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Abstract

The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of
negative polarity. Although genome segmentation confers evolutionary advantages by
enabling genome reassortment events with related viruses, genome segmentation also
complicates genome replication and packaging. Accumulating evidence suggests that
genomes of viruses with eight or more genome segments are incorporated into virions by
highly selective processes. Remarkably, little is known about the genome packaging pro-
cess of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluo-
rescence in situ hybridization (FISH), the intracellular spatio-temporal distribution and
replication kinetics of the Rift Valley fever virus (RVFV) genome and determined the seg-
ment composition of mature virions. The results reveal that the RVFV genome segments
start to replicate near the site of infection before spreading and replicating throughout the
cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite
the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major dif-
ferences in genome segment ratios were observed among cells. We also observed a signifi-
cant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented
replicons and four-segmented viruses subsequently confirmed the previous notion that
Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the
different segments in the cytoplasm and the successful rescue of a tri-segmented variant
with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to
drive the copackaging of the different segments into a single virion. The latter was confirmed
by direct visualization of RNPs inside mature virions which showed that the majority of viri-
ons lack one or more genome segments. Altogether, this study suggests that RVFV
genome packaging is a non-selective process.

Author Summary

The bunyavirus family is one of the largest virus families on Earth, of which several mem-
bers cause severe disease in humans, animals or plants. Little is known about the
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mechanisms that facilitate the production of infectious bunyavirus virions, which should
contain at least one copy of the small (S), medium (M) and large (L) genome segment. In
this study, we investigated the genome packaging process of the Rift Valley fever virus
(RVEV) by visualizing individual genome segments inside infected cells and virions.
Experiments performed with wild-type virus, two- and four-segmented variants, and a
variant with a codon-shuffled M segment showed that the production of infectious virions
is a non-selective process and is unlikely to involve the formation of a supramolecular viral
RNA complex. These observations have broad implications for understanding the bunya-
virus replication cycle and may facilitate the development of new vaccines and the identifi-
cation of novel antiviral targets.

Introduction

Rift Valley fever virus (RVFV) is a zoonotic bunyavirus of the genus Phlebovirus that causes
recurrent outbreaks on the African continent, the Arabian Peninsula and several islands off the
coast of Southern Africa. The virus predominantly affects ruminants, of which sheep are the
most severely affected. Epizootics are characterized by massive abortions of pregnant ewes and
high mortalities among newborns. Infected humans generally display mild flu-like symptoms,
however in a minority of cases severe complications such as retinitis, hemorrhagic fever, and
delayed-onset encephalitis may develop [1]. In humans, the overall case fatality ratio is esti-
mated to range from 0.5 to 2%. Mosquito vectors of the Aedes and Culex genera are associated
with RVFEV transmission in endemic areas and are also present in other regions of the world
with high ruminant density.

Like all bunyaviruses, RVFV contains a tri-segmented single-stranded RNA genome of neg-
ative polarity [2]. The large (L), medium (M) and small (S) genome segments are encapsidated
by the nucleocapsid (N) protein, which is translated from a subgenomic mRNA transcribed
from the genomic-sense S RNA. Encapsidated genome segments are referred to as ribonucleo-
proteins (RNPs). The antigenomic-sense S-segment additionally encodes the non-structural
protein NSs. NSs is the main virulence factor of the virus and is known to antagonize host
innate immune responses [3-5]. The M-segment encodes the two major structural glycopro-
teins Gn and Gc [6] which are involved in host cell entry and fusion, respectively. The M-seg-
ment also encodes two accessory proteins, known as NSm and 78-kDa protein. NSm was
shown to have anti-apoptotic function [7,8] and the 78-kDa protein was shown to be incorpo-
rated predominantly into virions matured in insect cells [9]. The L-segment encodes the RNA-
dependent RNA polymerase, which is responsible for transcription of genes and replication of
the viral genome [10]. Remarkably, and in contrast to many other RNA viruses, bunyavirus
mRNA synthesis is coupled to translation to prevent premature transcription termination [11].
The termini of all bunyavirus genome segments are inverted complementary and facilitate the
formation of a panhandle structure, which comprises signals for transcription, replication and
encapsidation [12-19].

Bunyavirus particles assemble in so called ‘virus factories’, located at the Golgi network [20-
23]. In these factories viral budding is believed to be initiated by interactions of the RNPs with
the cytoplasmic tail of the Gn protein [19,22,24,25]. How infectious particles, containing at
least one S, one M and one L RNP, assemble is not yet fully understood. Interestingly, in 2011
Terasaki and co-workers provided some clues for a selective genome packaging process using a
virus-like particle (VLP) system. They suggested that copackaging of S, M and L genome seg-
ments into individual RVFV virions is mediated by direct or indirect inter-segment

PLOS Pathogens | DOI:10.1371/journal.ppat.1005800 August 22, 2016 2/21



@’PLOS | PATHOGENS

Non-selective Packaging of RVFV Genome Segments

interactions, with a central role for the M-segment [17]. Other findings however suggest that
inter-segment interactions do not play a major role in RVFV genome packaging. A fully viable
two-segmented RVFV variant lacking the M-segment was described [26] and RVFV replicon
particles that comprise only S and L genome segments can be produced very efficiently [27,28].
More recent results further emphasize the flexibility of the RVFV genome. A RVFV variant
with a ‘swapped’ S segment, encoding N from the NSs locus and vice versa, is viable [29]. More-
over, four-segmented RVFV variants were recently created, which may contain two or even
three M-type segments [30].

Here, we investigated the RVFV genome packaging process using state-of-the-art fluores-
cence in situ hybridization (FISH). Experiments with infected cells and mature virions revealed
that copackaging of all three genome segments into individual particles is unlikely to involve
the formation of a supramolecular complex. Instead, our results reveal that RVFV genome
packaging is a non-selective process.

Results
Visualization of RVFV genome replication and recruitment in time

To investigate replication and recruitment of the RVFV RNA genome segments inside an
infected cell, a single-molecule multicolor RNA FISH assay was developed. Probes were
designed to be complementary to the S, M and L viral RNAs. After confirming specificity and
optimizing sensitivity (S1 Fig), the assay was used to evaluate the genome segment distribution
in RVFV-infected Vero cells at 2, 4, 6, 8 and 10 hours post infection (hpi).

At 2 and 4 hpi a single patch of up to 600 genome segments was detected in the cytoplasm
of most infected cells (Figs 1 and 2D). The location of the patch varied among cells and at
higher multiplicity of infection (MOI) cells with more than one patch of genome segments
were observed as well. Most likely, the genome segments of an infecting virion start to replicate
near the site of infection immediately after fusion of the viral membrane with the endosomal
membrane.

At about 4-6 hpi the total level of genome segments had increased considerably and a more
random cytoplasmic distribution of genome segments was observed. The average doubling
time of a genome segment was estimated to be about 40 min. At 6-8 hpi recruitment of genome
segments to the virion assembly site at the Golgi [20-23,31,32] became evident in most of the
infected cells. The total level of cytoplasmic genome segments reached a plateau around 6 hpi,
which is probably the result of ongoing replication and continuous Golgi recruitment and bud-
ding of particles containing mature RNPs. An average cytoplasmic inter-segment ratio
approaching 1:1:1 between the S, M and L segments was observed during the first 4 hrs of
infection, whereas later on, due to more efficient Golgi recruitment of the M-segment, the cyto-
plasmic ratios slightly changed (Fig 2G).

Remarkably, in about 30-40% of infected cells the segment ratios were strikingly different.
Cells with about twice as many S, M or L segments as well as cells lacking any evidence of M-
segment replication (up to 25%) were observed frequently (Fig 3 and S2 Fig). It is important to
note that cells infected with particles lacking an S and/or L segment will not reveal genome rep-
lication and are not detected by FISH. Altogether these results suggest that during particle
assembly no quality control mechanisms are present that ensure packaging of each type of
genome segment.

RVFV RNPs do not form a supramolecular complex in the cytoplasm

To evaluate whether S, M and L genome segments form a supramolecular complex and comi-
grate to the Golgi prior virion assembly we evaluated the extent of S, M and L colocalization at
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Fig 1. Single molecule vRNA FISH of RVFV infected cells in time. (A) Schematic presentation of the
experimental design. (B) Vero cells were infected at MOI 0.1 with RVFV and cells were fixed at 2,4,6,8 and 10
hpi. Cells were subsequently probed against the S segment (N gene) using fluorescein labelled probes
(green), against the M segment (Gn gene) using quasar 670 labelled probes (red) and against the L-segment
(polymerase gene) using quasar 570 labelled probes (blue). Cell nuclei were visualized with dapi (cyan).
Images of individual cells were taken using a wide-field microscope. Magnified images of the squared regions
are shown at the right of each panel. The merged images show the spatial relationship between all the
different channels.

doi:10.1371/journal.ppat.1005800.g001

5 hpi. The 5 hpi time point was selected because at this stage of infection the genome segment
density was relatively high and the resolution of spots, corresponding to single genome seg-
ments, was still sufficient to discriminate between colocalized spots and non-colocalized spots.
Moreover, Golgi recruitment has not yet started at this time point. As a positive colocalization
control, cells were probed with two differentially labelled probe sets recognizing either the Gn
or Gc gene, which are both encoded by the M genome segment. As a negative control, cells
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Fig 2. Quantification of cytoplasmic vRNAs of RVFV, NSR and RVFV-4s infected cells by single molecule FISH. Vero cells were infected at
MOI 0.1 with RVFV (A), NSR (B) or RVFV-4s (C) and cells were fixed at 2,4,6,8 and 10 hpi. RVFV infected cells were subsequently probed against
the S segment (N gene) using fluorescein labelled probes, against the M segment (Gn gene) using quasar 670 labelled probes and against the L-
segment (polymerase gene) using quasar 570 labelled probes. NSR infected cells were probed against the S segment (N gene, green) using quasar
670 labelled probes and against the L-segment (polymerase gene) using quasar 570 labelled probes. RVFV-4s infected cells were either probed
against the S segment (N gene) using fluorescein labelled probes, against the M-Gn segment (Gn gene) using quasar 670 labelled probes and
against the L-segment (polymerase gene) using quasar 570 labelled probes or against the S segment (N gene) using fluorescein labelled probes,
against the M-Gc segment (Gc gene) using quasar 670 labelled probes and against the L-segment (polymerase gene) using quasar 570 labelled
probes. After image acquisition using a widefield microscope, spots were counted as described in the M&M section. The total number of spots (sum
spots of all channels) and the relative abundance of each genome segment (in % of total) in the cytoplasm is calculated. The total number of spots (D,
E,F) and relative abundance (G,H,l) of each genome segment at the cytoplasm at the indicated time points for RVFV, NSR and RVFV-4s infected
cells are indicated. Spot counting data was obtained from >8 cells per experimental variable and means and SDs are presented.

doi:10.1371/journal.ppat.1005800.g002

were probed with a GAPDH mRNA probe set and a Gc probe set. The Pearson colocalization
coefficient of the probe sets recognising either the Gn or Ge-coding region was on average 0.65
and the colocalization coefficient of the GAPDH and Gc probe sets was below 0.1 (Fig 4A and
4B). These values, which are similar to what others have reported in the influenza field [33],
confirm that our FISH assay is well suited for studying genome segment colocalization.

The Pearson colocalization coefficients of the different RVFV genome segments were all
below 0.1 (Fig 4C). This indicates that RVFV genome segments, in contrast to the genome seg-
ments of the influenza virus [33,34], do not form a supramolecular complex consisting of more
than one genome segment in the cytoplasm.
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Fig 3. Single molecule vRNA FISH of multiple RVFV infected cells. RVFV infected Vero cells (MOI 0.1) were fixed at 7 hpi. Cells were
subsequently probed against the S segment (N gene) using fluorescein labelled probes (green), against the M segment (Gn and Gc gene) using
quasar 670 labelled probes (red) and against the L-segment (polymerase gene) using quasar 570 labelled probes (blue). Cell nuclei were visualized
with dapi (cyan). The picture shows that the molar ratios of different vVRNAs vary among cells. Most likely the presented cells were infected with either
a particle containing a single copy of each genome segment, a particle lacking the M-segment, and a particle with an additional M-segment,
respectively. In S2 Fig, additional images are presented.

doi:10.1371/journal.ppat.1005800.g003

RVFV glycoproteins play an important role in genome segment
recruitment

The important role of the RVFV glycoproteins, specifically the cytoplasmic tail of the Gn pro-
tein, in RNP incorporation into virions is well recognized [19,22]. The involvement of the gly-
coproteins in intracellular genome segment recruitment is, however, less understood. Here we
used our previously developed RVFV replicon particles, also referred as nonspreading RVFV
(NSR) [27], to study the role of the glycoproteins in genome segment recruitment in more
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Fig 4. Colocalization coefficient of VRNAs in RVFV infected cells. Vero cells were infected at MOI 0.1 with RVFV and cells were fixed at 5 hpi.
Cells were subsequently probed against (A) the S segment (N gene, green) using fluorescein labelled probes, the M segment (Gc gene, red) using
quasar 670 labelled probes and the GAPDH mRNA using quasar 570 labelled (blue) probes or against (B) the S segment (N gene, green) using
fluorescein labelled probes, the M segment (Gc gene, red) using quasar 670 labelled probes and the M-segment using quasar 570 labelled (Gn
gene, blue) probes or against the (C) S segment (N gene, green) using fluorescein labelled probes, against the M segment (Gn gene, red) using
quasar 670 labelled probes and against the L-segment (polymerase gene, blue) using quasar 570 labelled probes. Cell nuclei were visualized with
dapi (cyan). Images were taken using a wide-field microscope. The level of colocalization is determined by calculation of the Pearson’s
colocalization coefficient. Bars represent means and SDs of 4 independent measurements.

doi:10.1371/journal.ppat.1005800.g004

detail. NSR particles are phenotypically similar to wild-type virus, however they cannot spread
autonomously because they lack the glycoprotein-encoding M genome segment.

Vero cells were infected with NSR and the spatio-temporal distributions of the S and L
genome segments were determined by FISH (Fig 5). The results show that the total level of
genome segments rapidly increased in time, similar as observed in RVFV infected cells (Fig 2).
Importantly, no evidence of Golgi recruitment was observed at any time point (Fig 5). This
suggests that in wild-type virus infected cells recruitment of genome segments is fully mediated
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Fig 5. Single molecule vRNA FISH of NSR infected cells. (A) Schematic presentation of the experimental setup.
(B) Maximal titers and SDs of wild-type RVFV and NSR stocks. (C) Spatio-temporal distribution of genome
segments in NSR infected cells. Vero cells were infected at MOI 0.1 with NSR and cells were fixed at 2,4,6,8 and 10
hpi. Cells were subsequently probed against the S segment (N gene, red) using quasar 670 labelled probes and
against the L-segment (polymerase gene, green) using quasar 570 labelled probes. Cell nuclei were visualized
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with dapi (blue). Images were taken using a wide-field microscope. Magnified images of the squared regions are
shown at the right of each panel. The merge images show the spatial relationship between all the different
channels.

doi:10.1371/journal.ppat.1005800.9005

by the glycoproteins, most likely mediated by the cytoplasmic tail of Gn, as was previously sug-
gested by Piper and co-workers [19].

Remarkably, starting at 8 hpi, we consistently observed aggregates of genome segments in
NSR-infected cells (Fig 5). The aggregates were randomly distributed and not associated with
the Golgi. Probably, the absence of viral budding results in accumulation and subsequent
aggregation of RNPs. In RVFV infected cells no such aggregates were found, not even at later
time points.

Genome segment replication and recruitment is out of balance in RVFV-
4s infected cells

The NSR experiments suggested a major role for the RVFV glycoproteins, probably Gn, in
genome segment recruitment. The RVFV glycoproteins Gn and Gc are normally produced
from a glycoprotein precursor (GPC) protein that is proteolytically cleaved. Gn and Gc subse-
quently form heterodimers and mature at the endoplasmic reticulum (ER) and Golgi. Gn har-
bours a Golgi localization motif and Gc contains an ER retention signal [31]. We previously
constructed RVFV-4s variants by splitting the M segment into two M-type segments encoding
either the Gn or Gc protein [30]. We hypothesized that genome replication and recruitment is
affected by changes in glycoprotein processing and genome organisation. To test this hypothe-
sis we evaluated the spatio-temporal distribution of genome segments in RVFV-4s infected
cells by FISH.

Vero cells were infected with RVFV-4s and hybridized with probes complementary to the S,
M-Gn, M-Gc and L genome segments. The results show that the M-Gn segment is replicated
more efficiently compared to the M-Gc segment (Fig 2I). Moreover, recruitment of the M-Gn
segment to the Golgi was much more efficient compared to recruitment of the other segments
(Fig 6B). Recruitment of M-Gn was also more efficient compared to recruitment of the wild-
type M-segment in RVFV infected cells (Figs 1 and 6B).

Since RVFV-4s is able to spread after infection at low MOI (< 0.001) a significant popula-
tion of particles in a virus stock is expected to contain all four genome segments. Interestingly,
the FISH experiments at 6 hpi revealed that various infected cells (up to 40%) did not show evi-
dence of M-Gc replication (Fig 6C). Most likely these cells were originally infected with virions
containing the S, M-Gn and L genome segments but lacking the M-Gc segment. The number
of M-Gc lacking virions correlates very well with the reduced replication of the M-Gc segment
(Fig 2I) and, like for wild-type virus, confirms that during particle assembly no quality control
mechanisms are present that ensure packaging of all different segments, including M-Gec, into
a single particle.

Another interesting observation in RVFV-4s infected cells was the reduced replication of
the S segment. Most likely there is increased competition for polymerase molecules in RVFV-
4s infected cells (4 instead of 3 segments) resulting in reduced replication of segments with a
relative low affinity for the polymerase. Differences in polymerase affinity have already been
shown at the transcription level [13].

A final characteristic of RVFV-4s infected cells was the presence of higher densities of
genome segments near the plasma membrane later on in infection (Fig 6D), suggesting that in
RVFV-4s infected cells, various Gn molecules move to the plasma membrane and bind genome
segments during transit. The ability of Gn to move to the plasma membrane, especially in the
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Fig 6. Single molecule vRNA FISH of RVFV-4s infected cells. (A) Schematic presentation of the experimental setup. Vero cells were
infected at MOI 0.1 with RVFV-4s and cells were fixed at 6 (B,C) and 10 (D) hpi. Cells were subsequently probed against (B,D) the S segment

(N gene, green) using fluorescein labelled probes, against the M-Gn segment (Gn gene, yellow) using quasar 570 labelled probes and against the
M-Gc segment (Gc gene, red) using quasar 670 labelled probes or (C) against the S segment (N gene, green) using fluorescein labelled probes,
against the L segment (polymerase gene, yellow) using quasar 570 labelled probes and against the M-Gc segment (Gc gene, red) using quasar
670 labelled probes. Cell nuclei were visualized with dapi (blue). Images were taken using a wide-field microscope. Magnified images of the
squared regions are highlighted with white squares. The merged images show the spatial relationship between all the different channels.

doi:10.1371/journal.ppat.1005800.9006

absence of Ge is well known [22,31]. Whether RVFV-4s is able to bud at the plasma membrane
awaits further study.

Altogether, the overall unbalance in genome segment replication, the enhanced Golgi
recruitment of the M-Gn segment and the increased number of particles lacking one or more
genome segments explain, at least partly, the observed attenuated phenotype of RVFV-4s [30].

Rescue of a RVFV variant with a codon shuffled M-segment

Although the experiments thus far show that a supramolecular complex, consisting of an S, M
and L genome segment is not formed in the cytoplasm, we cannot yet rule out the possibility
that a supramolecular RNP complex is formed at the virion assembly site. During the influenza
infection cycle, the formation of a supramolecular RNP complex is based on RNA-RNA inter-
actions between the different segments and this process is believed to trigger viral budding
[35,36]. To obtain additional information about the putative formation of a supramolecular
RNP complex during the RVFV infection cycle we tried to rescue a RVFV variant with a codon
shuffled M-segment (Fig 7 and S2 Fig). Codon shuffling changes the genomic RNA sequence
but does not affect the protein sequence and has limited effects on protein expression. When
RNA-RNA interactions exist between the S, M and L RNPs, a virus with a codon shuffled M
segment is expected to grow less efficiently.

Interestingly, rescue of the RVFV variant with a codon shuffled M-segment, referred as
RVEV-Mpnuttied» Was successful. Moreover, we additionally rescued a RVFV variant with a shuf-
fled M-segment and an optimized S segment, referred as RVFV-Mgpy¢eaSope (Figs 7 and S3).
Both variants were able to grow with similar kinetics and to similar titers in Vero cells com-
pared to the parental RVFV strain (Fig 7). The efficient growth of these variants further sug-
gests that the formation of a supramolecular RNP complex does not drive the production of
infectious RVFV virions.

Heterogeneity in segment content virions

Altogether, the presented results suggest that RVFV genome packaging is a non-selective
process. To obtain additional evidence for this conclusion we evaluated the genome segment
content of mature virions. Virions in wild-type virus stocks (produced on Vero cells) were
immobilized on coverslips and incubated with antibodies targeting the Gn glycoprotein and
probe sets recognising the S, M and L genome segments as described in the M&M section.
After confirming specificity and the ability to determine colocalization with this assay (Fig 8B
and 8C) the genome content of >800 virions was determined. As expected, the results revealed
a high level of heterogeneity in genome composition. Virions were observed that did not com-
prise any genome segment (about 40%) as well as virions with only one or two segment types
(Fig 8D and 8E). About 1 out of 10 virions showed evidence for the presence of all three differ-
ent segments. The relatively low abundance of virions containing all the different segments is
in full agreement with the FISH data obtained with infected cells and confirms the non-selec-
tive nature of RVFV genome packaging.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005800 August 22, 2016 11/21
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Fig 7. Growth of codon shuffled RVFV variants. (A) Schematic presentation of the viruses with shuffled or
codon-optimized genes. (B) Part of the shuffled M segment and codon-optimized N gene sequence. (C)
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Growth curve of the indicated viruses in Vero cells infected at MOI 0.01. Supernatants were harvested at
different time points and titrated on Vero cells.

doi:10.1371/journal.ppat.1005800.g007

Discussion

Although genome packaging of viruses with segmented genomes has intrigued researchers for
decades, we are only just beginning to understand the molecular processes involved. In the
field of segmented negative-strand RNA viruses, most knowledge resulted from studies with
influenza virus. In the latest influenza model, genome packaging is proposed to be a highly
selective process based on the formation of a supramolecular RNP complex [33-35,37,38].
From an evolutionary perspective, a selective genome packaging process for an 8-segmented
virus is easily understood. If not selective, the influenza virus would need to produce about 400
particles to generate 1 particle that contains each of the 8 genome segments, which is rather
inefficient. For bunyaviruses, which only have to package 3 segments, the evolutionary pressure
to selectively incorporate genome segments during virion assembly is much lower. With this
study, we provide evidence that RVFV uses a non-selective genome packaging strategy.

At the beginning of this study, limited knowledge was available about the molecular mecha-
nisms involved in RVFV genome replication, recruitment and packaging. Moreover, as
explained in the introduction section, some results pointed towards a highly selective genome
packaging strategy whereas others were compatible with a non-selective packaging process. In
the current study, we investigated the molecular mechanisms involved in RVFV genome pack-
aging by combining new tools such as replicon particles, four-segmented- and codon-shuffled
viruses with state-of-the-art single molecule RNA-FISH. The absence of colocalization of RNPs
in the cytoplasm (Fig 4), the similar to wild-type growth of codon shuffled variants (Fig 7), the
efficient production of replicon particles (Fig 5B), the observed heterogeneity in intracellular
segment replication among infected cells (Fig 3 and S2 Fig) and the heterogeneity in segment
composition of mature virions (Fig 8) demonstrate that the non-selective genome packaging
model is the most plausible model to date. The non-selective genome packaging model is in
tull agreement with the ability to construct a wide variety of RVFV variants without the need to
conserve coding sequences and RNA structures [26,29,30].

We here demonstrate that replication of RVFV genome segments starts locally, probably near
the site of fusion of the virion with the endosome, and subsequently (within 4-6 h) continues to
proceed throughout the cytoplasm. After the replication phase, genome segments are recruited to
the Golgi. Recruitment is probably mediated by interactions of the nucleocapsid protein, which
covers the viral RNA, with the cytoplasmic tail of Gn [19,22,24,25]. After recruitment, a very het-
erogeneous population of virions, containing various amounts and types of genome segments,
buds into the Golgi lumen. Virions with at least one S, M and L RNP will be able to produce
progeny virions upon infection. Alternatively, co-infection with complementing particles may
result in productive infection. Interestingly, virions containing antigenomic-sense RNPs may
also contribute to the RVFV infection cycle [29,39]. In Fig 9, a schematic presentation of the
RVFV infection cycle, according to the newly obtained insights, is provided.

Although our results suggest that a supramolecular RNP complex is not formed, or at least
does not play a critical role in the RVFV replication cycle, we cannot exclude that some degree
of selectivity exists, as has been previously suggested [17,18]. If some degree of selection indeed
occurs, our results obtained with codon-shuffled variants suggest that this selection is mediated
by the UTRs.

A major finding in the RVFV-4s infected cells was the difference in replication efficiency of
the M-Gn versus M-Gc segment. The difference in replication is not explained by large
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Fig 8. Genome segment composition of immobilized virions. (A) Schematic presentation of the experimental setup. (B) Control experiment to
validate the visualization of immobilized RVFV virions and their genome segments. Immobilized virions were incubated in the presence (left
image) or absence (right image) of the 4-39-cc mAb targeting the Gn glycoprotein followed by incubation with a DyLight 350 labelled conjugate.
(C) Validation of the ability to determine segment colocalization inside immobilized virions. Immobilized RVFV virions were hybridized with a
quasar 570 labelled Gn gene-specific probe set (green) and a quasar 670 labelled Gc gene-specific probe set (red). Since the Gn and Gc coding
regions are both present on the M-genome segment, Gn and Gc gene-specific spots should show a high level of colocalization (in yellow).
Colocalization percentages were on average 80% (D) Immobilized RVFV virions were hybridized with S segment specific probe sets (N gene,
fluorescein, green), M segment specific probes sets (Gn and Gc, quasar 670, red) and L segment specific probe sets (polymerase, quasar 570,
yellow) and incubated with the 4-39-cc Gn specific mAb in combination with the DyLight 350 labelled conjugate (blue). In each channel, spots
were subsequently detected with the ComDet plugin of ImageJ and merged images of the four different channels are presented. (E) Quantification
of the different genome compositions inside virions. About 800 virions were analysed for their genome content using the ComDet plugin of
ImageJ.

doi:10.1371/journal.ppat.1005800.9008

differences in segment size (2319 nt versus 1869 nt) or differences in UTR sequence, since
these are identical. An explanation might be that the NSm coding region, which is present in
the M-Gn segment but absent from the M-Gc segment, contains a yet unknown cis-acting rep-
lication element. At first glance, the efficient replication of codon-shuffled variants seems to
contradict this hypothesis. However, a short stretch of nucleotides downstream of the 5 UTR
and a short stretch of nucleotides upstream of the GnGc open reading frame were maintained
in these viruses (S3 Fig) to preserve efficient translation. These sequences are not present in the
M-Gc segment and could be involved in replication. Future research will determine if these
sequences indeed contain cis-acting replication signals.

Another very consistent finding throughout the experiments was the enhanced Golgi
recruitment of the M segment compared to the S and L segments in wild-type virus infected
cells and the enhanced recruitment of the M-Gn segment in RVFV-4s infected cells. The
enhanced recruitment was calculated by dividing the cytoplasmic segment ratios before (4 hpi)
and after Golgi localization (8 hpi). The percentage of cytoplasmic M-segments decreased with
16% in wild-type virus infected cells and the percentage of M-Gn segments decreased with 11%
compared to the other segments in RVFV-4s infected cells. The enhanced recruitment of Gn
encoding segments can be explained by the coupled transcription and translation in bunyavi-
ruses. Specifically, we propose the following sequence of events: transcription of the M segment
is initiated in the cytoplasm, followed by translation of the Gn signal sequence by free ribo-
somes. A complex of M genome segments, mRNA transcribed from this segment and ribo-
somes is then translocated to the ER and subsequently to the Golgi compartment to continue
membrane-associated translation of M segment mRNAs.

Although the current study provides evidence for a non-selective genome packaging process
during RVFV virion assembly, we do not think these results can be extrapolated to all bunyavi-
ruses. Whereas RVFV RNPs are expected to bind to the cytoplasmic tail of the Gn protein via
the N protein, for other bunyaviruses, such as Crimean Congo hemorrhagic fever virus
(CCHEFYV), evidence was provided that the viral RNA directly interacts with the cytoplasmic
tail of the Gn protein [40]. This N-independent interaction might be segment specific and
could facilitate a more selective packaging process. The latter could also explain the lower parti-
cle to PFU ratio of CCHF compared to RVFV [41].

In summary, this study suggests that RVFV genome packaging is a non-selective process
and does not involve the formation of a supramolecular viral RNA complex.

Materials and Methods
Viruses and cells

The RVFYV strain Clone 13 [42] was kindly provided by Dr. Michele Bouloy (Institut Pasteur,
France). RVFV-4s, RVFV-Mpgied and RVFV-MghufrieaSopt Were constructed using reverse
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Fig 9. Schematic presentation of the RVFV replication cycle. 1) Upon virion attachment, the particles are endocytosed by clathrin-dependent (a) or
independent (b) endocytosis. After acidification of the endosome, Gn and Gc undergo conformational changes resulting in fusion of the viral and
endosomal membranes and subsequent release of the RNPs into the cytosol. Near the fusion site, the RNPs are used as templates for transcription and
replication (5,6). L and S segment-encoded mRNAs are translated by free ribosomes whereas M segment encoded mRNA is translated by membrane
bound ribosomes at the ER. Newly formed RNPs (4—6 hpi) migrate to random sites in the cytoplasm initiating additional rounds of replication followed by
glycoprotein mediated recruitment to the Golgi (7). Glycoprotein heterodimers or higher-order glycoprotein structures are expected to bind RNPs via
interaction of the N protein with the cytoplasmic tail of Gn. Finally, RNPs accumulate at the Golgi and virions are formed by budding into the Golgi lumen
(8). Mature virus particles, containing zero to three, or perhaps even more genome segments, are released from the cell via exocytosis (9).

doi:10.1371/journal.ppat.1005800.g009

genetics. Sequences were based on the published Clone 13 genome (Accession: DQ375417.1,
DQ380213.1, DQ380182.1). Working stocks were obtained by low MOI (0.01) infections of
Vero E6 cells (ATCC CRL-1586) grown in Eagle's Minimum Essential Medium (EMEM) sup-
plemented with 5% FBS, 1% non-essential amino acids, 1% L-glutamine and 1% antibiotic/
antimycotic. RVFV replicon (NSR) stocks were obtained by transfection of replicon cells,
which stably maintain replicating S and L genome segments with an expression plasmid
expressing the RVFV glycoproteins as described previously [27].
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Plasmids

RVEFV sequences, flanked by a minimal T7 promoter and a hepatitis delta virus ribozyme
sequence, were synthesized by the GenScript Corporation (New Jersey, USA) and cloned into
pUC57 plasmids. RVFV-4s M-type plasmids were designed (Clone 13 sequence based), as pre-
viously described, to contain half of the GPC gene, either encoding (NSm)Gn or Ge (seg-
mented at the tyrosine-675 codon of the GPC) [30]. The RVFV-Mpueq segment was designed
by shuffling of the NSmGnGc gene resulting in 77% homology. The RVFV-S,, plasmid con-
tains a codon-optimized N gene for optimal expression in mammalian cells. NSmGnGc shuf-
fled and N optimized sequences are presented in S2 Fig and S3 Fig respectively.

Reverse genetics

RVFV-4s, RVFV-Mgpugfiea and RVFV-MgpugeaSopt Were rescued using a three (or four for
RVFV-4s) plasmid system. Briefly, BSR-T7/5 cells [43] (previously kindly provided by Prof.
Karl-Klaus Conzelmann) were seeded in T75 flasks (2,500,000 cells/flask) in GMEM contain-
ing 5% FBS and after overnight incubation medium was replaced with Opti-MEM. Cells were
transfected with a total of 20 ug pUC57 transcription plasmids per flask using TransIT trans-
fection reagents according the manufacturers’ instructions (Mirus, MAD). Three to five days
post transfection, supernatants were collected and used to infect Vero E6 cells.

RNA-FISH

All RNA-FISH assays were performed according the Stellaris FISH method originally devel-
oped by Ray, Femino and co-workers [44,45].

For the RNA-FISH cell assays Vero E6 cells (15,000 cells/well) were seeded on CultureWell
16 Chambered Coverglass (Grace Biolabs). After overnight incubation, cells were incubated
with the indicated viruses for 1 h (MOI 0.1-0.01) and at the indicated time points infected cells
were fixed for 10 min with fixation buffer (75% methanol, 25% glacial acetic acid). Cells were
subsequently washed with PBS (5 min) and pre-hybridization buffer (5 min) consisting of 10%
formamide and 2 mM vanadyl ribonucleoside complex (VRC) in 2x concentrated SSC. Subse-
quently, cells were probed overnight (18 h) at 37°C in hybridization buffer (10% formamide, 2
mM VRC, 10% w/v Dextran-Sulphate in 2 times SSC) with the indicated probe sets (S1 Table)
at an end concentration of 125 nM. The probes were designed using the RNA FISH Probe
Designer available online at www.biosearchtech.com and purchased from Biosearch Technolo-
gies Inc. (Petaluma, CA). After the hybridization, cells were extensively washed with pre-
hybridization buffer and 2 times SSC. Cell nuclei were visualized using DAPI and prior imag-
ing, cells were submerged in VectaShield mounting medium (H-1000, Vector Laboratories).

For the RNA-FISH virion assays, undiluted virus stocks were incubated for 3 h in the Cul-
tureWell 16 Chambered Coverglass wells at 37°C. The negatively charged glass binds virions
relatively efficient. After bound virions were fixed and hybridized according the procedure
described for cells, with the only exception that hybridization time was reduced to 4 h, virions
were visualized with the RVFV-Gn specific monoclonal antibody 4-39-cc [46] in combination
with a DyLight 350 labelled Rabbit anti-Mouse (H+L) conjugate (ThermoFisher Scientific).
Immobilized virions were finally submerged in VectaShield prior imaging.

Image acquisition and analysis

Images of infected cells and immobilized virions were obtained with an inverted fluorescence
wide-field ZEISS Axioskop 40 microscope with appropriate filters and a 1.3 NA 100x oil objec-
tive in combination with an Axiocam MRm CCD camera. Raw cell images were subsequently
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deconvolved and analysed using Huygens deconvolution software (SVI, Hilversum, The Neth-
erlands) in combination with the Image] program (National Institutes of Health, USA). Spots
(individual vRNAs) were counted using the StarSearch algorithm http://rajlab.seas.upenn.edu/
StarSearch/launch.html. Images of coverslip immobilized virions were analysed by ImageJ in
combination with the ComDet plugin https://github.com/ekatrukha/ComDet/wiki.

Supporting Information

S1 Fig. Sensitivity and specificity of the probe sets. A) Uninfected Vero cells or (B) RVFV
infected Vero cells were probed against the S segment (N gene) using fluorescein labelled
probes (green), against the M segment (Gn and Gc gene) using quasar 670 labelled probes
(red) and against the L-segment (polymerase gene) using quasar 570 labelled probes (blue). A
representative example of a fluorescence intensity peak, characteristic of single molecules, is
presented at the bottom of the image. C) Histogram of the fluorescence spots intensity of the
unprocessed M-segment channel of the image presented in Fig 4. The spot intensity distribu-
tion displays an almost Gaussian distribution (red line), which is characteristic of single mole-
cules.

(TTF)

S2 Fig. Representative panel of images obtained after single molecule vVRNA FISH of RVFV
infected cells. Vero cells were infected with RVFV at MOI 0.1 and fixed at 7 hpi. Cells were
subsequently probed against the S segment (N gene) using fluorescein labelled probes (green),
against the M segment (Gn and Gce gene) using quasar 670 labelled probes (red) and against
the L-segment (polymerase gene) using quasar 570 labelled probes (blue). Cell nuclei were
visualized with dapi (cyan). Infected cells that did not show evidence of M-segment replication
are indicated with a dashed line.

(TTF)

S3 Fig. Sequence shuffled M segment. Alignment of the shuffled M segment sequence with
the wild-type sequence.
(TIF)

S4 Fig. Sequence optimized S segment. Alignment of the optimized S segment sequence with
the wild-type sequence.
(TTF)

S1 Table. FISH probe sequences.
(DOCX)
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