
Functional Networks of Highest-Connected Splice Isoforms: 
From The Chromosome 17 Human Proteome Project

Hong-Dong Li†, Rajasree Menon†, Brandon Govindarajoo†, Bharat Panwar†, Yang Zhang†, 
Gilbert S. Omenn†,‡,§,*, and Yuanfang Guan†,‡,‖,*

†Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 
Michigan 48109, United States

‡Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United 
States

§Department of Human Genetics and School of Public Health, University of Michigan, Ann Arbor, 
Michigan 48109, United States

‖Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
Michigan 48109, United States

Abstract

Alternative splicing allows a single gene to produce multiple transcript-level splice isoforms from 

which the translated proteins may show differences in their expression and function. Identifying 

the major functional or canonical isoform is important for understanding gene and protein 

functions. Identification and characterization of splice isoforms is a stated goal of the HUPO 

Human Proteome Project and of neXtProt. Multiple efforts have catalogued splice isoforms as 

“dominant”, “principal”, or “major” isoforms based on expression or evolutionary traits. In 

contrast, we recently proposed highest connected isoforms (HCIs) as a new class of canonical 

isoforms that have the strongest interactions in a functional network and revealed their 
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significantly higher (differential) transcript-level expression compared to nonhighest connected 

isoforms (NCIs) regardless of tissues/cell lines in the mouse. HCIs and their expression behavior 

in the human remain unexplored. Here we identified HCIs for 6157 multi-isoform genes using a 

human isoform network that we constructed by integrating a large compendium of heterogeneous 

genomic data. We present examples for pairs of transcript isoforms of ABCC3, RBM34, ERBB2, 

and ANXA7. We found that functional networks of isoforms of the same gene can show large 

differences. Interestingly, differential expression between HCIs and NCIs was also observed in the 

human on an independent set of 940 RNA-seq samples across multiple tissues, including heart, 

kidney, and liver. Using proteomic data from normal human retina and placenta, we showed that 

HCIs are a promising indicator of expressed protein isoforms exemplified by NUDFB6 and 

M6PR. Furthermore, we found that a significant percentage (20%, p = 0.0003) of human and 

mouse HCIs are homologues, suggesting their conservation between species. Our identified HCIs 

expand the repertoire of canonical isoforms and are expected to facilitate studying main protein 

products, understanding gene regulation, and possibly evolution. The network is available through 

our web server as a rich resource for investigating isoform functional relationships (http://

guanlab.ccmb.med.umich.edu/hisonet). All MS/MS data were available at ProteomeXchange Web 

site (http://www.proteomexchange.org) through their identifiers (retina: PXD001242, placenta: 

PXD000754).
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INTRODUCTION

Alternative splicing is a major mechanism that greatly expands the expressed protein 

species, especially in higher organisms such as human and mouse.1–10 Consequently, a gene 

can generate multiple transcripts, which, when translated, may show differences in their 

expression, functions, and interactions with other biological molecules.11–24 Functional 

analysis is a major field in genomics and proteomics. Specifically, the identification and 

characterization of splice isoforms is a goal of the HUPO Human Proteome Project and of 

neXtProt.25,26 There have been interesting studies on the identification of main functional 
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products at the splice isoform level. For example, the APPRIS study predicts the principal 

protein isoform based on conservation.27 A recent study suggested that a multi-isoform gene 

expresses only one dominant isoform at the protein level in a given tissue, providing 

evidence for functional differences between isoforms.28 A brief overview of a variety of 

methods for identifying dominant/major/principal isoforms is in our previous work29,30

In contrast to using expression or conservation data, we proposed a network approach to 

identify the highest connected isoforms (HCIs).29 First, an isoform-level functional network 

is constructed using the well-established multiple instance learning (MIL) 

algorithm15,29,31–34 and Gene Ontology and KEGG pathways. A node is an isoform, and an 

edge represents the probability that the two interconnected translated proteins participate in 

the same biological process or pathway. An advantage of this approach is that evidence from 

different source data such as coexpression networks and protein interactions can be 

integrated into a probabilistic value that describes to what extent two isoforms are 

cofunctional.29 Based on the network, we identified 3427 HCIs in the mouse which showed 

statistically significant higher expression than the nonhighest connected isoforms (NCIs), 

suggesting a correlation between expression and functions. Being complementary to major 

or dominant isoforms, HCIs provide a unique resource for the mouse genomics community 

to investigate major gene products and to facilitate further studies on disease pathways and 

target of therapies.

Moving from mouse models to humans for the identification of HCIs is valuable for 

understanding major human gene products, both transcripts and proteins. Our major aim is 

cataloguing human HCIs, investigating their expression signatures across a number of 

tissues, and comparing them with mouse HCIs using the network approach.29 First, we built 

a genome-wide isoform-level functional network for the human by integrating a large 

compendium of genomic features: RNA-seq (1866 samples), amino acid composition (1 

feature), protein docking (1 feature) and conserved domain (1 feature) (Figure 1). We also 

developed a web server to make the network publicly available (http://

guanlab.ccmb.med.umich.edu/hisonet), providing a rich resource for investigating functional 

interactions of human isoforms. From the network, we identified HCIs and NCIs for 6157 

multi-isoform human genes, with their expression behavior examined using an independent 

quality-controlled test set of 940 RNA-seq samples across many tissues including heart, 

liver, and kidney. Proteomic data of two normal human tissues—retina and placenta—were 

used to investigate protein-level expression of HCIs. We present instructive examples of 

pairs of splice isoforms. Furthermore, we performed homology analysis of HCIs between 

the mouse and human.

METHODS

Constructing Isoform-Level Functional Network Using Multiple Instance Learning

Multiple Instance Learning—The algorithmic challenge faced when constructing 

isoform networks is that supervised learning methods such as support vector machines35–37 

and Bayesian networks19,20,38 cannot be directly used due to the lack of functional 

annotation at the isoform level.15,29,34 To solve this problem, we used multiple instance 

learning (MIL) to predict isoform-level networks by integrating isoform level genomic 
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features and gene-level functional annotation data (Figure 1). Briefly, there are two 

fundamental concepts for MIL: bags and instances. In the context of isoform network 

prediction, a bag is a gene pair, and an instance represents any possible isoform pair of the 

gene pair. Suppose that A and B are two genes which have two and three isoforms, denoted 

A1, A2 and B1, B2, B3, respectively. The pair formulated by these two genes, denoted A-B, 

is treated as a bag in MIL. There are in total six possible isoform pairs for this gene pair: A1-

B1, A1-B2, A1-B3, A2-B1, A2-B2, and A2-B3. Each isoform pair is treated as an instance of 

the bag (gene pair). MIL predicts isoform-level functional relationship networks based on 

the following three assumptions:29,34 (1) a gene pair is assumed to be functionally related if 

they participate in the same biological process or pathway, defined as coannotated to the 

same gene ontology (GO) biological process term39 or a Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway;40 (2) a gene pair (bag) is assumed to be positive if at least one 

of its isoform pairs (instance) is functional; and (3) in contrast, none of the isoform pairs of a 

negative gene pair is functionally related.

To build the isoform network for the human, we collected four types of genomic feature data 

and a gold standard set of functionally related gene pairs (Figure 1), which are described 

below:

RNA-seq Transcript Expression—We downloaded all publicly available human RNA-

seq data from the short read archive (SRA) database41 as of June 5, 2014, which included 

825 data sets containing 12 707 samples. The Sailfish software (version 0.6.3)42 was used to 

estimate splice isoform expression level in terms of RPKM (Reads Per Kilobase of exon per 

Million fragments mapped) based on the RefSeq human genome build (version 37.2) which 

contains a total of 32 125 protein-coding RNA. Noncoding RNAs were not considered in 

this study. Then, samples with read mapping rate <70% were removed. In each data set, 

transcripts with low expression level (RPKM < 0.1) in more than 10% of samples were 

removed.29 After doing so, we obtained 314 quality-controlled data sets covering 2706 

samples. Among them, we selected 59 data sets with sample size ≥10 (comprising 1866 

samples in total, see Table S1), and calculated, for all possible isoform pairs in each data set, 

their Fisher’s z-transformed Pearson correlations which were used as feature data to build 

the isoform network for the human formula 1.43 The reason to use z-transformation is to 

ensure that the correlation coefficients are normally distributed and comparable across data 

sets. All the 940 samples in the remaining 255 data sets were used as an independent test set 

to investigate the expression behavior of HCIs and NCIs.

(1)

Pseudoamino Acid Composition—Amino acid composition (AAC) is a commonly 

used feature to characterize protein sequences. The sequential information on amino acids in 

a protein is important for protein structures and functions, but is not captured by AAC. For 

this reason, a feature that is able to take into account sequential information was developed, 

which does not really reflect AAC and therefore was called pseudo-AAC together with the 

standard amino acid composition.44 Here, we generated pseudo-AAC for each isoform, 
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followed by calculating Fisher’s z-transformed Pearson correlation between isoform pairs as 

the feature data.

Protein Docking Score—We computed a quantitative physical interaction score for each 

isoform pair using the SPRING algorithm.45 Briefly, SPRING is a template-based algorithm 

for protein–protein interaction prediction. SPRING first builds 3-D structures of protein 

isoforms followed by predicting their interaction potential. This pairwise docking score was 

used as a feature for building the isoform-level network for the human.

Conserved Domain—We downloaded domain data from the Conserved Domain 

Database (CDD),46 which is a protein annotation resource composed of well-annotated 

multi-sequence alignment models for identifying domains. It contains NCBI-curated 

domains as well as imported data from, for example, Pfam47,48 and SMART.49 For each 

query protein, CDD outputs four tiers of domains; only the top tier, called specific hits with 

high confidence, was used. For each possible protein pair, we then calculated the number of 

shared domains between them and used this number as a pairwise feature to construct the 

human isoform network.

Gold Standard of Functionally Related Gene Pairs—The GO biological process 

terms and KEGG pathways were used to derive functionally related gene pairs, according to 

previous work.17–19 To avoid too specific or too general annotations, only the biological 

processes/pathways containing at least 5 and fewer than 300 annotated genes were used. We 

derived all coannotated gene pairs and identified 772 086 positive gene pairs. Since there is 

no gold standard of negative gene pairs available, we randomly generated gene pairs from 

the whole genome space as negatives that are 19 times the number of positives based on our 

previous study.17,19,20,29

Isoform Networks for Identifying HCIs in the Human

Based on the isoform-level functional relationship network constructed in the previous step, 

the HCIs were identified using our established method.29 For a multi-isoform gene with k 

isoforms, we first calculated the average functional relationship (AFR) score for each 

isoform as the mean functional connections between the isoform and its top neighbors, 

denoted AFR1, AFR2, AFR3,… AFRk. Thereafter, the isoform with the maximum AFR 

score is selected as the HCI for the gene under investigation. The other isoforms of the same 

gene are considered as NCIs. For each gene, we also calculated its ratio of the maximal to 

minimal AFR score to quantify the difference between isoforms:29

(2)

A gene with ratio >1.5 was considered to have large differences in its isoform functional 

relationship.
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Independent Transcript-Level Expression Analysis of HCIs

As described above (see Methods section), 940 RNA-seq samples (Table S1) not used for 

building the human isoform network were then available to be used as an independent test 

set to interrogate the expression signal of HCIs and NCIs at the transcript level. For each 

sample, the expression data were divided into two groups: one for HCIs and the other for 

NCIs. The mean expression of each group was calculated to compare their average 

expression level. The Mann–Whitney U test is used to examine whether HCIs and NCIs are 

differentially expressed or not. This test method does not assume any data distribution and is 

robust.

Human Proteomic Data for Validation of HCIs

Data Set—For proteomic validation purposes, we used publicly available data from two 

different studies on human normal tissues. The first data set is a proteomic analysis on 

retinal tissue by Zhang et al.50 (http://proteomecentral.proteomexchange.org/cgi/GetDataset?

ID=PXD001242). According to this study, proteins were extracted from five normal retinal 

tissues and fractionated using SDS-PAGE. The peptides were then analyzed using LC-

MS/MS on an Orbitrap Elite mass spectrometer. After mass-spectrometric analyses they 

selected peptides with greater than 95% probability by the PeptideProphet algorithm for 

further analyses. We downloaded the Supplementary Table 1 with this peptide information 

(http://onlinelibrary.wiley.com/doi/10.1002/pmic.201400397/suppinfo) for our analyses.

The second data set was downloaded from PRIDE archive (http://www.ebi.ac.uk/pride/

archive/projects/PXD000754). We downloaded the mass spectrometric search result files. 

Peptides with greater than 95% PeptideProphet probability were extracted from these files 

and used for isoform analyses.

Isoform Identification—The downloaded peptides were blasted using the NCBI sequence 

alignment BLASTP tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi?

PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) against UniProt 

protein sequences (UniProt fasta files released on 06/24/15). The analysis process is as 

follows:

1. Peptides that were perfectly aligned to proteins with no mismatches were 

selected.

2. Proteins with no proteotypic peptides were removed.

3. Only the proteins from genes with more than one known protein product 

were retained.

RESULTS AND DISCUSSION

Genome-Wide Human Isoform Network and the Web Server

Using our MIL method, we built the isoform level functional relationship network at 

genome scale for the human. As expected, the integrated network shows higher prediction 

accuracy than each single feature (Figure S1). This network includes 19 540 genes that 

encode a total of 32 125 protein-coding splice isoforms. In this network, each node is an 
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isoform, and the edge indicates the probability that two connected isoforms would 

coparticipate in the same biological process or pathway. To make the functional network 

searchable, we developed a web server (http://guanlab.ccmb.med.umich.edu/hisonet) which 

allows users to input a gene or an isoform to investigate their isoform networks. For each 

isoform, we also mapped its top connected isoforms to their gene names and conducted GO 

enrichment analysis. Significantly enriched biological processes are shown along with the 

network, providing a way to associate the networks with their functions.

Identifying the HCIs and NCIs in the Human

We first identified 6157 multi-isoform genes encoding 17 962 protein-coding isoforms. For 

each multi-isoform gene, we calculated the AFR score for each of its isoforms, then 

designated the one with the highest AFR score as the HCI. The remaining isoforms were 

considered as NCIs.

Specific to our Chromosome 17 Human Proteome Project, an example is the ABCC3 gene 

(ATP-binding cassette, subfamily C (CFTR/MRP), member 3) which is located at 

chr17:48712205–48769063. Its HCI (NM_003786.3, ABCC3_1) has an AFR score 5 times 

larger than that of the NCI (NM_001144070.1, ABCC3_2) (Figure 2, upper panel). The NCI 

contains only one domain, which is the ABC transporter membrane region; in contrast, the 

HCI contains three additional domains, including ATP-binding cassette domain 1 of 

multidrug resistance-associated protein. Another example is RBM34 (RNA binding motif 

34, chr1:235,294,498–235,324,571). The AFR scores of its two isoforms NM_015014.2 

(RBM34_1) and NM_001161533.1 (RBM34_2) (Figure 2, middle panel) are 0.998 and 

0.156, respectively. Therefore, the former is HCI, and the latter is NCI. According to the 

annotation in the RefSeq database (http://www.ncbi.nlm.nih.gov/gene/23029), the HCI 

contains three RNA binding motifs, while the NCI has only one general binding motif, again 

suggesting that the HCI selected by our method is accurate.

We observed that the AFR scores of some NCIs can be very close to that of its HCI. In this 

situation, distinguishing HCIs from NCIs may be inaccurate. Therefore, we categorized 

those NCIs as HCI candidates if their AFR scores were 80% or 90% or more that of HCIs, 

according the criterion in our previous work.29 In the case of ERBB2 (erb-b2 receptor 

tyrosine kinase 2, chr17:37844167–37884915),11,14 the AFR score of its HCI (0.95, 

NM_004448.2, ERBB2_1) is not much higher than that of its NCI (0.79,°NM_001005862.1, 

ERBB2_2) (Figure 2, lower panel). The HCI encodes a 30 amino acid longer protein 

compared to NCI, but both isoforms have the same seven domains based on NCBI. Another 

example is the ANXA7 gene (Annexin A7, chr10:75,135,189-75,173,841) whose HCI 

(NM_001156.3) has an AFR score = 0.935. The NCI (NM_004034.2) with AFR score = 

0.900 is treated as an HCI candidate. All HCIs, NCIs, and HCI candidates are listed in Table 

S2.

Differential Tissue Expression Between HCIs and NCIs

Motivated by the interesting finding that HCIs showed significantly higher expression at the 

transcript level than NCIs across a variety of tissues in the mouse,29 we asked whether this 

finding holds in the human. Based on the independent test set of 940 RNA-seq samples 
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(Table S1), we found that HCIs showed significantly higher expression (p < 0.05) than NCIs 

in 914 human samples using the Mann–Whitney U test. Plotting the mean expression of 

HCIs against that of NCIs clearly shows their differential expression (Figure 3A, blue dot) 

regardless of tissues and cell lines, suggesting a shared gene expression regulation 

mechanism in different body compartments. Moreover, this observation is consistent with 

what was observed in the mouse.29 The observation that the most functional isoforms at the 

transcript level tend to show higher expression levels implies that a transcript with higher 

expression level is expected to be more functional.

For the remaining 26 samples (Figure 3A, red star) where no significant differences were 

observed between HCIs and NCIs, we found that they were all measured using a 3′-end 

sequencing technology. This technique is not able to quantify isoform expression and led to 

the apparently same expression level between HCIs and NCIs. As an example, the 

expression distribution of HCIs completely overlaps with that of NCIs for the RNA-seq 

experiment (SRX283705, hESCs cell at S phase) because a 3′ library was prepared for 

RNA-seq sequencing (Figure S2). The expression distributions of HCIs and NCIs for all test 

samples are provided (Figure S2).

The above observation indicates that, for an individual gene, its HCI would most likely show 

higher expression than the NCI. Again, taking the ABCC3 gene as an example, we identified 

371 samples where both of its two isoforms (HCI: NM_003786.3, NCI: NM_001144070.1) 

were expressed. The comparison reveals that the expression of HCI is much higher (p < 

0.001) than that of NCI (Figure 3B). For RBM34, its HCI (NM_015014.2) showed much 

higher (p < 0.001) expression than NCI (NM_001161533.1) (Figure 3C). Of interest, for 

ERBB2 whose HCI and NCI have close AFR scores, its HCI also showed significantly 

higher (p < 0.001) expression than its NCI (Figure 3D).

Proteomic Validation of HCIs

To investigate the expression of HCIs at the protein level, we profiled protein isoform 

expression in data sets from two normal human tissues, retina and placenta. Taking the retina 

as an example, we first calculated the number of multi-isoform genes (with ratio >1.5, 

calculated using formula 2, see Methods section) whose splice isoforms were expressed at 

both transcript and protein level, which is 74 in this case (Table 1). We found that 58 of these 

74 genes have protein expression evidence for their HCIs, which is significant (p < 0.0001) 

compared to the number of HCIs which overlap with expressed protein isoforms by chance 

(27 ± 4). Taking the NDUFB6 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6) 

gene as an example, its isoform networks are shown in Figure 4. The isoform NM_002493.4 

(NDUFB6_2) with the highest AFR score = 0.971 was selected as HCI, whereas 

NM_182739.2 (NDUFB6_1) with AFR score = 0.168 was NCI. Based on our proteomic 

data, we found that the protein isoform is expressed for HCI but not for NCI. An example 

for the placenta tissue is M6PR (Mannose-6-Phosphate Receptor). Its HCI NM_002355.3 

(AFR = 0.971) is expressed at the protein level, whereas its NCI NM_001207024.1 (AFR = 

0.179) is not (Figure S3). In both tissues, HCIs were found to be a promising indicator of 

protein-level expression (Table 1). We have provided those genes with protein level evidence 

for HCIs in both tissues in Table S3.
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Comparison between Human and Mouse HCIs

Because humans and mice have homologue genes, it is of interest to compare HCIs between 

homologues. From the human and mouse multi-isoform genes with ratio >1.5 (calculated 

using formula 2, see Methods section), we identified 306 homologue genes each of which 

has an HCI in the mouse and an HCI in the human, denoted as HCIm and HCIh, respectively. 

We hypothesized that the proteins encoded by HCIm and HCIh are homologous. Using the 

Homologene database in NCBI (http://www.ncbi.nlm.nih.gov/homologene), we identified 61 

of the 306 homologue genes whose mouse and human HCIs are homologues (Table S4), 

which is significant (p = 0.0003) compared to the null distribution calculated as the number 

of genes whose HCIm and HCIh are the same by chance using the following procedure. First, 

for each homologue gene, we randomly picked one of its transcripts in the mouse and 

another one in the human; then we examined whether the proteins encoded by these two 

transcripts are homologous, as listed in Homologene. We found that the number of 

homologue genes whose HCIm and HCIh are also homologues is 41 ± 6 by chance. This 

result suggests an evolutionarily conserved characteristic of HCIs between species.

CONCLUDING REMARKS

Alternative splicing enables a single gene to generate multiple protein isoforms that may 

show differences in their expression and/or functions.15,51 Such differences have motivated 

the search for canonical isoforms labeled “principal” or “major” or “dominant” 

isoforms.27,28,52 Using our isoform-level functional network approach, we interrogated the 

HCIs in the human by integrating a large compendium of genomic feature data; we 

identified 6157 HCIs from multi-isoform genes, providing a new set of functional isoforms 

that could facilitate further investigation of main gene products, especially at the protein 

level. The differential expression behavior between HCIs and NCIs previously found in the 

mouse was replicated in the human, suggesting the conservation of HCIs. Using proteomic 

data of two human tissues, we found that HCIs are a promising indicator of expressed 

protein isoforms. Due to the conservation of genes between similar species in terms of 

genome sequence, we tested the hypothesis that HCIs of homologue genes are also likely to 

have transcript-level homology. The result showed that mouse and human HCIs are 

significantly (p = 0.0003, see Comparison between Human and Mouse HCIs section) likely 

to be homologues, supporting the conservation of our identified HCIs across species. This 

finding also supports our previous comparative results that HCIs significantly (p < 0.000001, 

see Table 1 in ref29) overlap with the APPRIS principal isoform that were identified through 

multispecies sequence conservation.27,29 Summing up, as a new catalog of splice isoforms, 

HCIs show interesting characteristics and are expected to facilitate the study of main human 

gene products and possibly disease pathways. These results lay a foundation for proteome-

based studies and for the functional annotation of splice isoforms in neXtProt and other 

databases.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for the identification and expression analysis of the HCIs in the human. We first 

collected four types of isoform-level genomic feature data (RNA-seq, pseudoamino acid 

composition, protein docking and conserved domain) and a gold standard set of functionally 

related gene pairs derived from GO and KEGG database. These data were integrated using 

the multiple instance learning (MIL) method, and an isoform-level functional network was 

built for the human. In this network, each node represents a splice isoform, and the edge 

describes the probability ranging from 0 to 1 that two isoforms coparticipate in the same 

biological process or pathway. Finally, HCIs were identified using our established method. 

Independent RNA-seq and proteomic data were used to examine the expression of HCIs. 

Comparison of human and mouse HCIs was performed.
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Figure 2. 
Illustrations of the HCI and NCI using the ABCC3 (ATP-Binding Cassette, Sub-Family C 

(CFTR/MRP), Member 3, chr17:48,712,205-48,769,063), RBM34 (RNA binding motif 34, 

chr1:235,131,183–235,161,616), and ERBB2 (erb-b2 receptor tyrosine kinase 2, 

chr17:37,844,167–37,884,915) genes. For each gene, the isoform with higher AFR score is 

selected as HCI. Black and blue nodes represent single-isoform and multi-isoform genes, 

respectively; green nodes indicate the queried gene/isoform. Gene names followed by 

numbers indicate isoforms for easily recognizing the originating-gene, which are 
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NM_003786.3 (ABCC3_1), NM_001144070.1 (ABCC3_2); NM_015014.2 (RBM34_1), 

NM_001161533.1 (RBM34_2); NM_004448.2 (ERBB2_1), NM_001005862.1 (ERBB2_2).
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Figure 3. 
Differential expression behavior between HCIs and NCIs based on 940 RNA-seq samples 

that were not used in building the human isoform network. A, the mean expression of HCIs 

is much higher than that of NCIs within each sample (blue dot). It was observed that HCIs 

showed lower or insignificantly higher expression than NCIs in 26 test samples (red star). 

The reason is that these samples were measured using 3′-end sequencing that is not able to 

differentiate expression between isoforms. B, expression level comparison of NM_003786.3 

and NM_001144070.1, which are the HCI and NCI of the gene ABCC3 (ATP-Binding 

Cassette, Sub-Family C (CFTR/MRP), Member 3), respectively. Each dot represents one 

sample. C and D, expression comparison between HCI and NCI for RBM34 (RNA binding 

motif 34) and ERBB2 (erb-b2 receptor tyrosine kinase 2).
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Figure 4. 
Functional networks of HCI (NM_002493.4, NDUFB6_2) and NCI (NM_182739.2, 

NDUFB6_1) of NDUFB6 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6) gene.
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Table 1

Overlap between Our Predicted HCIs and the Expressed Protein Isoforms in Human Normal Tissues Based on 

Multi-Isoform Genes with Their Isoforms Expressed at Both Transcript and Protein Levela

tissues number of multi-isoform genes Nobserved Nchance P-value

retina 74 58 27 ± 4 <0.0001

placenta 83 68 32 ± 4 <0.0001

a
Nobserved: The number of genes whose HCI is expressed at protein level; Nchance: the number of genes whose HCI has protein expression 

evidence by chance. Protein isoform identification was based on proteotypic peptides
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