription medication known to affect the pupil light reflex. They had normal visual acuity,
colour vision, visual fields, and no lenticular opacities (Grade 0, Lens Opacities Classification
System, LOCS III, Chylack et al. [19]). The PIPR was measured between 10 AM and 5 PM to
limit any attenuation of the PIPR amplitude that occurs in the evening nearer to the time of
melatonin onset [8,10]. To minimise fatigue and sleepiness, each participant was tested
for� 1.5 hours per day and each participated for approximately 15 hours in total.

While the variability of all current PIPR metrics has been evaluated [3], there is no report
on the variability of the PIPR between light offset and 6 s post-stimulus. To determine the
amplitude and intra- and inter-individual coefficient of variation (CV) of the PIPR at various
times between light offset and 6 s post-stimulus, a new analysis was conducted on the pupil
data from 20 healthy participants (age; 57.1 ± 10.7 years (mean ± SD), range: 35–74 years) col-
lected for a different study using the same instrumentation [18]. These 20 participants were
not involved in the spectral sensitivity experiments but served to provide data on variability.
The participants met the inclusion criteria outlined above; 19 participants had no lenticular
opacities (Grade 0, LOCS III) and one had a Grade 0.5 cataract that did not affect the PIPR
amplitude. There was no effect of age on the PIPR amplitude in the participants (Linear regres-
sion; r2 = 0.005, F1,18 = 0.09, p = 0.77) in agreement with literature [4,20].

All experimental protocols were approved by the Queensland University of Technology
Human Research Ethics Committee (approval numbers: 080000546 and 1400000793) and con-
ducted in accordance with the tenets of the Declaration of Helsinki. Written informed consent
was obtained from all participants after explaining the nature of the experiment.
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Pupillometer
The PIPR was measured using a custom-designed Maxwellian view pupillometer [2,4,21]
which comprised five primary lights generated using narrowband LED sources (Fig 1) imaged
in the pupil plane of the left eye via two Fresnel lenses (100 mm diameter, 127 mm and 70 mm
focal lengths; Edmund Optics, Singapore) and a 5° light shaping diffuser (Physical Optics
Corp., Torrance, CA, USA) to provide a 41° diameter light stimulus (retinal image diameter:
17.9 mm). The consensual PIPR of the fellow right eye was recorded under infrared LED illu-
mination (λmax = 851 nm) with a PixeLINK camera (IEEE-1394, PL-B741 FireWire; 640 x 480
pixels; 60 frames/s; PIXELINK, Ottawa, ON, Canada) through a telecentric lens (2/3-inch 55
mm and 2 X extender C-Mount; Computar, Singapore). CustomMatlab software (version
7.12.0; The Mathworks, Inc., Natick, MA, USA) was used for operating the stimulus presenta-
tion, pupil recording and analysis. A Spectroradiometer (StellarNet, Tampa, FL, USA) mea-
sured the LED spectral outputs (Fig 1) and a calibrated ILT1700 Research Radiometer
(International Light Technologies, Inc., Peabody, MA, USA) measured the light output in
radiometric units (Watts.cm-2.s-1 and converted to log quanta.cm-2.s-1 [22]).

Pupillometry and Spectral Sensitivity Measurements
Spectral sensitivity of the PIPR between 0.6 and 5.0 s after light offset was measured by deter-
mining a criterion PIPR amplitude at each test wavelength. This period was chosen to account
for the time (0.6 ± 0.3 s) after light offset for the pupil to reach the peak constriction amplitude
in response to the 1 s stimulus pulse [3] and on the grounds that the PIPR is already known to
follow the melanopsin spectral nomogram for times� 6 s [1–3]. To optimise the use of crite-
rion pupil light reflex, Webster et al. [23] recommended the selection of large stimulus fields,
regions of steep slope on the pupil response versus retinal irradiance curves, and observers
with the steepest slopes and lowest noise. Accordingly, we measured the criterion PIPR with a
41° stimulus on two participants who showed the lowest variability among the five participants
from our previous study and by using the regions of steep slope (above melanopsin threshold
~11.0 log quanta.cm-2.s-1 retinal irradiance) from the 6 s PIPR amplitude versus retinal irradi-
ance data (Figure 6 in Adhikari et al. [3]).

Fig 1. Spectral output of the primary lights. The bandwidths at half maximum output (in nm) are specified
in parentheses after the dominant wavelengths (in nm) of the primary lights: 409 (14), 464 (20), 508 (27), 531
(31) and 592 nm (14 nm).

doi:10.1371/journal.pone.0161175.g001
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The range of irradiances required to produce a criterion PIPR was estimated using the 6 s
PIPR amplitude versus retinal irradiance curves from Adhikari et al. [3] and the plateau PIPR
spectral sensitivity data from Gamlin et al. [1] and Markwell et al. [5]. The pupil traces used to
estimate the 6 s PIPR criterion can be used to evaluate the spectral sensitivity of the PIPR mea-
sured at other post-stimulus time periods (plateau, AUC early and late) and can therefore also
be used for measuring the PIPR spectral sensitivity between light offset and 5.0 s post-stimulus.
The irradiances at each wavelength were altered to achieve a criterion PIPR amplitude. The
stimulus retinal irradiance at the criterion PIPR amplitude depended on stimulus wavelength
and ranged from 13.0 to 15.3 log quanta.cm-2.s-1. The criterion PIPR amplitude depended on
the time after light offset, with the amplitude decreasing with increasing post-stimulus time.
The criterion PIPR was always> 15% of baseline pupil diameter (average of 10 s pre-stimulus
pupil diameter in the dark) at all selected times, taking into consideration that the intra-indi-
vidual coefficient of variation (CV) of the 6 s PIPR is about 10% [3].

To eliminate the influence of prior light exposure on the PLR, the participants were adapted
to the room illumination (0.0003 lux) for 10 minutes before all experimental sessions [3] (Fig
2). The left pupil was dilated (1% Tropicamide) to maintain a constant retinal irradiance dur-
ing light stimulation [24]. A 1 s light pulse was used because it produces larger PIPR ampli-
tudes compared to longer stimulus durations (10 s and 30 s) [3,6,10]. To control for the effect
of proposed melanopsin bistability, the difference in the wavelength of successive test stimuli
was always greater than 100 nm.

Retinal irradiances were estimated using the model of van de Kraats and van Norren [25]
using the corneal irradiances of the lights and correcting for pre-receptoral filtering (not
including macular pigment). Pre-receptoral filtering by macular pigment was not taken into
account because the macular region (up to 2 mm eccentricity) in humans is devoid of ipRGCs
[16,26] and the macular pigment optical density is negligible at 10° eccentricity [27]. Therefore,
any effect of macular pigment density will not be significant for the large field size (41° diame-
ter). The retinal irradiances required at each wavelength to produce the criterion PIPR at differ-
ent PIPR times were normalised to the peak and described by a best-fitting vitamin A1

photopigment spectral nomogram [28] with a peak in the range of opn4 (melanopsin) photo-
pigment [16]. The agreement of the nomogram with the criterion PIPR data was evaluated
visually by plotting the differences between the spectral nomogram and criterion PIPR ampli-
tude at each wavelength, and with Bland-Altman analysis (see Statistical Analysis). The PIPR
data that were poorly described by the opn4 spectral nomogram were fitted with a rod photo-
pigment (rhodopsin) CIE (1951) scotopic luminosity function [29–31] and also with a 10°
cone photopic luminous efficiency (Vλ) function [32] by summing the L- and M-cone in a
1.625:1 ratio [33]. Since rods and ipRGCs, and to a lesser extent, cone photoreceptors

Fig 2. Schematic of the pupillometry protocol. Each experimental session started with 10 minutes pre-adaptation. The order of presentation of the
stimulus wavelengths was randomised to maintain a minimum difference of 100 nm between successive stimuli. The example test protocol for the 409
nm stimulus (upper schematic) was common for all wavelengths. There was a two-minute inter-stimulus interval between the tests to allow for the pupil
to return to the baseline size. A minimum of four irradiances were presented in 0.2 log quanta.cm-2.s-1 intervals at each wavelength and a minimum of
three repeated measurements were recorded at each irradiance. PRE = pre-stimulus; PIPR = post-illumination pupil response.

doi:10.1371/journal.pone.0161175.g002
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contribute to the pupil light reflex [5,6,9,34–42], in cases where all of these three single photo-
receptor nomograms poorly described the PIPR data, the data were fitted with the binary com-
bination (opn4 + rhodopsin, opn4 + Vλ and rhodopsin + Vλ) or tertiary combination (opn4
+ rhodopsin + Vλ) as defined by McDougal and Gamlin [34],

SðlÞ ¼ fm½Sopn4ðlÞ�gk2 þ ðfc½SconeðlÞ�gk1 þ fr½SrodðlÞ�gk1Þ 1
k1

h ik2� �1=k2

ðEq 1Þ

where S(λ) is the combined spectral sensitivity of opn4 [Sopn4(λ)] [5], the 10° photopic spectral
luminous efficiency function [Scone(λ)] [32] and CIE scotopic luminosity function [Srod(λ)]
with their relative contributions (m for opn4, c for cones, and r for rods). The model was fitted
to the data by adjusting the free parameters to minimise the sum of squares of the differences
between S(λ) and the criterion PIPR. The k1 and k2 parameters represent the Quick pooling
model of visual sensitivity [43,44] for combining outer retinal (rhodopsin and Vλ) spectral sen-
sitivities and both the outer retinal and inner retinal melanopsin sensitivities. These k1 and k2
parameters were systematically adjusted to optimise the S(λ) curve fit and then fixed at 1 and
11 for further curve fittings because these values provided the lowest sum of squared errors
[34]. Fixing k1 and k2 limited the number of independently adjustable parameters involved in
optimising the nomogram model fit.

Statistical Analysis
Statistical data analysis was performed in GraphPad Prism (GraphPad Software, Inc., CA,
USA). To determine the spectral nomogram that best described the PIPR, the deviation of the
PIPR data from each nomogram was calculated. The agreement of either opn4, rhodopsin, Vλ
or the combined opn4 + rhodopsin + Vλ nomograms with the criterion PIPR data was evalu-
ated with Bland-Altman analysis, and the bias and 95% limits of agreement between the nomo-
gram and criterion PIPR were reported [45]. The Bland-Altman analysis only reports bias and
the limits of agreement can be estimated, however it does not provide a criterion for agreement;
we are not aware of any literature that defines acceptable limits for estimating the photorecep-
tor spectral sensitivities.

To evaluate the differences in amplitude between 2, 3, 4, 5 and 6 s PIPR, a one-way repeated
measures ANOVA (Geisser-Greenhouse correction, Tukey’s multiple comparisons, 95% confi-
dence interval, p< 0.05) was performed. The CV of the PIPR amplitude was calculated as SD/
Mean to determine the PIPR time metric with the lowest variability; intra-individual CV was
based on at least two repeated measurements and inter-individual CV was based on the pupil
data from 20 participants.

Results
When the criterion PIPR amplitude is measured for each primary light, the pupil light reflex
traces overlap (dashed vertical line in Fig 3; criterion PIPR at 1.8 s). For all measured times
after light offset at all wavelengths, the criterion PIPR amplitude could be achieved
within ± 6.5% of the predefined criterion; the differences between the measured and criterion
PIPR are shown in Fig 4 at two PIPR times, one that is described by the opn4 spectral nomo-
gram (1.8 s) and the other that cannot be described by the opn4 nomogram (1.0 s). The differ-
ence between the measured and criterion PIPR was within the recommended acceptance limit
of CV [46] and less than the reported CV of the 6 s PIPR amplitude (about 10%) [3].

For times> 1.7 s after light offset, a single photopigment nomogram with a peak sensitivity
in the range of melanopsin (opn4, λmax = 482 nm) (Fig 5; and Fig 6, upper-left two panels)
described the criterion PIPR with the lowest deviation (Fig 7, upper two rows), least bias and
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narrowest 95% limits of agreement (Fig 8) compared to the other single nomograms. When the
binary (opn4 + rhodopsin, opn4 + Vλ and rhodopsin + Vλ) and tertiary (opn4 + rhodopsin
+ Vλ) combination models were fitted to this data (> 1.7 s; Fig 6, upper two rows), the PIPR
was completely described by the melanopsin nomogram (m) with zero weightings for the rho-
dopsin (r) and Vλ (c) contributions, and the model deviation decreased (Fig 7), the bias was
lower and the limits of agreement were narrower than for the single nomograms (Fig 8). The
quality of fit improved with the combined model because melanopsin contribution can be
independently adjusted (parameter m, Eq 1) whereas the single nomogram model has no free
parameters.

A transition between the opn4 nomogram and the combined model as the better description
of the criterion PIPR became evident at 1.7 s post-stimulus, with participant 32/F requiring a
0.49 rhodopsin contribution in the tertiary model, although there was only a small difference
in the deviation (Fig 7) and bias (Fig 8) between the 1.7 s and 1.8 s PIPR. For all post-stimulus
times< 1.7 s, the single photopigment nomograms (Fig 6, left column) and binary combina-
tions (not shown) had larger deviations (Fig 7, lower three rows), higher bias and wider 95%
limits of agreement (Fig 8) than the tertiary combination of the spectral nomograms. The peak
of the best-fitting tertiary model shifted away from the opn4 nomogram peak towards longer
wavelengths (range: 482 to 498 nm; Fig 6, middle and right columns) with shorter post-stimu-
lus times. The relative photoreceptor contributions to the PIPR at times< 1.7 s were domi-
nated by melanopsin with major contributions from rods and minor contributions from cones,
with some differences in the weights between the two participants, but not in their pattern. For
all post-stimulus times, the Vλ nomogram showed the largest deviation, highest bias and wid-
est 95% limits of agreement.

A PIPR metric with low variability is better able to differentiate the disease effects on
ipRGCs from intra- and inter-individual PIPR variability. Having determined that the PIPR
measured at> 1.7 s after light offset is entirely driven by melanopsin, we compared the PIPR
amplitude and intra- and inter-individual coefficients of variation of the 2, 3, 4, 5 and 6 s PIPR

Fig 3. Exemplar pupil light reflex traces of participant 32/F (left panel) and participant 31/M (right panel) in response to five test
wavelengths to produce a criterion PIPR amplitude (% of baseline pupil diameter) at 1.8 s after light offset. The vertical grey bar at 0 s
indicates the 1 s stimulus pulse. The horizontal black bar along the abscissa indicates the post-stimulus period (0.6 to 5.0 s) where the PIPR
spectral sensitivity was measured. The insets show a magnified view of the traces (0.6 to 5.0 s post-stimulus). The vertical dashed lines in all
panels indicate the 1.8 s PIPR time and the horizontal solid lines in the insets indicate the criterion PIPR amplitude.

doi:10.1371/journal.pone.0161175.g003
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Fig 4. Difference (% of baseline pupil diameter) between the measured PIPR (symbols) and criterion PIPR
(horizontal lines) for each primary light at 1.0 and 1.8 s after light offset. The unfilled and filled squares indicate the data
(average ± SD) from participant 32/F and participant 31/M, respectively. The average retinal irradiance (log quanta.cm-2.s-1)
required to produce the criterion PIPR is given for each wavelength.

doi:10.1371/journal.pone.0161175.g004
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in response to a 1 s, 464 nm, 15.5 log quanta.cm-2.s-1 pulse in a cohort of 20 participants. The
PIPR amplitude differed significantly between the measured times (F2,34 = 103.4, p< 0.0001),
with the mean PIPR amplitudes decreasing with increasing post-stimulus time (Fig 9A). The
intra- and inter-individual CV increased with increasing post-stimulus time (Fig 9B).

Discussion
The spectral sensitivity of the dark-adapted post-illumination pupil response (PIPR) to a 1 s stim-
ulus pulse measured� 1.7 s post-stimulus is entirely described by the melanopsin (opn4) photo-
pigment spectral nomogram (peak at 482 nm) (Figs 5–8). For post-stimulus times< 1.7 s, the
combination of three photoreceptor spectral nomograms (opn4 + rhodopsin + Vλ) best describes
the spectral sensitivity of the PIPR (Figs 6–8) and the peak of this best fitting curve shifts to lon-
ger wavelengths (range: 482 to 498 nm) indicating major melanopsin and rhodopsin contribu-
tions and minor cone contributions.

The ipRGCs depolarise during light stimulation and repolarise slowly after light offset [16]
to produce a sustained PIPR [1]. Therefore, melanopsin dominates all phases of the PIPR with
major contributions in the early redilation phase between light offset and< 1.7 s post-stimulus
and solely controls the PIPR at� 1.7 s post-stimulus as observed in our data. Importantly, the
PIPR< 1.7 s post-stimulus receives contributions from both outer and inner retinal photore-
ceptors with the peak of the best-fitting combination opn4 + rhodopsin + Vλmodel shifting
away from the melanopsin peak sensitivity (~482 nm) towards the rhodopsin peak spectral
sensitivity (~507 nm), indicating major contributions from rhodopsin and melanopsin (Fig 6).
Our finding of rhodopsin contributions to the early phase of the PIPR has not been reported
previously in the human pupil data. Electrophysiology recordings in mice retinae demonstrate
that recovery of the rod photoresponse after light offset ranges from ~0.5 s after single-photon
stimulation [47] to ~5 s with a rod saturating stimulus (ranging in stimulus duration from 2 s

Fig 5. Spectral sensitivity of the post-illumination pupil response (PIPR) at 1.7 to 5.0 s after light offset. The unfilled and filled squares
indicate the data (average ± SD) from participant 32/F and participant 31/M, respectively; the blue curves indicate the melanopsin (opn4) spectral
sensitivity nomogram.

doi:10.1371/journal.pone.0161175.g005
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Fig 6. Spectral sensitivity of the post-illumination pupil response (PIPR) at 0.6 to 1.9 s after light offset. The unfilled and filled squares
indicate the data (average ± SD) from participant 32/F and participant 31/M, respectively. The curve fitting with the opn4 + rhodopsin + Vλ
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nomogram is separately shown for each participant in the middle (32/F) and right (31/M) panels; m, r and c are relative contributions to the PIPR
from opn4, rhodopsin and Vλ, respectively (Eq 1). The nomogram peaks are indicated by the arrows in the middle and right panels.

doi:10.1371/journal.pone.0161175.g006

Fig 7. Deviation of the criterion PIPR data from the single opn4, rhodopsin and Vλ spectral sensitivity nomograms, and the combined opn4
+ rhodopsin + Vλ nomogram at 0.6 to 1.9 s after light offset. The unfilled and filled squares indicate the data (average ± SD) from participant 32/F and
participant 31/M, respectively; the horizontal lines indicate no deviation from the nomograms.

doi:10.1371/journal.pone.0161175.g007
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to 100 s) [48]. In humans, the rod photoresponse recovery time to a 1 s, 3.3 log scot td.s (~12.4
log quanta.cm-2.s-1) light is ~9 s [49]. Hence, rod signalling is present shortly after light offset,
which explains the notable rod contributions to the PIPR at< 1.7 s post-stimulus in our data
(Fig 8), in line with evidence that rods contribute to the maintenance of the steady-state pupil
constriction during continuous light stimulation, at least for durations< 10 s [34]. In compari-
son, cones have faster photoresponse kinetics [50] and make minor contributions to the
steady-state pupil constriction [34] and the very early phase of the PIPR (< 1.7 s) (Figs 6 and
7). Based on our findings, we propose that measureable rhodopsin contributions to the PIPR
recover and terminate by approximately 1.7 s after light offset (note that our lowest irradiance
stimulus is ~7.0 log quanta.cm-2.s-1 above rod threshold) and melanopsin completely controls
the PIPR thenceforward.

Fig 8. Bland-Altman analysis of the agreement between the criterion PIPR data and the single opn4, rhodopsin, Vλ spectral nomograms,
and the combined opn4 + rhodopsin + Vλ nomogram at 0.6 to 1.9 s after light offset. The unfilled and filled squares indicate the data
(average ± SD) from participant 32/F and participant 31/M, respectively. The numbers above and below the symbols indicate the 95% limits of
agreement between the nomogram and PIPR for participant 32/F and participant 31/M, respectively. The horizontal dotted lines indicate zero bias;
the dotted boxes highlight the nomograms providing the best fit.

doi:10.1371/journal.pone.0161175.g008

Fig 9. Amplitudes (% of baseline pupil diameter) (Panel A) and intra- and inter-individual coefficients of variation (CV) (Panel B) of the 2,
3, 4, 5 and 6 s PIPR. Data from a sample of 20 observers with normal ocular health, aged between 35 and 74 years. In panel A, smaller
percentage baseline values on the ordinate indicate smaller PIPR amplitudes.

doi:10.1371/journal.pone.0161175.g009
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The post-stimulus time, when rhodopsin contribution to the PIPR in the opn4 + rhodopsin +
Vλmodel becomes zero and melanopsin entirely controls the model, differed by ~0.1 s between
our two participants (1.8 s for participant 32/F and 1.7 s for participant 31/M; Fig 6). It is not pos-
sible to determine the origin of this variability with this small participant sample, but future anal-
yses could consider the role of melanopsin gene polymorphisms that are known to alter the PIPR
amplitude in healthy people [51] but it is unknown if these polymorphisms shift the opn4 peak
spectral sensitivity. There is no evidence for rod gene polymorphisms in humans with normal
visual function [52], whereas L- andM-cone gene polymorphisms can shift the peak of the Vλ
nomogram [53,54] but any potential effect of this on our data would be negligible due to a minor
or no cone contributions to the PIPR at all post-stimulus times (Fig 6).

The PIPR quantified with the 6 s metric has been shown to be effective in detecting mela-
nopsin dysfunction in glaucoma [13,18,55,56], age-related macular degeneration [14] and
ischemic optic neuropathy [15] in humans. However, the time after light offset when the PIPR
should be measured for early disease diagnosis may differ with diseases depending on their
pathophysiology. In early glaucoma, the 6 s PIPR provides the largest differentiation in mela-
nopsin function from healthy eyes compared to other PIPR times [18], whereas in early AMD,
the 12 s PIPR provides the largest differentiation [14]. The implication is that the selection of
the post-stimulus time when the PIPR amplitude is measured should be determined based on
the disease of interest. As such, further differentiation of PIPR metrics may be useful for clinical
evaluation of disease effects on ipRGCs. Our finding that the PIPR measured at any time from
1.7 s after light offset is entirely melanopsin driven may allow for the optimal selection of a
time that provides the largest differentiation between melanopsin function in eyes with and
without disease. The secondary outcome of this study shows that the PIPR amplitudes decrease
and the intra- and inter-individual coefficients of variation increase with increasing post-stim-
ulus time from 2 s to 6 s (Fig 9) indicating that the PIPR measured closer to 2 s post-stimulus
will have lower variability compared to the PIPR at longer post-stimulus times. A larger PIPR
amplitude (Fig 9A) provides a larger dynamic range that will be more sensitive to melanopsin
dysfunction in early disease stages and more robust to attenuation in stimulus retinal irradi-
ance due to lenticular opacities in older persons. Based on our data, pupillometric paradigms
used to measure ipRGC function do not solely need to depend on short wavelength lights near
the peak melanopsin sensitivity, but any wavelength can be used to produce a similar PIPR
amplitude by adjusting the stimulus irradiance, including longer wavelength lights (e.g., amber
appearing lights) that are more robust to lens attenuation.

In conclusion, rhodopsin and melanopsin contribute to the early phase of the dark-adapted
PIPR (< ~1.7 s post-stimulus), in line with the electrophysiological observations of rod signal-
ling shortly after the cessation of a light stimulus, and melanopsin solely drives the PIPR at lon-
ger post-stimulus times.
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