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Abstract

Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, 

hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly 

require a careful consideration of balancing computational cost and accuracy. Here we review 

several recent developments in free energy methods most relevant to QM/MM simulations and 

discuss several topics motivated by these developments using simple but informative examples that 

involve processes in water. For chemical reactions, we highlight the value of invoking enhanced 

sampling technique (e.g., replica-exchange) in umbrella sampling calculations and the value of 

including collective environmental variables (e.g., hydration level) in metadynamics simulations; 

we also illustrate the sensitivity of string calculations, especially free energy along the path, to 

various parameters in the computation. Alchemical free energy simulations with a specific 

thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM 

region when computing solvation free energies. For cases where high-level QM/MM potential 

functions are needed, we analyze two different approaches: the QM/MM-MFEP method of Yang 

and co-workers and perturbative correction to low-level QM/MM free energy results. For the 

examples analyzed here, both approaches seem productive although care needs to be exercised 

when analyzing the perturbative corrections.

1 Introduction

Using theoretical and computational approaches to understand catalysis in solution and 

biomolecules has a long history that dates back to the beginning of the development of 

quantum chemistry.1 More systematic efforts began with the pioneering developments of 

molecular dynamics simulations of biomolecules2 and hybrid quantum mechanical/

molecular mechanical (QM/MM) methodologies,3 as recognized by the Nobel prize of 

Chemistry in 2013. After decades of methodology developments,4–14 QM/MM simulations 

have become a powerful tool for the analysis of enzyme catalysis15–20 and can aide 
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effectively in exciting applications such as drug design,21 enzyme/protein engineering22–24 

and systems biology.14 Despite much success, one may argue that the field of computational 

enzymology is still at its infancy,25,26 in the sense that it remains challenging to make 

quantitative predictions on the catalytic proficiency of an arbitrary enzyme with an entirely 

generic computational approach. Therefore, much work is needed to push forward QM/MM 

based techniques toward the next level of maturity and robustness.

Central to most QM/MM applications is the computation of free energy differences. In the 

context of enzyme catalysis, for example, the relevant quantities27 include the binding 

affinity of the substrate (often related but not necessarily equivalent to the Michealis 

constant KM) and the free energy profile for the chemical step(s), which contain information 

about kcat; to understand the proficiency of enzyme catalysis, it is also important to 

determine the free energy profile for the uncatalyzed reaction(s) in solution. Accordingly, 

two types of free energy simulations are involved: alchemical simulations for binding and 

potential of mean force (PMF) simulations for chemical reactions. The division of the 

techniques is certainly not absolute; for example, PMF type of simulations can also be used 

to compute the absolute binding free energy of ligands to protein receptors.28

For both types of free energy simulations, it is well appreciated that the key challenge is to 

strike the proper balance between potential energy accuracy and the degree of 

conformational sampling. This is particularly the case for QM/MM based free energy 

simulations, since the cost of QM calculations is substantially higher than that of classical 

force field based calculations. For example, work in our group has targeted metalloenzymes 

that feature active sites that are particularly dynamical in nature, allosterically regulated, 

and/or have a significant degree of solvent accessibility; good examples include 

biomolecular motors,29,30 DNA repair enzymes,31–33 ion transporters34–36 and enzymes that 

feature a high degree of catalytic promiscuity.37–42 In addition to their biological 

significance, these problems were chosen because they have been difficult to tackle with 

existing methodologies. On one hand, the involvement of metal ions calls for the use of a 

reliable QM approach; on the other hand, the particular dynamical nature of these systems 

demands adequate sampling.

In this contribution, we briefly review the two types of QM/MM free energy simulations 

with most examples motivated by our own research. The goal is to illustrate state-of-the-art 

techniques, recent developments and technical issues relevant for realistic applications using 

model systems. We focus on problems in which a direct sampling of the QM/MM potential 

function is important, although we also discuss the elegant minimum free energy path 

method of Yang and co-workers11 (also see Ref.43,44), in which the QM and MM 

fluctuations are decoupled and therefore finite-temperature sampling is done mainly for the 

MM degrees of freedom. For direct sampling, it is crucial to develop a low-level QM/MM 

potential that provides a semi-quantitative description of the underlying potential energy 

surface. One approach is to develop system-dependent semi-empirical QM/MM potentials, 

based on either minimum energy paths,45–47 force-matching48 or para-dynamics.49 The 

alternative approach, which is what we follow, is to develop a general-purpose approximate 

QM method so that refitting is (ideally) not required when studying a new system. In 

particular, we have been pursuing an approximate density functional theory, density 
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functional tight binding (DFTB50,51), for biologically relevant systems. As reviewed 

elsewhere recently,52–54 the latest version of the DFTB methodology, referred to as 

DFTB3,55 provides encouraging results for a fairly broad class of systems of biological 

interest; the accuracy is often comparable to density functional theory with the generalized 

gradient approximation (DFT/GGA) and a double-zeta-plus-polarization quality basis set, 

while the computational cost is similar to conventional semi-empirical methods56 such as 

AM1 and PM3, making it routine to conduct nano-second simulations based on DFTB3/MM 

potentials. For metalloenzyme applications, recent developments have led to promising 

parameterizations for several metal ions that include the alkali metals,57 magnesium, zinc58 

and copper.59 The DFTB3 method in the current form is most reliable for structural 

properties, including for fairly complex bi-metallic motifs in several enzymes;40,41,58,60,61 

for energetic properties, the results are less robust as compared to DFT/GGA62,63 but can 

often be improved to satisfying accuracy with single point energy calculations at high 

QM(/MM) level, making DFTB3 a promising low-level approach in dual-level QM/MM free 

energy simulations, a topic that we will also discuss here.

In the following, we first summarize the basic theoretical foundation of the two types of 

QM/MM free energy simulations and relevant techniques (e.g., metadynamics and finite-

temperature string) for various applications. Next, we discuss a number of condensed phase 

model systems to illustrate these free energy methods and relevant technical issues. Finally, 

we draw a few conclusions and highlight a few pressing challenges for future investigations.

2 Theory and Methods

In this section, we first discuss methods for computing reaction free energy profiles and 

pathways, and then move on to alchemical free energy computations, including multi-level 

free energy calculations that integrate low- and high-level QM(/MM) potential functions.

2.1 Reaction free energy profile and pathways

2.1.1 Sampling along pre-determined order parameters—For relatively simple 

chemical reactions, such as localized proton/atom transfers, umbrella sampling64 along one 

or several pre-defined order parameter(s) is likely an effective approach. These order 

parameters are usually geometrical parameters, such as an antisymmetric stretch involving 

the atom being transferred and the respective donor and acceptor atoms;65 in some 

applications, energetic parameters such as the energy gap between the relevant diabatic 

states66,67 are also useful. The potential function in umbrella sampling (UUS) takes the 

following form, which includes both the unbiased potential energy (U0) and the umbrella 

potential (Ub),

(1)

The umbrella potential of the ith window typically takes the form of a harmonic restraint on 

the order parameter ξ (i.e., k(i)(ξ − ξ(ref,i))2), although more complex functional forms or 

numerical values can be used in, for example, adaptive umbrella sampling;68 the bias can 
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also take the form of a constraint69,70 rather than a restraint, thus fixing the value of the 

order parameter to be specific reference values, ξ(ref,i). When a restraining potential is used, 

statistics of the order parameter(s) from all windows are collected and analyzed using, 

typically, Weighted Histogram analysis (WHAM)71 to generate the underlying PMF, W(ξ) 

(Eq. 29). In constrained simulations,69 the mean gradient of the order parameter(s), 〈∇ξ(U0 

− β−1 log |J|)〉ξ, is integrated to generate W(ξ) (where 〈·〉ξ is the conditional average ∫ dX(·) 

exp[−βU0]δ(ξ(X) − ξ)/∫ dX exp[−βU0]δ(ξ(X) − ξ), β is the inverse temperature, and we 

have formally included the Jacobian of the coordinate transformation, but left the 

transformation unspecified). Because it is straightforward to decompose atomic 

contributions to (mean) force when pair-wise MM potential or QM-MM interactions are 

used, constrained simulations are valuable for decomposing atomic contributions72 to W(ξ), 

provided that care is exercised to include the Jacobian contribution.73,74

As discussed in recent studies, the WHAM approach relies on the assumption that data from 

different windows are drawn from globally equilibrated simulations, thus care needs to be 

exercised to design the restraining potentials and to monitor convergence;75 a promising 

alternative is to analyze the data using a discrete transition based reweighting analysis 

(dTRAM,76 a similar idea was published in Ref.75), which provides maximum-likelihood 

estimates of free energy quantities without the assumption of global equilibrium. Another 

technical issue often encountered in umbrella sampling for complex system is that the 

degrees of freedom orthogonal to the order parameters are sampled differently in different 

windows. One promising approach to improve the convergence is replica-exchange umbrella 

sampling (REUS77,78), which is a variant of the Hamiltonian replica-exchange method.77,79 

In REUS, different umbrella windows are run in parallel; at a given frequency, an attempt is 

made to exchange configurations from two windows (m ↔ n) with the acceptance 

probability following a Metropolis criterion:

(2)

where . If there are significant 

barriers along the orthogonal directions for all important ξ values, REUS alone does not 

help overcome these barriers; when the orthogonal barrier is only high in certain ξ windows, 

however, REUS is expected to be effective.80 For the acceptance probability to fall in the 

reasonable range, exchange is usually attempted for neighboring windows.

Another popular variant of the adaptive umbrella sampling technique is metadynam-ics,81–83 

in which Gaussian potentials are deposited with a time interval of τG along a molecular 

dynamics simulation. The Gaussian potentials, with width δG and height ωG, are functions 

of the order parameters, which are referred to as the collective variables (CVs) in the 

metadynamics literature. Addition of the Gaussian functions elevates the potential wells and 

eventually facilitates transition over barriers in the CV space. In the long time limit, when 

the dynamics in the CV space becomes diffusive, the accumulated Gaussian potential,
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(3)

approaches the negative PMF in the CV space, i.e., limt→∞ VG(ξ, t) ~ −W(ξ); it is straight-

forward to generalize Eq.3 to multi-dimensional cases. In addition to the choice of the CVs, 

which is a common issue to any form of umbrella sampling technique, the convergence 

behavior of metadynamics simulations has been thoroughly discussed in the literature,81,84 

including the choice of the key parameters (δG, ωG and τG). Approximate expressions have 

been derived for metadynamics, although in practice, the error in the computed PMF profile 

is more conveniently estimated by comparing independent runs or using block averaging. In 

well-tempered metadynamics,85 the height of the Gaussian potential is automatically scaled 

as the simulation proceeds, which leads to a smoother convergence behavior,84

(4)

Here ΔT is an input parameter, which determines the long-time limit of the accumulated 

Gaussian potential,

(5)

For ΔT = 0, regular MD is recovered, while the regular metadynamics corresponds to the 

limit of ΔT → ∞.

The challenge for studying reactions in a complex environment is that many degrees of 

freedom are likely involved. If a large number of order parameters/CVs are chosen, umbrella 

sampling and metadynamics simulations will be prohibitively expensive for thoroughly 

exploring the multi-dimensional PMF. One possible solution is to maintain a small number 

of CVs, but couple metadynamics with replica-exchange/simulated tempering simulations to 

enhance the sampling of the orthogonal or transverse degrees of freedom.81 Another choice 

is bias exchange metadynamics,86 in which replica-exchange is conducted for multiple 

meta-dynamics simulations that bias different sets of CVs. The other alternative is to search 

for a minimum free energy path rather than exploring the entire multi-dimensional PMF 

surface. In this case, only a one-dimensional object is sought for, regardless of the number of 

CVs used to parameterize the path, thus the computation formally scales much more 

favorably compared to multi-dimensional umbrella sampling/metadynamics. We turn to this 

subject in the next section.
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2.1.2 Free energy path sampling—The search of minimum energy path (MEP), also 

known as the intrinsic reaction coordinate,87 has a long history in quantum chemistry. For 

reactions in the liquid phase or biomolecules, which feature very rugged potential energy 

surfaces, a small number of MEPs are often insufficient for a quantitative description of the 

reaction,9,45,88 since the potential energy profiles can vary greatly among them and it’s not 

trivial to evaluate the weights of these MEPs in terms of contribution to the reaction flux at a 

finite temperature.89

The alternative is to determine the path(s) on a free energy surface. Again, there has been 

many developments motivated by somewhat different applications, and here we focus on 

those most relevant to QM/MM type of simulations; we limit the discussion to pathways in 

the configurational space only, as sampling in the trajectory space (transition path 

sampling90) is most important for understanding dynamical (non-equilibrium) effects 

associated with a reaction. In this context, we again first define the CV space spanned by a 

set of order parameters most relevant to the reaction process: ξ⃗(X) = (ξ1(X), ξ2(X),···, 

ξn(X)); the CVs can range from a combination of internal coordinates to a set of Cartesian 

coordinates for the most essential atoms. Then the free energy surface (or PMF) in this n-

dimensional space is defined as,

(6)

where Z is the configuration integral. The minimum free energy path (MFEP) on this surface 

is a curve (or a “string”) defined by the condition that the projection of the mean force 

perpendicular to the path vanishes,

(7)

where Mij= 〈∇X*ξi · ∇X*ξj〉ξ⃗ is the metric tensor associated with the transformation to the 

space of collective variables, and X* are mass-weighted coordinates. As discussed in detail 

in Ref.,91 the MFEP is the path of maximum likelihood for the reaction if two conditions are 

met: (i). the set of collective variables is adequate to approximate the committor function, 

which is taken to be the true reaction coordinate that describes the mechanism of the 

reaction;90,92–96 (ii). most reactive trajectories are contained in narrow ‘transition’ tubes, 

which are separated by significant energy barriers.

In practical implementations, the MFEP is optimized with the chain-of-states methods,97 

similar to the nudged elastic band98 and its variations for MEP computations. The string is 

discretized into a set of N equidistant points (or images91) , with i ∈ [1 … N] and to each 

point a separate simulation system is assigned, which is used to compute the metric tensor 

M(ξ⃗) and the free energy gradient ∇W(ξ⃗) that appear in Eq. 7. Starting from an initial 
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condition for the string , the points  are updated iteratively until a discretized version 

of condition Eq. 7 is satisfied. A straightforward iterative method is to first advance the 

string using steepest descent:99

(8)

followed by reparametrization,91 i.e., an interpolation step that enforces equal distances 

between adjacent images:

(9)

In Eq. (9), τ→i is the vector tangent to the string at , and λi are chosen such that | 

| are equal for i ∈ {1 … N − 1}.99,100

M and ∇W in Eq. (8) are computed from simulations with harmonic restraints 

, and the parameters Δt and γ are adjusted empirically to accelerate 

convergence to the MFEP.91,100 For the special case of Δt=dt, where dt is the time step in the 

molecular simulation used to compute M and ∇W, the string was shown to converge to the 

MFEP rapidly,101,102 provided that the friction γ was taken sufficiently large. However, in 

this case the optimized path satisfies the condition

(10)

which differs from Eq. (7) by the temperature-dependent term β−1∇·M. The differences in 

the paths and free energies based on Eqs. (7) and (10) were found to be small for the 

solvated alanine dipeptide.101,102 It is noteworthy that the reparametrization step of Eq. (9) 

is a relatively expensive collective computation involving all points  (i.e., possibly all 

processors), and thus a larger Δt is typically chosen to avoid performing this step too 

frequently.

An indirect approach to approximate the solution to Eq. (10) is the swarm-of-trajectories 

string method (STS).103 In STS, a collection of independent unbiased trajectories of (usually 

short) duration Δt are launched from configurations of the molecular systems conditioned on 

, and the evolution in Eq. (8) is replaced by
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(11)

where α is a scaling parameter that can be used to optimize convergence and accuracy (α=1 

is a typical starting choice).  are then obtained from Eq. (9). To iterate further, one 

must recondition the molecular systems to satisfy , which can be achieved 

using e.g., restrained simulations. Although the original STS approach assumed diffusive 

dynamics of the CV variables under which condition the optimized path is the most probable 

transition path (i.e., the system has the highest probability of being on the path), it was 

subsequently shown that the approach is also valid when the CV dynamics is in the inertia 

regime,102,104 and the path converges to MFEP.

In practical applications of the string methods, the most important decisions include the 

choice of the CVs, the initial string ( ) and the values of the restraining force constants. 

The choices are often not straightforward and can influence results significantly. We will 

discuss some of the issues using examples in Sect.3.1.2.

When the QM method is expensive, such as an ab initio or DFT method, direct sampling is 

usually not affordable. One promising solution is the QM/MM-MFEP approach pioneered 

by Yang and co-workers11,105 that searches for MFEP with the CVs corresponding to the 

Cartesian coordinates of the QM region; i.e., one searches the MFEP on the PMF surface for 

the QM degrees of freedom,

(12)

and the key is to compute the gradient with respect to the QM coordinates,

(13)

In practice, this is done by decoupling the fluctuations of the QM and MM regions, and 

extensive sampling is only done for the MM degrees of freedom in the presence of frozen 

QM atoms that are represented by partial charges (and possibly polarizabilities106); related 

methods have also been developed by others.43,44 To facilitate convergence, the QM 

geometry/path optimization is done in an iterative process106 in which a fixed MM ensemble 

is used when QM structure is relaxed according to an approximate expression for Eq.13 (see 

below). Once the QM structure is fully relaxed, the MM ensemble is updated with a frozen 

QM region, and the process is repeated till convergence. For MM sampling and QM 

structural relaxation, the QM density/partial charges are determined using the corresponding 
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MM ensemble and a mean-field approximation. This allows the approximate separation of 

electrostatically embedded QM/MM energy into the sum of a QM internal term and classical 

QM-MM electrostatics,

(14)

where Ψmf is the mean-field wave function for the QM region,  includes only the 

electrostatic embedding operators for the mean-field QM-MM interactions, NMM–ens is the 

number of configurations in the MM ensemble included in the mean-field calculations, and 

 is the ESP charge for the i-th QM atom determined by the mean-field calculations; we 

will examine whether the mean-field approximation is a good model below using solution 

reactions. Accordingly, the PMF gradient can be written as,

(15)

where  includes the classical electrostatic interactions between the QM ESP charges 

and MM charges, along with other classical QM/MM terms such as van der Waals and 

bonded contributions.4 In practice, since a fixed MM ensemble is used for each cycle of QM 

structural relaxation, the ensemble average in Eq.15 needs to be re-weighted with the QM 

structure used to generate the MM ensemble as a reference; i.e.,

(16)

where 〈···〉MM,ref emphasizes that the MM ensemble is generated using a reference QM 

structure (for example, the converged structure from the previous cycle of QM structural 

relaxation). Note that the difference in the QM internal energy relative to the QM reference 

structure in principle contributes to the Boltzmann factor in Eq. 16, but, with the mean-field 

approximation, such contributions cancel out in the numerator and denominator.

Since the QM structures are relaxed with local minimizations, only harmonic fluctuations 

around the stationary points along the MFEP can be estimated using normal mode 
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analysis.106 Anharmonic effects and larger scale changes for the QM region, such as 

extensive rearrangement of hydrogen bonding networks during the reaction, are not 

captured, thus the method may not be optimal for systems with a high degree of flexibility 

and/or solvent accessibility.

Finally, we note that an entirely different approach is to use enhanced sampling techniques 

to let the QM region overcome chemical barriers without biasing specific geometrical 

coordinates. Then the free energy surface can be projected onto desirable CVs for analysis. 

Several attempts have been made in the past under the name of “chemical flooding”.107 The 

most recent example featured the use of selective integrated tempering sampling (SITS108) 

for the QM atoms in a QM/MM framework. In ITS,109 an effective Hamiltonian is 

constructed by integrating the distributions at multiple temperatures, and sampling using this 

effective Hamiltonian allows overcoming enthalpic barriers; in SITS,108 only the effective 

temperature for selected degrees of freedom and their coupling to the environment is scaled, 

similar to solute tempering,110 allowing the enhancement of sampling for specific degrees of 

freedom. The method has been successfully used to study Claisen rearrangement in different 

solutions.111 In the future, it is interesting to explore whether this promising method remains 

effective when the QM region is large and therefore there are many ways to partition the 

energy boost introduced through the higher temperature distributions.

2.2 Alchemical and multi-level free energy computations

2.2.1 Alchemical free energy simulations—When only the relative free energy of two 

species/states, rather than the path that connects them, is of interest, alchemical free energy 

simulations112–114 are often used. Specifically for QM/MM applications, typical examples 

include the solvation free energy of a QM solute, and the binding affinity of a QM ligand to 

a protein active site; in the first case, the two states correspond to the QM solute in the gas 

phase and water, respectively, while in the latter case, the two states are the QM ligand in 

water and in the protein active site, respectively. Alternatively, we might be interested in the 

relative solvation free energy of two QM solutes in water, or the relative binding affinity of 

two QM ligands to the same protein active site. To minimize the cost of sampling, QM/MM 

alchemical free energy simulations are often carried out using a thermodynamic cycle 

pioneered by Gao5 and Warshel66 in which pure MM simulations are used as a reference; an 

example is described in Fig. 1a, which describes the solvation free energy calculation of a 

QM solute.

Following the thermodynamic cycle, the step that requires most sampling is done with an 

inexpensive MM potential ( ), while “alchemical mutations” are used to convert 

the solute between MM and QM representations; such conversion is expected to converge 

quickly due to the generally small differences between QM and MM potentials for stable 

species. Using the state nature of free energy, it is easy to see,

(17)
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This type of thermodynamic cycle can be easily generalized to connect QM descriptions at 

different levels as well, which we discuss in the next subsection.

For highly polar and charged solutes, it might be preferable to treat also the first solvation 

shell as QM. In this case, the thermodynamic cycle only requires a minimal degree of 

revision, as shown in Fig. 1b. The additional step involves converting the microdroplet, 

which corresponds to the first solvation shell solvent molecules in the absence of the solute, 

between MM and QM representations,

(18)

In terms of computational cost, the alchemical steps that involve MM/QM conversion are 

most likely to dominate. When QM is an ab initio or DFT method, it is desirable to 

minimize the degree of QM sampling, a topic we discuss in the next subsection. When the 

QM is a semi-empirical method, direct sampling is possible although it may still be costly. 

Thus it is fruitful to develop methods to speed up alchemical free energy computations that 

mix different potential functions. We recently developed the integrated Hamiltonian 

sampling (IHS),115 which can be regarded as an extension of the ITS approach;109 it is also 

intimately related to the enveloping distribution sampling of van Gunsteren and co-

workers.116 In IHS, we introduce an effective potential (UIHS(R)) whose canonical 

distribution is the integrated distributions of multiple potential functions,

(19)

where Ω(λ) is a weight function to be determined (see Ref.115 for discussion of algorithms) 

and Uλ takes the usual form,

(20)

In the specific case of MM→QM conversion, U0 and U1 correspond to pure MM and 

QM/MM potential functions, respectively. In general applications, U0 can be the potential 

function of a realistic system while U1 the potential function of a fictitious system 

introduced to enhance sampling; e.g., specific torsional barriers or non-bonded interactions 

are scaled down.

2.2.2 Multi-level QM/MM free energy methods—As mentioned above, the 

thermodynamic cycle in Fig. 1a can be easily generalized to connect low-level and high-

level QM potentials in QM/MM simulations. This can be applied to improve the relative free 

energy of the same molecule in different environments (e.g., solvation free energy) or of 

different chemical states in the same environment (e.g., reactant vs. transition state in an 
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enzyme active site). In practice, the challenge is that the computational cost for any 

calculation involving the high-level QM is so high that canonical sampling has to be at a 

minimal level or avoided altogether. For example, several studies computed the free energy 

profile (e.g., PMF along a pre-defined order parameter) with a low-level QM/MM potential 

function, and correction is estimated based on the difference between the low- and high-level 

QM/MM results along one or several MEPs;117,118 for systems with a dynamical active site, 

the energetics of MEPs may fluctuate significantly as functions of the protein 

conformation, 9,45,88 thus the correction may also have significant uncertainties. In other 

studies, sampling is done exclusively with the low-level QM/MM potential, and a one-step 

free energy perturbation is used to estimate the free energy change to high-level QM/

MM;41,119–122 as expected, the quantitative accuracy and convergence of the results depends 

critically on the overlap of distributions with different QM/MM potentials,121,123 thus some 

authors advocated to carry out at least short sampling using high-level QM/MM potential 

rather than relying entirely on trajectories sampled with low-level QM/MM.13,124,125

One interesting recent development in multi-level free energy computation is the Non-

Boltzmann Bennet (NBB) approach,122 which treats the low-level simulation ensemble as 

that from a high-level simulation under a biasing potential being nothing but the energy 

difference between the low- and high-level potentials. This allows, for example, directly 

connecting the λ0 window at high-level and λ1 window at the low-level method (Fig. 2a); 

by coupling regular BAR simulations at the low-level for the intermediate λ windows and 

NBB for the end states (λ0, λn windows), one recovers the free energy difference between 

the end states with the high-level potential. The working expression for NBB combines the 

BAR equation and the familiar reweighting formula;64 for the high-level λ0/low-level λ1 

free energy difference, for example, we have,

(21)

in which C is the constant to be determined in the BAR iteration, f is the Fermi function: 

, and  in the energy difference between the low- and high-level 

potential functions for the λ0 window. The notation 〈···〉λ0,L highlights that the ensemble 

average is over the simulation at the low-level.

The NBB approach has been tested using a series of solvation free energy simulations with 

both explicit and implicit solvent models;122 the low-level has been taken as either a MM 

model, or a low-level QM method, while the high-level is taken to be a DFT or correlated ab 
initio method. Encouraging results have been obtained. Nevertheless, the question is whether 

NBB offers a significant advantage over the more traditional approach in which the low- and 

high-level methods are connected at only specific windows (e.g., λ0, λn) via one-step free 

energy perturbation. At the λ0 window, for instance, one has,
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(22)

Therefore, the  and  windows can alternatively be connected by combining 

 and a BAR computation for λ0, λ1 at the low level (Fig. 2b):

(23)

Comparing Eqs.21 and 23, one sees that the two pathways of connecting  and 

windows indeed have similar expressions. As well appreciated in the literature,126 both FEP 

and BAR methods require a good overlap of distributions between the two states being 

considered; numerically, BAR is more robust and therefore less sensitive to the degree of 

overlap, which likely motivated the development of NBB. We note, however, the numerical 

behavior of Eq.23 depends on the overlap between the low- and high-level distributions for 

the same (λ0) window and the overlap between two λ windows at the same (low- level) 

theory, while Eq.21 depends on the overlap between the high-level distribution for λ1 and 

the low-level distribution for λ0; i.e., both the level of theory and λ values are changed 

simultaneously in NBB. Therefore, intuitively, NBB is expected to work less well than the 

traditional FEP+BAR route, despite the intrinsic numerical advantage of BAR. At a 

quantitative level, one possible way to compare the two approaches is to evaluate the 

variances of the two free energy difference estimators. This was done recently by Jia et 

al.,127 who showed for , for example,

(24)

The variance is actually the sum of contributions from BAR between  and  (though 

with configurations sampled at low-level for both λ values) and FEP between  and ; a 

similar expression can be obtained for  by replacing  by  in the first two 

terms on the right hand side of Eq. 24. The variance tends to be dominated by the FEP 

variance term, thus the result confirms our expectation that, with the same degree of 

sampling, the variance of NBB is unlikely better than the FEP+BAR route. It is nevertheless 

interesting to analyze the two approaches under broader context since variance alone may 

not be sufficient to characterize the reliability of the multi-level free energy result.
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The discussions are straightforwardly generalized to free energy correction along a reaction 

path, such as for images along a string. With the NBB scheme (Fig. 2c), for example, the 

argument of the Fermi function would include also the restraining potentials associated with 

different images in a string calculation, e.g., . It is 

of interest to compare the results to the traditional “one-step” FEP route (Fig. 2c vs. 2d) for 

specific images (e.g., those correspond to the reactant and transition state), as we do in Sect.

3.2.2.

3 Model and realistic examples

3.1 Reaction free energy profile and pathways

3.1.1 Umbrella sampling, replica-exchange umbrella sampling and 
metadynamics—We’ll use a simple model to illustrate the comparison between umbrella 

sampling, replica-exchange umbrella sampling (REUS) and metadynamics. As illustrated in 

Fig. 4a, the model describes proton transfer between two small water droplets through a 

“channel”; the confinement effect of the channel is implemented using a set of restraints 

available in CHARMM128 and a set of point dipoles are included to stabilize the excess 

proton in the low-dielectric region of the model. This type of model was used in our 

previous studies to explore the definition of order parameters for long-range proton 

transfers,129 to understand the impact of boundary potential, including an external 

membrane potential,130 on proton transfers, and to compare different parameterizations of 

DFTB3 for studying the free energy of proton transfers.54 Here we use the model to 

illustrate the value of REUS for computing free energy profiles over regular umbrella 

sampling, and to illustrate the flexibility of choosing CVs in metadynamics simulations for 

gaining new mechanistic insights.

The model includes a water chain consisting of 19 QM water molecules and one excess 

proton; the distance from the first to the last oxygen is 16 Å. The length of the chain is 

motivated by the typical size of proton conducting channels in biomolecules. The water 

chain is held in the model channel by a cylindrical potential to each of the oxygen atoms:

(25)

with kcyl = 125 kcal·mol−1·Å−2; r is the distance of the water oxygen atom from the central 

axis of the channel, r0 is 3.5 Å, and Θ is the Heaviside step function. To ensure appropriate 

solvation of the excess proton at the ends of the water chain, 34 MM water molecules are 

added to each end of the chain. These “bulk” water molecules are subject to a set of quartic 

constraints to maintain a cubic shape of 10 × 10 × 5 Å3. To stabilize the hydronium in the 

center of the channel, eight dipoles with modest dipole moments composed of two opposite 

charges (|q| = 0.5 e and d = 1.5 Å) are circularly arranged around the channel. The system is 

then embedded into a dielectric environment to mimic a lipid membrane (see Fig. 4a for 

dimensionality); the dielectric constants for the membrane and bulk water are set to be 2 and 

80, respectively.
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To study the proton transfer, we carry out 1D REUS simulations as well as 2D 

metadynamics simulations and compare those to our recent study that used the standard 1D 

umbrella sampling.54 The order parameter used to describe the proton transfer itself is the ζ 
coordinate defined in our previous studies: it is based on the modified center of excess 

charge (mCEC)129 and takes the form,

(26)

where ξ is the mCEC, D denotes the proton donor heavy atom, A is the proton acceptor 

heavy atom and d is the distance; one MM water molecule in each “bulk” region of the 

model is fixed and taken to be the donor/acceptor group. Therefore, a ζ value of ±0.6 

represents the excess proton being solvated by water molecules near the entrance/exit of the 

model channel and corresponds to the PMF minimum (see Figs. 3–4).

In the metadynamics simulations, a second coordinate is used to describe the level of 

solvation at the center of the channel. As discussed below, this was motivated by the 

observation that in the reactant state (i.e., when the excess proton is in the “bulk” region), a 

vacuum region (or a “bubble”) is observed between the excess proton and the other side of 

the channel; this likely reflects the “amphiphilic” nature of the hydronium,131 which prefers 

to remain at the air/water interface. It is therefore of interest to explicitly study the coupling 

between proton transfer and wetting of the channel. The solvation number81,132 of the 

channel center is described using s, which is defined by,

(27)

Here, the channel center is represented by a fixed dummy atom, and

(28)

where rij is the distance between atom i and j and d0, r0 are set to be 2.5 and 0.5 Å, 

respectively.

In REUS, the same 13 set of umbrella windows with equal spacing in ζ as Ref.54 is used. 

Exchange of configurations between a randomly selected pair of neighboring windows is 

attempted every 10 fs. Simulations are run till 350 ps for each replica, thus the total 

simulation time is comparable to that of Ref.54 The DFTB3/3OB model133 is used to 

describe the QM region. In the 2D metadynamics simulation, well-tempered 

metadynamics85 is employed with a bias factor of 15. The initial values for Gaussian height 
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are set to be 0.1 kcal/mol for ζ and 0.2 kcal/mol for s. A new Gaussian potential is added 

every 2.5 ps during the simulation so as to leave sufficient time for the system to respond to 

changes in the CVs. Two sets of DFTB3 O-H repulsive potential are tested, the standard 

3OB133 and a recent 3OBw54 set developed based on improved description of bulk water. 

Each set of simulation is ran for 1.5 ns.

With the standard 1D umbrella sampling, the computed PMF in Ref.54 still suffers from 

minor convergence issues after 500 ps of sampling per window. Indeed, the PMF is not 

symmetrical and has a small exothermicity of about 1 kcal/mol with the DFTB3/3OB model; 

the barrier measured from the more stable minimum is about 10.0 kcal/mol. With the 1D 

REUS (Fig. 3a), we see indeed the computed PMF features a significant level of asymmetry 

at the early stage of the simulation. As simulation proceeds, however, the degree of 

asymmetry decreases and a practically symmetrical and converged PMF is obtained after 

about 250 ps per replica. The diffusive behavior of the exchange moves (Fig. 3b) also 

confirms the efficiency of REUS. Therefore, the simple example illustrates the value of 

REUS over the standard umbrella sampling in terms of convergence.

As noted above, in the reactant, a vacuum region (or a “bubble”, see Fig. 4a) is formed 

between the excess proton and the other side of the channel. Therefore, it is expected that 

hydration level change (i.e., wetting) of the channel is explicitly coupled with the proton 

transfer. The key question regards whether such wetting is an energy demanding process. As 

shown by the 2D PMF from metadynamics, proton transfer indeed requires a substantial 

change in the level of hydration. The barrier along ζ is sufficiently low only when s is in the 

range of 3–4; as s further increases, the barrier along ζ remains fairly constant. However, the 

free energy profile along s is rather flat for s ≤ 6 when the excess proton remains in either 

side of the “bulk” region (i.e., when ζ ~ ±0.6). Therefore, wetting of the channel, at least 

with the current model, appears to be a rather facile process. This explains why the barriers 

from the 2D metadynamics simulation and the 1D umbrella sampling/REUS calculations 

are, in fact, very similar, regardless of the DFTB3 model used.

The general behaviors we found here are similar to the findings from a recent study of 

proton transfer across a carbon nanotube by Voth and co-workers using the MS-EVB 

model.134 It was found that the presence of the excess proton at one end of the nanotube 

induces spontaneous wetting of the tube and facilitates the subsequent proton transfer; 

interestingly, such favorable wetting behavior was not observed with other monovalent 

cations (e.g., Na+) or a classical model of the hydronium ion (H3O+), suggesting that the 

delocalized nature of the excess proton in water is essential. This delocalized nature is 

captured in our study with the use of a QM model (DFTB3), and the relatively similar 

barrier heights between 3OB and 3OBw suggests that the qualitative behavior is not highly 

sensitive to the quantitative description of proton solvation.

The fact that local wetting around an excess proton does not appear to be energetically 

demanding even in a rather hydrophobic environment (low-dielectric in our model and 

carbon nanotube in Ref.134) has important implications to proton transfer in biomolecules. 

Proton transfer pathways are often identified by examining hydrogen bonding 

networks135,136 visible in protein structures from crystallography or equilibrium MD 
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simulations in the absence of an excess proton. The current discussion highlights that the 

hydrogen bonding network may in fact change rather significantly in the presence of the 

excess proton to facilitate its transport. Depending on the specific molecular environment, 

the wetting process may or may not involve a substantial energy cost. Therefore, one should 

not rule out proton transfer pathways based purely on hydrogen-bonding network seen in 

structures obtained in the absence of the excess proton,137 and it is essential to explicitly 

include the local hydration level 35,36 as one of the order parameters to characterize the 

energetics and kinetics of proton transfers.

3.1.2 String method in collective variables—To illustrate some of the practical issues 

in a string simulation, we study a seemingly simple proton transfer reaction inspired by the 

D-channel in cytochrome c oxidase.34 The model contains two aspartate sidechains 

separately by an asparagine sidechain, and the entire system is immersed in a water droplet 

of 20 Å radius. One aspartate is initially protonated, and the proton is transferred from the 

carboxylate to the carbonyl of the asparagine, which in turn rotates upward to deliver the 

proton to the upper aspartate (see Fig. 5). The positions of the three sidechain models are 

adjusted to make the proton transfer pathway feasible with only modest conformational 

isomerization of the asparagine. The model is constructed to explore whether an asparagine 

sidechain can relay proton transfers in biomolecules. The three sidechains are treated with 

DFTB3/3OB, and the water environment is treated with TIP3P under the stochastic 

boundary condition.

For the string calculation, 56 images are included, and the CV space is spanned by all the 

pairwise distances between heavy atoms in the three amino acid analogues and the distances 

involved the extra proton, leading to 62 distances. The friction coefficient γ in Eq. 8 is 100 

ps−1. MD sampling is carried out for 1.5 ns per image at 300 K with a time step of 0.5 fs; 

string evolution and reparameterizations are performed every 0.5 ps.

A few critical structures along the converged string are shown in Fig. 5a to illustrate the 

process of interest. The calculations are repeated with different values of the restraining 

force constants, which range from 5 to 20 kcal/mol/Å2. The structural features of the 

converged strings do not seem to vary notably with respect to the restraining force constants, 

while the estimated free energy along the string does vary significantly (not shown). 

Although the free energy derivatives computed from string simulations were shown to 

converge as O(k−1)91 (where k is the restraint force constant), the optimal value for k in an 

arbitrarily-dimensioned CV space is not obvious. For example, choosing a very high value 

precludes the use of replica-exchange between adjacent string points that can substantially 

accelerate convergence.100

To emphasize the importance of choosing a good CV set, we recall that two types of free 

energies can be computed from string calculations. The first is simply the integral of the n-

dimensional PMF, W(ξ⃗) along the converged path
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(29)

in which the free energy gradient  is evaluated using restrained MD simulations, 

and α is used to parametrize the string curve. Since the gradients are evaluated at the 

discrete images , numerical quadrature must be used to evaluate Eq. (29), such 

as the trapezoid rule.100 This free energy profile, however, does not generally capture the 

energetics that govern the reaction because ΔW(α) does not contain the contributions due to 

the thermal fluctuations of the CVs orthogonal to the string. The proper 1D free energy 

quantity is the free energy as a function of the committor,100,138 denoted by F(α), which is 

obtained by integrating over hypersurfaces orthogonal to the string. ΔW(α) and F(α) are 

equivalent only if the transition tube is infinitely narrow or has identical cross sections along 

the reaction path. Alternatively speaking, entropic effects associated with the CVs 

orthogonal to the string are not properly included in ΔW(α). This consideration suggests that 

one should be particularly careful when choosing the CVs. Too few CVs clearly won’t 

describe the reaction process well (i.e., the committor is poorly parameterized); on the other 

hand, including too many CVs might effectively freeze out many potentially relevant degrees 

of freedom and greatly perturb the computed free energy profile. Moreover, including too 

many CVs also means that finer discretization is needed to avoid missing important changes 

in a few degrees of freedom.

To illustrate the sensitivity of the free energy profile from string calculations, we focus on 

the first proton transfer step, which approximately corresponds to the transition from 

structure 1 to 3 in Fig. 5a; to further simplify the situation, the Asn sidechain is fixed to 

coordinates in structure 1. First, we study the PMF for this step using the regular umbrella 

sampling, using the antisymmetric stretch, d(OAsp-H) - d(OAsn-H), as the order parameter; 

21 windows (0.1 Å spacing) are used with 500 ps simulations for each window and the 

uniform force constant of 300 kcal/mol· Å2. Next, we carry out string calculations for this 

first proton transfer step. 25 images are used to discretize the string, and the force constants 

used in the restrained simulations are varied from 100 to 750 kcal/mol· Å2 and the friction 

coefficient γ is set to 100 ps−1. Different CV sets are also used: CV1 set consists of the two 

distances in the antisymmetric stretch, d(OAsp-H) and d(OAsn-H); CV2 set includes 13 

distances between the transferring proton and all heavy atoms in the model side chains. MD 

sampling is carried out for 1 ns per image at 300 K with a time step of 0.5 fs; string 

evolution and reparameterizations are performed every 0.5 ps. For the last 500 ps, image 

centers are fixed and free energy gradients are calculated and used for analysis.

As shown in Fig. 5b, the proton transfer from an aspartic acid to an asparagine in this model 

is only moderately endothermic by ~4 kcal/mol with a barrier of ~ 13 kcal/mol. Considering 

that the asparagine model is fixed thus the proton donor/acceptor distance has only a modest 

degree of flexibility (the O-O distance changes from ~2.9 Å in the reactant to ~2.6 Å in the 

barrier region), the barrier height computed here should be an upper bound. Therefore, 
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asparagine should not be ruled out as a proton relay group in biological proton transfers. 

With the string calculations, the calculated free energy profile ΔW(α) depends on both the 

choice of CV and the restraining force constant, especially near the barrier. With CV1, the 

free energy barrier changes by about 1 kcal/mol as the restraining force constant is increased 

from 100 to 750 kcal/mol/Å2. With the same restraining force constant, using two different 

CV sets also leads to a barrier difference of 1–2 kcal/mol; this level of difference is not 

unexpected considering that the two CV sets differ significantly in terms of dimensionality 

(2 vs. 13). In all three cases shown in Fig. 5c, the barrier appears too low compared to the 

umbrella sampling result by 2–3 kcal/mol; considering the local nature of the proton 

transfer, the 1D umbrella sampling result is expected to be more reliable.

The results highlight that free energy calculations using string methods should be treated 

with great care, even for a fairly simple local proton transfer. For more complex processes 

that involve both chemistry and conformational transitions, such as those in Fig. 5a, the 

energetics results appear even more sensitive to the choice of the CV space and restraining 

force constants. A more systematic analysis, including the comparison of F(α) and ΔW(α), 

is being carried out and will be presented elsewhere.

3.1.3 Decoupling of QM and MM fluctuations in minimum free energy path 
calculations—To explore the impact of approximations in the QM/MM-MFEP framework 

of Yang and coworkers, 11,105,106 we study the dissociation of pNPP2− (para-nitrophenyl 

phosphate) in water. pNPP2− is a substrate of alkaline phosphate, which catalyzes the 

hydrolysis of pNPP2− with great proficiency.38 Given the simplicity of the dissociation 

reaction (leading to para-nitrophenyl and metaphosphate), we use the distance between the 

leaving group oxygen and phosphorus (dOlgP) as the order parameter and carry out adiabatic 

mapping along dOlgP on the QM-region PMF surface. The results are then compared to 1D 

umbrella sampling along the same order parameter in which regular MD sampling is done 

with the same QM/MM potential function. By comparing the adiabatic mapping and 

umbrella sampling results, we will be able to evaluate two key approximations in the 

adiabatic PMF mapping methodology: (i). the decoupling of QM and MM thermal 

fluctuations; and (ii). the mean-field approximation used to describe the QM region 

wavefunction for MM sampling and QM structural relaxation. The analysis is done with two 

sets of QM/MM potentials, which employ B3LYP139,140 and DFTB3 as the QM, 

respectively, to treat pNPP2−. In the B3LYP calculations, 6–31+G(d,p) is used as the basis 

set; in DFTB3, the 3OB/OPhyd parameterization63 is used. These two methods are chosen to 

evaluate the robustness of the findings with different levels of sampling.

As a reference, regular umbrella sampling calculations are done using standard QM/MM 

with pNPP2− solvated in a TIP3P water droplet of 20 Å radius under the stochastic boundary 

condition.141 A series of 32 (22) umbrella windows are used for DFTB3/MM (B3LYP/MM) 

to cover dOlgP between 1.4 (1.4) Å and 4.5 (3.5) Å. The umbrella force constant is chosen to 

be 300 kcal/mol·Å2 for all windows and each window is calculated for 500 ps (25 ps) for 

DFTB3/MM (B3LYP/MM). The probability distributions are combined together by WHAM 

to obtain the PMF along dOlgP. Convergence of the PMF is checked by examining the 

overlap of dOlgP distributions sampled in different windows and by evaluating the effect of 

leaving out segments of trajectories.
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For the adiabatic PMF mapping, dOlgP is constrained at a set of values between 1.5 and 3.5 

Å, while all other solute degrees of freedom are optimized on the QM-region PMF surface. 

During each iterative cycle to relax the QM geometry, 80 ps production run is carried out 

after 50 ps equilibration to generate the MM ensemble (including 400 snapshots) used to 

evaluate the PMF gradients (Eq.15). In the mean-field calculations (Eq. 14), only MM atoms 

within 8 (10) Å of any QM atoms are included for B3LYP/MM (DFTB3/MM) calculations 

to reduce the computational cost; test calculations with different cut-off radii confirm that 

these values are appropriate. For each iterative QM structural relaxation cycle, geometry 

optimization is terminated with a threshold of 0.5 kcal/mol/ Å; typically, each cycle involves 

10–20 steps of QM geometry relaxation, and 3–4 cycles are needed for each fixed dOlgP 

value. After the structures along the adiabatic PMF mapping are optimized, free energy 

perturbation calculations (with the BAR implementation) are used to obtain a better estimate 

of the free energy profile along the adiabatic path; in these calculations, which include 200 

ps MD for each structure, the QM geometry is frozen and represented with mean-field ESP 

charges (Mulliken charges are used for DFTB3) from the converged adiabatic mapping 

calculations.

First, we compare the B3LYP/MM and DFTB3/MM results using umbrella sampling 

simulations. As shown in Fig. 6, the computed PMFs at the two levels of theory differ 

substantially, with the endothermicity of being about 40 kcal/mol with DFTB3/MM but only 

about 23 kcal/mol with B3LYP/MM; the value of dOlgP for the reactant well also differs 

slightly, being ~1.6 Å with DFTB3/MM and ~1.7 Å with B3LYP/MM. Clearly, as 

highlighted by Ref.,63 the 3OB/OPhyd parameterization remains problematic for a balanced 

description of associative and dissociative pathways of phosphoryl transfers. The significant 

difference between DFTB3/MM and B3LYP/MM, however, is valuable to the analysis of 

multi-level free energy simulations, as we discuss in Sect. 3.2.2. Finally, we note that the 

orientation of the leaving group with respect to the (meta)phosphate group also differs 

somewhat between DFTB3/MM and B3LYP/MM (Fig. 7): at equilibrium dOlgP distance, 

DFTB3/MM samples mainly the parallel orientation (with the P-O-C-C dihedral close to be 

±180°) while B3LYP/MM also samples the perpendicular orientations with notable 

populations; at long (3.1 Å) dOlgP distance, as expected, both methods sample a fairly broad 

range of orientations (DFTB3/MM samples both positive and negative values of the P-O-C-

C dihedral due to the longer simulation time).

Next, we note that the adiabatic PMF scan gives rather similar results as the umbrella 

sampling with both B3LYP/MM and DFTB3/MM potentials. The adiabatic PMF result is a 

few kcal/mol higher than the umbrella sampling value at long dOlgP values, and the 

difference is about 3 kcal/mol for B3LYP/MM at dOlgP ~ 3.1 Å (see Fig. 6); this is not 

unexpected because the entropic component associated with the dissociation of the QM 

solute is not included in the adiabatic PMF mapping. For instance, as discussed above, the 

relative orientation between the leaving group and the phosphate has a broader distribution 

at long dOlgP distances in umbrella sampling simulations, an effect not captured in the 

adiabatic PMF scans (see vertical lines in Fig. 7). The solute entropic contribution can be 

estimated by quasiharmonic analysis142,143 for dOlgP =1.7 and 3.1 Å by running 200 ps 

DFTB3/MM simulations with constrained dOlgP; such estimated TΔSvib contribution is 

about 3.3 kcal/mol.

Lu et al. Page 20

Mol Simul. Author manuscript; available in PMC 2017 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we explicitly comment on the mean-field approximation. Table 1 summarizes the 

difference between QM-MM electrostatic interactions calculated using a mean-field 

approximation (i.e.,  in Eq.14) and using direct embedding 

calculations (i.e., fully self-consistent QM/MM interaction for each configuration in the MM 

ensemble), and the deviation is about 1 kcal/mol with a standard deviation of ~ 2 kcal/mol 

for DFTB3/MM and ~ 4 kcal/mol for B3LYP/MM. Similarly, in Fig. 8, we compare the QM 

internal energy (i.e., not including QM-MM electrostatic interaction) from the mean-field 

calculation (Eq. 14, which leads to a single value for a given MM ensemble) and from self-

consistent QM/MM calculations (which lead to different values for different MM 

configurations); clearly, the mean-field approximation captures the peak value of the 

distribution, which has a width of about 10 kcal/mol. This is also reflected by the ESP 

charges from mean-field and self-consistent QM/MM calculations; the results are shown for 

the phosphorus atom in Fig. 8c-d. Therefore, although instantaneous polarization of the QM 

region is clearly missing from the mean-field treatment, the average polarization effect is 

captured and seems to be adequate for describing the energetics of a reaction process.

In short, our test calculations here suggest that the two key approximations of the QM/MM-

MFEP framework (decoupling of QM and MM fluctuations and the mean-field 

approximation) are appropriate, at least for the current example of pNPP2− dissociation.

3.2 Alchemical and multi-level free energy computations

3.2.1 Solvation free energy—In our recent study,54 using the thermodynamic cycle in 

Fig. 1a, we have computed the solvation free energy of several small molecules at the 

DFTB3/3OB level relative to the CHARMM22 force field,144 which has been well 

calibrated for solvation free energies145,146 (although the value for charged species remains 

uncertain147–149). As also summarized in Table 2 for acetate and acetic acid, the 

DFTB3/3OB model gives slightly (~3–5 kcal/mol) more favorable solvation free energy than 

the CHARMM 22 force field. Although part of such mild degree of oversolvation is 

probably due to the fact that van der Waals parameters150 have not been reoptimized for the 

QM atoms at the DFTB3 level, another likely reason is that the electrostatic interactions 

between DFTB3 and MM (TIP3P) atoms employed a simple Coulombic model.151 As 

discussed in Ref.,152 a more appropriate model would consider the finite size of the QM 

charge distribution and therefore damp the interaction at short range, such as in a Klopman-

Ohno (KO) model. Further optimization of the KO parameters and (charge-dependent153) 

van der Waals parameters for DFTB3 is an important task for ongoing work that aims to 

improve the robustness of DFTB3/MM for condensed phase applications.54

Alternatively, one could describe the first solvation shell of the solute also with the DFTB3 

model. This likely reduces the sensitivity of DFTB3/MM simulations to QM/MM coupling 

scheme and parameters, although for the study of heterogeneous systems like an enzyme, it 

is likely that any deficiency of QM/MM boundary will eventually propagate back to the 

active site of interest (Roston and Cui, private communication). To test this hypothesis, we 

compute the change of solvation free energies of acetate and acetic acid when the solute and 

its first solvation shell water molecules are converted from CHARMM 22 to DFTB3/3OB. 

As discussed in Sect.2.2.1, this requires a slightly revised thermodynamic cycle as illustrated 
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in Fig. 1b. The results are also summarized in Table 2. Compared to CHARMM 22, the 

DFTB3 treatment now leads to slightly smaller solvation free energies, by ~1–3 kcal/mol. 

From a technical point of view, the alchemical free energy simulations employ 11 λ 
windows even spaced between 0 and 1, and each window is equilibrated for 200 ps, which is 

followed by a production run of 500 ps. As shown in Table 2, this level of sampling leads to 

very small statistical errors as evaluated via block averaging, highlighting the advantage of 

converting between generally similar models for the solutes (CHARMM22 vs. DFTB3). As 

shown in Refs.,54,115 convergence can be further enhanced with the IHS approach.

3.2.2 Dual-level QM/MM PMF—In this last subsection, we discuss several issues related 

to multi-level QM/MM free energy simulations using two simple solution reactions. One 

fitting example is the pNPP2− dissociation discussed in Sect.3.1.3, because DFTB3/MM and 

B3LYP/MM results have notable differences for both structures and energetics (see Figs.6–

7). The other example is the intra-molecular proton transfer in malondiadehyde in solution (a 

water droplet of 20 Å radius), for which we compare DFTB3/MM and AM1/MM 

simulations because they lead to rather similar structural properties but very different 

energetics. The low computational cost of these methods makes it straightforward to 

compute the reference 1D PMFs using umbrella sampling (see Fig. 9a); the reaction 

coordinate is defined as distance(O1-H) - distance(O2-H), 21 windows with an equal spacing 

of 0.1 Å are used for each PMF, and each window is sampled for 500 ps. We treat 

DFTB3/MM as the “low-level” theory for both systems, and the aim is to explore whether 

(or when) the dual-level free energy sampling schemes discussed in Sect.2.2.2 (see Fig. 2) 

are able to reproduce the “high-level” PMF in a numerically efficient and robust fashion.

We first discuss the case of proton transfer in malondiadehyde. As shown in Fig. 9a, 

AM1/MM and DFTB3/MM give barrier heights that differ by more than 15 kcal/mol; it is 

likely that the overestimation at the AM1 level is more significant, 133 although this is not 

the focus of this study. Due to the symmetry of the problem, the barrier location is consistent 

at the two levels, while the reactant region at the DFTB3/MM level occurs at slightly smaller 

absolute values of the order parameters (~ ±0.8 Å vs. ~ ±1.0 Å at the AM1 level). In terms 

of “correction” of the DFTB3/MM results, in addition to comparing the NBB and FEP+BAR 

routes, we also compare making corrections along the entire range of the order parameter, so 

as to obtain a corrected PMF, with making corrections only at the reactant/barrier windows 

so as to obtain only a corrected barrier height. When making corrections along the entire 

path, we see that the FEP+BAR route appears to lead to a better agreement in the barrier 

height (by ~ 2 kcal/mol) than the NBB route with the actual AM1/MM umbrella sampling 

result; overall, however, both schemes lead to substantially “improved” barriers. On the 

other hand, with both schemes, the “corrected” PMF is narrower than the umbrella sampling 

result. When the “correction” is applied to the reactant (s0=−1.0 Å) and barrier (sn=0.0 Å) 

windows only, however, the barrier height is in good agreement with the original AM1/MM 

umbrella sampling (see Fig. 9a). Our interpretation is that when correction is applied along 

the entire path, errors due to the limited overlap between the two levels of theory 

(DFTB3/MM vs. AM1/MM) accumulate, leading to a larger error in the barrier height. 

Therefore, making perturbations only in the key windows seems more robust for practical 

applications.
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In Fig. 10a, we further compare the convergence behavior of the “corrected” barrier height 

with different schemes when applied along the entire path or only to the reactant/ barrier 

windows. Again, it is seen that the latter protocol leads to better convergence, with a 

variation of < 0.5 kcal/mol in the barrier height when from a few thousands to 105 number of 

configurations are included. This contrasts with the situation when NBB is applied along the 

entire path, where the variation in the barrier height is about 2 kcal/mol, not to mention the 

fact that the estimated barrier with 105 configurations per window is still 2 kcal/mol too low 

compared to the reference AM1/MM umbrella sampling result.

For the pNPP2− dissociation reaction in solution, only 5,000 data points per window are used 

for the reactant and “barrier” windows because the B3LYP/MM calculations are 

substantially more expensive; the reactant window and the “barrier” window are taken to be 

dOlgP =1.6 and 3.2 Å, respectively. Thus only a correction in the barrier height through either 

the NBB or the FEP+BAR route is obtained. Moreover, as we noted in Sect.3.1.3, 

DFTB3/MM has a shorter equilibrium dOlgP distance than B3LYP/MM (1.6 vs. 1.7 Å); thus 

the difference of ~3 kcal/mol in the B3LYP/MM PMF at these two dOlgP distances is 

included in the NBB/FEP corrected barrier height. As shown in Fig. 9b, the two routes lead 

to rather similar barrier heights; they still differ ~ 2 kcal/mol from the B3LYP/MM umbrella 

sampling result (see below), although the improvement is quite encouraging considering the 

large (~ 20 kcal/mol) difference between the original DFTB3/MM and B3LYP/MM results. 

Examination of the convergence behavior (Fig. 10b) suggests that 5,000 data points appears 

to lead to a reasonable estimate for the barrier height correction, although whether this level 

of sampling is indeed adequate in general needs to be explored with more systems.

In an attempt to measure the reliability of the NBB/FEP+BAR correction schemes, we have 

also computed the variance of the corrections using the expression discussed in Sect.2.2.2 

(e.g., Eq.24 for NBB). As shown in Table 3, the computed values seem rather small and 

substantially lower than 1 kcal/mol. These values, however, only report on the estimated 

statistical uncertainty for the corresponding free energy estimators. As discussed in Ref.,126 

there can be substantial bias in the estimated free energy even when the variance is small. To 

illustrate this point, we plot the distributions for the energy difference between the low- and 

high-levels of theory (ΔULH) with configurations sampled from the two levels of theory; this 

comparison is made for both the reactant and barrier windows for the two example reactions. 

Also plotted is the product of ΔULH distribution (sampled with the low-level trajectory) 

multiplied with the Boltzmann factor for ΔULH; free energy perturbation type of calculations 

are expected to be reliable only when this product closely matches the ΔULH distribution 

sampled at the high-level,126 considering an identity associated with free energy 

perturbation,

(30)

As shown in Fig. 11a–b, good match is indeed observed for the proton transfer in 

malondiadehyde; this is consistent with the fact both NBB and FEP+BAR schemes lead to 

satisfactory “corrections” of the barrier height. For the pNPP2− example, however, the 
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DFTB3/MM and B3LYP/MM have broad and significantly different ΔULH distributions 

(Fig. 11c–d) that have almost vanishing overlap; as a result, the product 

PDFTB3/MM(ΔULH)e−βΔULH
deviates substantially from PB3LY P/MM(ΔULH). Thus, it is 

rather surprising that the one-step FEP seems to lead to fairly adequate correction of the 

barrier height as shown in Fig. 9b.

We rationalize this finding by the observation that ΔULH distributions are fairly Gaussian in 

nature at both the low- and high-levels of theories for the two reactions studied here; 

although variances of the ΔULH distributions differ at the low- and high-levels in some cases 

(e.g., see Fig. 11d, the variances are 4.7 and 2.9 kcal/mol at DFTB3/MM and B3LYP/MM 

levels, respectively), the difference is not large. Since second-order cumulant expansion for 

the FEP expression is exact for a Gaussian distribution,158 free energy difference can be 

evaluated based solely on ΔULH data along the trajectory sampled at either level of theory 

when the ΔULH variance is not sensitive to the level of theory:

(31)

(32)

There is of course no formal reason that the variances are the same at the two levels of 

theory, thus a better approach would be to compute ΔULH using trajectories sampled at both 

levels of theory and then compute the free energy difference using a linear response 

approximation (LRA), as recommended by Warshel and co-workers.13 Using this protocol 

would lead to a corrected barrier of 25.3 kcal/mol for pNPP2− dissociation, indeed better 

than using only the low-level (DFTB3/MM) trajectories with NBB or FEP+BAR (see Fig. 9 

and Table 3). In practical applications, this requires running at least short trajectories with 

high-level QM/MM, which may not always be feasible when the QM region is large.

In short, using two simple solution reactions, we show that perturbation schemes following 

either a NBB or a FEP+BAR route can indeed lead to a notable correction of the reaction 

free energy. The correction is more robust when perturbations are done only for selected 

windows, such as for the reactant and transition state windows to obtained an improved 

barrier height. The NBB approach does not seem to provide any major advantage over the 

FEP+BAR route. To judge whether the correction is robust, computing the variance of the 

free energy estimator is unlikely sufficient while examining the Gaussian nature of ΔULH 

distributions would be more informative, especially if ΔULH distributions at both low- and 

high-levels of theory can be examined. Finally, the correction scheme is expected to be 

meaningful only when critical structures on the free energy surface (reactant, intermediate, 

transition state) are similar at different levels of theory, thus determining/confirming these 
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structures at the high-level of theory using, for example the QM/MM-MFEP approach, is 

expected to be an essential and practical option for realistic applications.

4 Concluding Remarks

Reliable free energy simulations are critical to both mechanistic analysis and computational 

designs. Since QM/MM calculations are generally more expensive compared to pure MM 

calculations, it is particularly worthwhile to carefully consider the best free energy practices 

for QM/MM simulations. In this contribution, we briefly review several recent developments 

in free energy calculations and discuss a number of topics stimulated by those developments 

using relatively simple processes in water.

When a low-level of QM theory, such as a semi-empirical method, is adequate, both 

potential of mean force and alchemical free energy simulations can be readily carried out 

with several established techniques, such as umbrella sampling, metadynamics and free 

energy perturbation; various enhanced sampling techniques such as replica-exchange/

parallel tempering and their variations can be integrated to improve the computational 

efficiency. For complex reactions, minimum free energy path methods have become more 

prevalent, although we caution that the results, especially free energy profiles, can be 

sensitive to several parameters in these calculations, such as the choice of the CV space used 

to span the string and force constants used to estimate the mean force with restrained 

molecular dynamics. A practical strategy might be to compare the results of string 

calculations with other techniques for a local segment of the reaction (e.g., a local proton 

transfer step in a long-range proton transport) so as to calibrate key parameters in the string 

calculations. Finally, it is also productive to integrate metadynamics with finite temperature 

string type of calculations to explore the mechanism of complex reactions; metadynamics 

using well-chosen CVs can be very effective at identifying new reaction channels and 

therefore provide good initial guess for string calculations, which are local in nature and 

therefore rely on well-chosen initial pathways.

The best strategy to employ high-level QM/MM potentials likely depends on the problem in 

hand. When the QM region is fairly rigid and fluctuations orthogonal to the reaction path are 

largely harmonic in nature, the QM/MM-MFEP framework pioneered by Yang and co-

workers is expected to work well; the necessary mean-field approximation seems to be 

satisfactory at least for the example analyzed here. When the QM region is highly 

dynamical, an appropriate alternative is to determine the minimum free energy pathway at a 

semiquantitative level using direct sampling with a low-level (semi-empirical) QM/MM 

method and then correct the energetics for key regions following perturbative schemes (Fig. 

2). Provided that the key structures on the free energy surface remain similar at different 

levels of theory, our tests indicate that the perturbative schemes can lead to substantially 

improved barriers and in favorable cases, only low-level sampling is needed. In general, to 

make sure that perturbative schemes give meaningful results, however, it is essential to 

conduct careful analysis of the energy difference distributions and key structural features 

using trajectories at different levels of theory. In this context, even local structural 

minimization (e.g., adiabatic PMF mapping) in the QM/MM-MFEP framework again can be 

highly informative.
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Regarding future efforts, we anticipate that continuing developments in the area of reliable 

low-cost QM methods for diverse elements, robust enhanced sampling methods, efficient 

ways to include polarization in both low-cost QM method and MM models will be 

particularly important. Another fruitful direction is the integration of free energy sampling 

with automated and systematic reaction path search,159,160 which may find great value in 

timely applications such as annotation of protein functions,161 understanding of enzyme 

evolution162,163 and design of novel enzymes. Finally, although we focused our discussions 

on solution and biological systems, the developments are also equally important to chemical 

processes in other complex environments, such as liquid/solid interfaces that are prevalent in 

materials science, heterogeneous catalysis and energy/environmental research.164
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Figure 1. 
Thermodynamic cycles used to compute the solvation free energy of a QM solute in (a) a 

pure MM environment and (b) when nearby solvent molecules are also described at the QM 

level. In both cases, a pure MM solvation free energy calculation (bottom horizontal 

process) is used as a reference; to obtain the desired QM solvation free energies, various 

vertical processes need to be studied in which the solute (colored red) or a micro droplet 

(colored yellow) is converted between a MM and a QM model either in the gas phase or in 

an MM solution environment (in blue).
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Figure 2. 
Two different routes to compute the free energy change as the potential function is switched 

between a low level and a high level. (a–b) illustrate the routes for alchemical free energy 

calaculations and (c–d) illustrate the corresponding calculations along a path (e.g., an 

optimized string). In the NBB route, a low-level window (e.g., ) is connected with a 

neighboring high-level (e.g., ) by re-weighting the  data. In the FEP(+BAR) route, free 

energy change due to a switch in the potential function is calculated only for the same (e.g., 

λ0) window; different λ/s windows (e.g., λ0/λ1 or s0/s1) are connected with the low-level 

potential function using BAR. See text for the corresponding equations for the free energy 

changes (compare Eqs. 21 and 23).
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Figure 3. 
Results for the proton transfer in a model channel (see Fig. 4) from 1D REUS simulation 

along the ζ coordinate. (a) Convergence of the PMF as a function of simulation time per 

replica; (b) Illustration of the exchange behavior of replicas during the REUS simulation, 

using replica 2 as an example.
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Figure 4. 
2D metadynamics simulations for proton transfer in a model channel to illustrate the 

coupling between hydration level change and proton transfer. (a)–(b) Snapshots for the 

reactant and transition state regions, respectively. The “bulk” MM water molecules are 

shown in blue, and the QM water molecules are colored by atom type. The dipoles are 

shown in green. (c)–(d) Two dimensional PMF from well-tempered metadyanmics 

simulations using DFTB3/3OB133 (barrier 9.8 kcal/mol) and DFTB3/3OBw54 (barrier 11.5 

kcal/mol), respectively. ζ describes the proton transfer and s describes the level of channel 

hydration (see text).
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Figure 5. 
Study of a proton transfer process inspired by the D-channel in cytochrome c oxidase. (a) 

Representative structures along the optimized string with key distances (in Å) labeled (water 

molecules are excluded for clarity); (b) PMF for the first step of proton transfer 

(approximately corresponding to 1→3 in panel a) studied by umbrella sampling; (c) PMFs 

for the first step of proton transfer studied by the string method with different collective 

variables and restraining force constants (indicated in the legend in kcal/mol/Å2).
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Figure 6. 
Computed PMFs (red lines) for the dissociation of pNPP2− in solution along the order 

parameter dOlgP based on (a) DFTB3/MM and (b) B3LYP/MM simulations; pNPP2− is 

treated as QM and water with TIP3P. For DFTB3, the 3OB/OPhyd parameterization is used; 

for B3LYP, the 6–31+G(d,p) basis set is used. Also shown in black are the results from 

adiabatic PMF mapping along dOlgP using DFTB3/MM and B3LYP/MM simulations. See 

text for additional details.
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Figure 7. 
Structural properties of pNPP2− from (a–b) B3LYP/MM and (c–d) DFTB3/MM simulations. 

The dihedral angle is the P-O-C-C angle indicated in panel (e), which illustrates a “parallel” 

type of configuration; in (f), a “perpendicular” configuration is illustrated. The histograms in 

the left (right) column are collected from the dOlgP =1.9 (3.1) Å window; note the different 

numbers of configurations from B3LYP/MM and DFTB3/MM windows. The vertical black 

line and the numerical value in each histogram indicate the result of adiabatic PMF mapping 

calculation for the corresponding dOlgP window.
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Figure 8. 
Properties from B3LYP/MM simulations for pNPP2− dissociation in solution. The left (right) 

columns are for dOlgP =1.9 (3.1) Å, and each window includes 400 MM configurations. (a-b) 

illustrate distributions of the QM internal energy (i.e., QM/MM electrostatic energy from 

self-consistent electrostatic embedding calculation minus the classical QM-MM electrostatic 

interaction energy), (c-d) illustrate distributions of ESP charge on P. The vertical black line 

and numerical value indicate results from mean-field calculations (e.g., see Eq. 14 for the 

internal QM energy).
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Figure 9. 
Potential of mean force (PMF) computed via standard umbrella sampling (US), and 

perturbation of the PMF following the NBB and FEP routes (see Fig. 2) for (a) intra-

molecular proton transfer in malondiadehyde in solution (b) p-nitrophenyl phosphate 

(pNPP2−) dissociation in solution. For the NBB and FEP calculations, the “low-level” 

method is taken to be DFTB3/MM for both reactions, while the “high-level” method is 

AM1/MM for (a) and B3LYP/MM for (b). For the NBB/FEP perturbations at the endpoints, 

only two reactant windows and two transition state windows are used, as shown in Fig. 2, 

leading to “corrected” barrier heights indicated by dashed lines (also see text). For (a), s0 = 

−1.0 Å, s1 = −0.9 Å, sn−1 = −0.1 Å, sn=0.0 Å; for (b), s0 = 1.6 Å, s1 = 1.7 Å, sn−1 = 3.1 Å, 

sn=3.2 Å.
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Figure 10. 
Corrected free energy barrier height via NBB/FEP using different numbers of data points per 

window. Convergence plots are shown for (a) intra-molecular proton transfer in 

malondiadehyde in solution (b) p-nitrophenyl phosphate (pNPP2−) dissociation in solution. 

NBB/FEP at end points (i.e., reactant and transition state windows) only requires adequate 

overlaps between s0-s1 and sn−1-sn windows, thus the results are less dependent on the 

number of data points.
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Figure 11. 
Distribution of energy difference between the low- and high-levels of theory, ΔULH, using 

trajectories from the two levels of theory; also plotted is the integrand of the FEP expression 

using the low-level trajectory (i.e., exp(–βΔULH)PL(ΔULH)). The ΔULH data are shifted with 

a different amount in (a–d) for plotting purposes; see Table 3 for absolute free energy 

perturbation results. The plots are for: (a) reactant in malondiadehyde proton transfer (b) 

transition state in malondiadehyde proton transfer (c) reactant in pNPP2− dissociation (d) 

transition state in pNPP2− dissociation. In (a)-(b), PAM1(ΔU) has a similar shape from 

PDFTB3(ΔU)exp(-βΔU)), thus FEP and NBB calculations yield reliable barrier corrections. 

In (c)-(d), the ΔULH distributions are remarkably broader and data at different levels have 

almost vanishing overlap, thus it seems challenging for FEP and NBB to obtain reliable 

barrier corrections, although the Gaussian nature of the ΔULH distributions (fit shown 

explicitly in green) suggests that a linear response model works well (see Table 3).
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Lu et al. Page 46

Table 1

Comparison (average and standard deviation of the difference, in kcal/mol) of electrostatic QM-MM 

interaction energies calculated using a mean-field approximation relative to self-consistent electrostatic 

embedding QM/MM calculationsa

QM method (dOlgP window) Average deviation Standard deviation

B3LYP (1.9 Å) −1.2 4.3

B3LYP (3.1 Å) −0.7 4.8

DFTB3 (1.8 Å) 0.2 2.0

DFTB3 (3.7 Å) 1.0 2.4

a
400 solvent configurations are included for each MM ensemble.
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Lu et al. Page 47

Table 2

Relative Solvation Free Energy ΔΔGgas→aq(MM→QM) (in kcal/mol) with Different Size of QM Regiona

Solute MM ref. (Exp.)b
DFTB3/3OBc

small QM region
DFTB3/3OBd

large QM region

CH3COOH −3.7 (−6.7) −3.41 ± 0.07 +1.49 ± 0.11

CH3COO− −85.4 (−77.6) −5.36 ± 0.04 +3.21 ± 0.09

a
Thermodynamic cycle shown in Figure 1 is used. MM force field is the CHARMM22 force field and water is described with a modified TIP3P 

model. The QM atoms use the standard CHARMM22 van der Waals parameters. GSBP154,155 (inner region 20 Å) is used for all the calculations 
here.

b
The “MM ref.” values are absolute solvation free energies computed following the standard protocol. Values in parentheses are experimental 

values. 156

c
The small QM region includes the solute only.

d
The large QM region includes the solute and 27 water molecules in the first coordination shell of the solute. To ensure the QM water molecules 

are always nearest the metal ion, Flexible Inner Region Ensemble Separator (FIRES157) restraining potential is imposed to any outer sphere MM 
water molecules that are closer to the ion than the most distant inner sphere QM water molecule.
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