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Abstract

The majority of Phase I methods for multi-agent trials have focused on identifying a single 

maximum tolerated dose combination (MTDC) among those being investigated. Some published 

methods in the area have been based on the notion that there is no unique MTDC, and that the set 

of dose combinations with acceptable toxicity forms an equivalence contour in two dimensions. 

Therefore, it may be of interest to find multiple MTDC's for further testing for efficacy in a Phase 

II setting. In this paper, we present a new dose-finding method that extends the continual 

reassessment method to account for the location of multiple MTDC's. Operating characteristics are 

demonstrated through simulation studies, and are compared to existing methodology. Some brief 

discussion of implementation and available software is also provided.
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1. Motivation

In oncology drug development, there has been an increasing interest in investigating the 

potential of drug combinations for patient treatment. The motivation to treat with drug 

combinations stems from the desire to improve the response of the patient, especially those 

who have been resistant to traditional treatment. Multi-agent dose-finding trials present the 

significant challenge of finding a maximum tolerated dose combination (MTDC), or 

combinations, of the agents being tested with the typically small sample sizes involved in 

phase I studies. The complexity of combining more than one agent renders many single-

agent dose-finding methods useless. A key assumption to phase I methods for single-agent 

trials is the monotonicity of the dose-toxicity curve, which lends itself to escalation along a 

single line of doses. Given the severity of a toxic response (dose-limiting toxicity; DLT 

yes/no) for a particular patient, we either recommend the same dose for the next patient or 

move to one of two adjacent doses (i.e. either escalate one dose higher or de-escalate to one 
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dose lower). In studies testing combinations, there will most likely be more than one 

possible dose pair to consider when deciding on which combination to enroll the next patient 

cohort. For instance, suppose a cohort of patients receives a combination consisting of the 

lowest dose of each drug and it is well-tolerated. It is not clear which dose pair should be 

assigned to the next cohort of patients, as illustrated in Figure 1 (a). The toxicity ordering is 

usually unknown between combinations located on the same diagonal of the drug 

combination matrix.

A traditional approach to this problem is to pre-select combinations with a known toxicity 

order, and apply a single-agent design by escalating and de-escalating along a chosen path as 

in Figure 1 (b). This approach transforms the two-dimensional dose-finding space into a 

one-dimensional space, and was the approach taken in much of the early work done in 

combinations. Korn and Simon [1] present a graphical method, called the “tolerable dose 

diagram,” based on single agent toxicity profiles, for guiding the escalation strategy in 

combination. Kramar, Lebecq and Candahl [2] also lay out an a priori ordering for the 

combinations, and estimate the MTDC using a parametric model for the probability of a 

DLT as a function of the doses of the two agents in combination. The disadvantage of this 

approach is that it limits the number of combinations that can be considered and it can 

potentially miss promising dose combinations located outside of the chosen path.

More recent methods have moved away from reducing the two-dimensional dose-finding 

space to a single dimension, a thorough review of which is given in Harrington et al. [3]. 

Since the publication of Harrington et al. [3], several new methods have been proposed [4, 5, 

6, 7, 8]. The primary focus of these methods has been to find a single MTDC for 

recommendation in Phase II studies. However, another significant challenge of combination 

studies is that multiple “equivalent” MTDC's may exist, forming a maximum tolerated 

contour (MTC) in the two-dimensional space. To this end, Thall et al. [9] proposed a six-

parameter model for the toxicity probabilities in identifying a toxicity equivalence contour 

for the combinations. Ivanova and Wang [10] applied bivariate istonic regression to estimate 

the MTC in drug combination studies. A recent editorial in Journal of Clinical Oncology by 

Mandrekar [11] described the use of the method of Ivanova and Wang [10] in a real Phase I 

study aiming to identify multiple MTDC's [12]. Wang and Ivanova [13] proposed a logistic-

type regression that used the doses of the two agents as the covariates. A sequential 

continual reassessment method (CRM; [14]) for selecting multple MTDC's was described by 

Yuan and Yin [15]. Tighiouart, Piantidosi, and Rogatko [16] proposed a Bayesian adaptive 

dose-finding method that extends escalation with overdose control (EWOC,[17]) in order to 

estimate the MTC with continuous dose levels. Mander and Sweeting [18] published a 

curve-free method that relies on the product of independent beta probabilities for 

determining a MTC.

In this paper, we describe a new method for identifying a MTC in two-dimensional dose-

finding studies. The manuscript is organized as follows. In Section 2, the general 

considerations and overall strategy in estimating the MTC are discussed. In Sections 3 and 4, 

proposed methodology and a dose-finding algorithm for identifying an equivalence contour 

are described. Operating characteristics, including a single-trial illustration and simulation 
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results, are provided in Section 5. Finally, Section 6 contains some concluding remarks and 

discussion.

2. General considerations

2.1. Example with two rows

In general, we consider two-agent combination trials to be testing agents A and B with dose 

levels i = 1, . . . , I for A and j = 1, . . . , J for B, resulting in a I × J dose combination matrix. 

Let dij denote the combination consisting of dose level i of agent A and dose level j of agent 

B, and denote the probability of dose-limiting toxicity (DLT) at dij with π(dij) and the target 

toxicity rate (TTR) specified by physicians by ϕ. As in Ivanova and Wang [10], we focus on 

the most common cases in which A has a small number of levels, with I typically being 

equal to 2 or 3. As a motivating example, consider a phase I trial that is currently open to 

accrual at the University of Virginia Cancer Center. The trial is testing the combination of 

two oral targeted inhibitors (Agents A and B) in patients with relapsed or refractory mantle 

cell lymphoma. The study is investigating the combination of 2 doses (200 and 400 mg) of 

Agent A; A1 < A2, and 4 doses (140, 280, 420, 560 mg) of Agent B; B1 < B2 < B3 < B4. 

Based on initial discussions with clinicians, the primary objective of the study was to 

determine an MTDC for each of the 2 doses (200 and 400 mg) of Agent A. We use this 2 × 4 

example to illustrate the proposed method, which can easily be generalized to problems of 

other dimensions (i.e. number of dose levels).

A reasonable assumption to be made is that toxicity increases monotonically with the dose 

of each agent, if the dose of the other agent is held fixed (i.e., across rows and up columns of 

Table 1). If Agent B is fixed at dose level j, then we assume that π(dij) < π(di′j) whenever i 
< i′. In other words, for each level, j, of Agent B (i.e. within each column), the probability of 

DLT is monotonically increasing so that π(d1j) < π(d2j) < · · · < π(dIj). Similarly, for each 

level, i, of Agent A (i.e. within each row), the probability of DLT is monotonically 

increasing so that π(di1) < π(di2) < · · · < π(diJ). It is expected that doses in each row of the 

drug combination matrix will have DLT probabilities at least as high as those in rows below. 

Therefore, the estimated MTDC for row i should be the same as or lower than the estimated 

MTDC for row i′ whenever i > i′. The goal is to find an MTDC for each dose of Agent A by 

locating j* ∈ {1, . . ., 4} such that dij* has DLT probability closest to the rate ϕ for each i(i = 

1,2); i.e. find an MTDC in each row i such that

If the MTDC in row i = 1 is estimated to be d1j*, then the estimated MTDC in row i = 2 will 

be shifted Δ2 levels away from d1j* so that the MTDC in row 2 is d2j* – Δ2; Δ2 ∈ {0, 1, 2, 3} 

with the restriction j* > Δ2. Row 1 has at least the most toxic MTDC the MTDC in row 1 

will contain at least the largest dose of Agent B). For instance, suppose MTDC in row 1 is 

estimated to be d13. If dose of A is fixed at A2, the estimated MTDC of drug B must be 

lower than or equal to 3 (i.e. B1, B2, or B3), as illustrated in the following.
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The truth could be any one of the four possible values for Δ2, and we want to account for 

this uncertainty in the design by using the data to estimate the relative location of the MTDC 

between rows. A similar strategy has been implemented in designs that account for patient 

heterogeneity [19, 20]. The relative location of the MTDC between rows can be illustrated 

as follows.

2.2. Extension to more than two rows

The expressions above can easily be extended to drug combination matrices with more than 

two rows and more than four dose levels. If the estimated MTDC for A1 is d1j*, then the 

estimated MTDC for Ai is dij* – Δi. The possible shifts between rows is now represented by 

multiple Δ values {Δ2, Δ3, . . . , ΔI}, where Δ2 ≤ Δ3 ≤ · · · ≤ ΔI. For instance,

• 2-level shift between rows 1 and 2; 3-level shift between rows 1 and 3: {Δ2 = 2, Δ3 = 3}.

The possible row relationships illustrated in this section can be more formally expressed in 

probability models to be utilized in estimating the combination-toxicity curve.

3. Proposed method

3.1. Working probability models

The proposed method is based on utilizing a class of working models that correspond to 

relative locations (shifts) of the MTDC in each row of the matrix. Let Mk denote the 

working probability model associated with kth set of Δ values. Throughout the trial of N 
patients, we sequentially observe {(Xn, Yn); n = 1, . . . , N}, where Xn = xn denotes the 

combination assigned to patient n and Yn = yn is a binary toxicity indicator (DLT; yes/no) 

for the nth patient. The combination xn takes values from the discrete set {dij; i = 1, . . . , I; j 
= 1 . . . , J}. Under working model Mk, the true toxicity probability at combination xn = dij is 

approximated by a class of one-parameter models, F, so that
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for some parameter θ ∈ Θ common to all working models. We could choose from a number 

of working models that are common to the CRM class of models [21], such as power model, 

hyperbolic tangent function, or a one-parameter logistic model. As an illustration, consider 

the 2 × 4 grid from the example in Section 2.1. Each of the K = 4 possible Δ2 ∈ {0, 1, 2, 3} 

values above correspond to a candidate model Mk. Suppose that we choose the power model

such that Θ = (−∞, ∞) and suppose that the target toxicity rate is ϕ = 0.30. For each of the 

contending models, we begin by choosing skeleton values, pk(d1j), in row 1, and proceed by 

“shifting” the skeleton in row 2 to correspond to the Δ2 value of that particular model.

The overall strategy is to use model selection techniques to sequentially choose the working 

model most consistent with the data in order to guide allocation decisions throughout the 

trial. Of course the skeletons above can be chosen in a number of ways that respect the 

structure of the shift model described in Section 2. In the Supporting Web Materials, we 

investigate the impact of various skeletons on the performance of our method.

3.2. Likelihood and inference

We let the plausibility of each working model be expressed through a set of prior weights P 
= {P(M1), . . . , P(MK)}, where P(Mk) ≥ 0 and Σ P(Mk) = 1; k = 1, . . . , K. Even when there 

is no prior information available on the contending working models, we can formally 

proceed in the same manner by specifying a discrete uniform prior for P. Using the 

accumulated data, {(x1, y1), . . . , (xn, yn)}, from the first n accrued patients, we derive 

maximum likelihood estimates (MLE's) under each of the contending models by maximizing 

the likelihood

under each working model Mk. We rely on model selection techniques to identify the best-

fitting model among the candidates. For instance, we implement the commonly used Akaike 

[22] information criterion for model k, which takes the form

where  is the value of the likelihood function evaluated at its MLE of the 

parameter θ, and ν is the number of model parameters, which, in the particular case 
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considered here, takes a value of ν = 1 for every model. We seek weights that can be 

associated with each model, and implement the smoothed AIC estimator [23]

We appeal to sequential model choice to inform our decision making. The model weights are 

adaptively updated by the data after each cohort inclusion, which is indicated by the 

subscript n in the preceding expressions. When a new cohort of patients is to be accrued to 

the study, we choose a single model, Mh, with the largest model weight such that

We then utilize the h th working model, Fh(dij, θ), to generate DLT probability estimates at 

each combination such that

which we use to direct allocation decisions reflected in the following dose-finding algorithm.

4. Dose-finding algorithm

4.1. Initial design

Within the framework of sequential likelihood estimation, an initial escalation scheme is 

needed, since the likelihood fails to have a solution on the interior of the parameter space 

unless some heterogeneity (i.e. at least one DLT and one non-DLT) in the responses has 

been observed. This is done by specifying an initial design of a predetermined combination 

sequence, {x1,0, . . . , xN,0}, to follow until the occurrence of the first DLT, before switching 

to the modeling stage. The initial design essentially amounts to pre-specifying a path within 

the drug combination matrix to adhere to in order to get the trial underway. This could, of 

course, be done in several ways, and could possibly include some randomization if more 

than one combination could be considered for escalation, as is often the case in drug 

combination studies. In this work, we choose to begin the trial by allocating along the 

bottom row, and, in the absence of DLT along a row, continuing to escalate moving up the 

rows of the grid. This would create an initial sequence of x = {x1,0 = d11, x2,0 = d12, x3,0 = 

d13, . . . , xN,0 = dIJ}. The other component to the initial design that must be specified is the 

initial cohort size, c = {c1,0, . . . , CN,0}, at each combination. Based on the 

recommendations of Jia, Lee, and Cheung [24], we want to avoid an overly conservative 

initial design that treats too many patients at sub-optimal combinations. Therefore, we 

specify an initial cohort size of cn,0 = 1 for all combinations in x. Allocation continues 

according to {x1,0, c1,0), . . . , (xN0, cN,0)} until a DLT is observed or until the maximum 

sample size N has been reached. Subsequent to a DLT being observed, the design proceeds 

to model-based allocation.
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4.2. Model-based allocation

After each single patient cohort inclusion,

1. Based on the accumulated data from n patients {(x1, y1), . . . ,(xn, yn)}, use 

sequential model selection to choose working model most consistent with 

data

2. According to chosen working model, update the estimated DLT 

probabilities  for all combinations

3. In each row, i, locate j* ∈ {1, . . . , J} such that dij* has estimated DLT 

probability, , closest to target rate ϕ so that.

4.
Create a set, , of recommended combinations in each 

row i, and randomize next patient to treatment in S with equal probability.

5. The MTC is formed by the set S after the inclusion of the prespecified, 

maximum sample size of N patients.

5. Operating characteristics

5.1. Illustration

In this section, we illustrate the behavior of the method described in this article under a set 

of true DLT probabilities for the 2 × 4 example described in Section 2.1. The TTR is set to ϕ 
= 0.30, and the total sample size is N = 30 patients. The true DLT probabilities, π(d1j), for 

row 1 are {0.07, 0.14, 0.22, 0.31} , indicating that dose level 4 (i.e. d14) is MTDC in row 1. 

For row 2, the true probabilities are {0.11, 0.20, 0.29, 0.40}, indicating that dose level 3 

(d23) is the MTDC in row 2. The set S = {d14, d23} form the MTC, indicating that the model 

M2 is most consistent with the true underlying DLT probabilities, coinciding with a true shift 

of Δ2 = 1 level between the two rows. The method embodies characteristics of the CRM, so 

we appeal to its features in specifying design parameters. For instance, the skeleton values, 

pk(dij), were chosen according to the algorithm of Lee and Cheung [25], and are reflected in 

the working models given in Section 3.1. We assumed that each model was equally likely at 

the beginning of the trial and set P(Mk) = 1/4; k = 1, . . . , 4.

The data from the entire simulated trial are provided in Table 2. The first 3 eligible patients 

are administered escalating combinations along row 1, and 0 DLT's are observed on d11, d12, 

and d13. The first DLT occurs in patient 4 on combinations d14, at which point the modeling 

stage begins. With this limited amount of data, M4 is estimated to be the true shift model, 

and . These values are used to calculate DLT probability estimates in each row via 

, yielding {0.03, 0.13, 0.26, 0.41} in row 1 and {0.41, 0.56, 0.68, 

0.78} in row 2. Combinations S = {d13 , d21} are indicated to have an estimated toxicity rate 

closest to the TTR. Patient 5 is randomized with probability 1/2 to either d13 or d21, which 
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yields a recommendation of d13 for patient 7, on which he/she does not experience a DLT. 

The toxicity data are then updated, from which M4 is estimated to be the true shift model, 

and . The updated DLT estimates become {0.02, 0.08, 0.19, 0.34} in row 1 and 

{0.34, 0.49, 0.62, 0.74} in row 2, indicating that a combination in S = {d13, d21} should be 

recommended. It is important to note that the DLT probabilities are updated in row 2, even 

though we have yet to observe a patient in this row, illustrating the formal borrowing of 

information across rows afforded by the model. This notion is also reflected towards the end 

of the trial when the last patient (pt # 29) treated in row 1 is recommended d13, yet the final 

recommendation for this group is d14 due to the data accumulated on the final patient in row 

2. Overall, in this simulated trial (Table 2), N = 30 patients are treated, yielding MTDC 

recommendations S = {d14, d23} forming the equivalence contour.

5.2. Simulation comparison with alternative method

We assessed performance of the proposed method based on 3 evaluation indices, and 

compared it to the method of Ivanova and Wang [10]. The operating characteristics among 

the two methods were compared by simulating 4000 trials under 6 toxicity scenarios (I–VI) 

of 3 × 6 and 2 × 6 dose combination matrices with varying positions of true MTDCs, as 

shown in Table 3. The TTR is set to ϕ = 0.20 in all scenarios, and the sample size is N = 54 

in Scenarios I–III, and N = 36 in Scenarios IV–VI. We also investigated additional scenarios 

in which MTDC's were located at the far left and far right of the drug combination matrix. 

These additional results are reported in Supplemental Web Material Tables 11–13. 

Throughout the simulations studies, a cohort of size 1 is used for the proposed method. All 

true scenarios and results for the Ivanova and Wang method were taken from their paper. 

User friendly R code for simulating the proposed method can be found at http://

www.faculty.virginia.edu/model-based_dose-finding/. In the specification our working 

models, we restrict Δi to be an element of the set {0, 1, 2, 3}, indicating that we don't allow 

for more than a 3 dose level shift between two adjacent rows of the matrix. We feel that 

these shifts represent the most common cases in practice. However, shifts of 4 or more are 

possible of course, and the proposed method has the ability to handle such possibilities by 

including more working models. We investigate the impact of allowing larger shifts and 

including more working models in Supporting Web Materials Tables 1 and 2. The candidate 

working models (skeletons) used in simulation are provided in Supplemental Web Material 

Tables 3–5.

In general, our goal is to evaluate (1) how well each method locates true MTDC's at and 

around the TTR in each row (percentage of correct recommendation; PCR), and (2) how 

well each method allocates patients to combinations at and around the TTR in each row 

(percentage of correct allocation; PCA). Of course, there will always be certain scenarios in 

which some methods perform better than others. Therefore, a useful tool in comparing dose-

finding designs can be average performance over a broad range of scenarios. While 

traditional evaluation measures, such as the percentage of recommendation and allocation 

for true MTDC's are useful in assessing performance, it is also beneficial to consider the 

entire distribution of selected dose combination, as it provides more detailed information as 

to what combinations are being recommended if a true acceptable MTDC is missed. Cheung 

[26] proposes to use the accuracy index, after N patients, defined for each row i as
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where π(dij) is the true toxicity probability and ρij is the probability of selecting dose 

combination dij as the MTDC in row i. The maximum value of Ai is 1 with larger values 

(close to 1) indicating that the method possesses high accuracy.

Tables 4 and 5, as well as Figure 2, show the operating characteristics of the two methods 

under the 6 scenarios. Table 6 reports the proportion of trials that correctly identified 0, 1, 2, 

and 3 MTDC's. The results contained in Table 6 are not compared to Ivanova and Wang due 

to the fact that their paper does not report these results. In Scenario 1, the method of Ivanova 

and Wang yields a higher PCR in two of the three rows and an average PCR of 43.3% across 

all rows, compared with 39.7% for the proposed approach. These findings are also reflected 

in the average accuracy index across all rows (0.5304 for Ivanova and Wang vs. 0.5151 for 

proposed). For patient experimentation, the proposed method allocates a higher percentage 

of patients to true MTDC's in two of the three rows in Scenario 1, and yields a slightly 

higher average PCA (29%) than Ivanova and Wang (28%). In Scenario 2, the proposed 

method outperforms Ivanova and Wang in each row in terms of accuracy index. The 

methods perform equally in PCR in row 2, while Ivanova and Wang has better performance 

with regards to PCA in row 2. For the proposed method, the average PCR, PCA, and 

across all rows of Scenario 2 are 43.3%, 33%, and 0.5036, respectively. These values are 

32.7%, 19%, and 0.4213, respectively, for Ivanova and Wang, indicating improved 

performance with the proposed approach. The relative performance of the methods in 

Scenario 2 appears to hold for Scenario 3 as well. The proposed method has better PCR and 

PCA in two of the three rows, and a higher overall average across all rows of the three 

indices. The most striking difference among the methods seems to be in patient 

experimentation. In Scenario 3, the average PCA across the rows is 39% for the proposed 

method, compared to 24% for Ivanova and Wang.

In Scenarios IV and V, the methods split better performance across each row, with Ivanova 

and Wang yielding higher PCR in row 2 of each scenario and the proposed method having 

higher PCR in row 1 of each scenario. An interesting finding in Scenario V relates to , in 

that the proposed method demonstrates a higher average  value, even though Ivanova and 

Wang has a slightly higher average PCR. Recall that the accuracy index accounts for the 

entire distribution of MTDC recommendation. In this case, the  for Ivanova and Wang is 

penalized in row 2 because it recommends dose d24 with true probability 0.40 more often 

than the proposed method, while the proposed method recommends d22 with true probability 

0.16 more often than Ivanova and Wang. This illustrates the fact that it is important to take 

into consideration the dose combinations that are being recommended when the true MTDC 

is not selected. If a method misses the true MTDC, we should hope that it would recommend 

the dose combination with a true probability next closest to the TTR as the MTDC. Finally, 

in Scenario 6, the methods perform equally in row 1, with a slight edge given to the 
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proposed method in row 2 for all performance indices. In summary, across all scenarios, 

Ivanova and Wang and the proposed method yielded average PCR across all rows of 39.8% 

and 43.1%, respectively. The average  across all rows was 0.5381 for Ivanova and Wang, 

and 0.5687 for the proposed approach. Finally, the largest disparity occurred in overall 

average PCA, with the proposed method resulting in 33.3% and Ivanova and Wang 25.2%. 

In assessing safety, the proposed method yielded average DLT rates close to the TTR in each 

scenario {20.9%, 16.3%, 22.2%, 19.8%, 19.7%, 24.2%}. Also with regards to safety, we 

compared the proportion of patients treated at combinations above the MTDC for each 

method. In Scenarios I, II, and IV, the Ivanova and Wang method allocated less patients to 

overly toxic combinations, while the proposed method did so in Scenarios III, V, and VI.

6. Conclusions

Many of the existing Phase I methods for combination studies are designed to locate a single 

MTDC from a two-dimensional grid of treatments. In this paper, we have introduced a new 

method for Phase I combinations studies that identifies a MTDC in each row of a drug 

combination matrix. This set of recommended MTDC's forms an equivalence contour in two 

dimensions. We have compared the operating characteristics of the proposed method with 

existing methodology, and the proposed approach compares favoraby. We recognize that 

measures such as average PCR and average accuracy index are difficult measures to interpret 

in this setting, in which recommended combinations are vectors. This has previously been 

discussed in multiple MTD dose finding in the case of multiple risk groups [27], and 

currently there is no consensus about how best to assess performance and compare 

competing methods. In the simulation results, we restricted the possible values for the shift 

between the MTDC of two adjacent rows to {0, 1, 2, 3}, meaning that the working models 

do allow for shifts larger than 3 from one row to the next. Results in Supplemental Web 

Materials investigate the impact of allowing for larger shifts, which equates to including 

more working models. Specifically, 2 more working models (i.e. shifts of 4 and 5) would be 

needed in the 2 × 6 case, and 6 more models would be needed in the 3 × 6 case. The results 

indicate that the performance is very similar to the original results for 2 × 6 grids, and 

diminishes only slightly for the 3 × 6 grids. These results can be seen in Supplemental Web 

Material Tables 1 and 2. The method also demonstrated robustness to skeleton choice for 

three 2 × 6 scenarios (see Supplemental Web Material Tables 6–10). While we have 

provided a link to access user friendly R code for simulating the operating characteristics of 

this work, we intend to make functions available for both implementing and simulating the 

design in an R library. The methods outlined in this manuscript can also be applied to other 

two-dimensional dose-finding problems, such as those aiming to estimate an MTC under 

multiple treatment schedules [28, 29].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Dr. Wages is supported by National Institute of Health grant K25CA181638. We would like to thank the editor and 
referees for their comments that helped us improve the article.

Wages Page 10

Stat Med. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Korn EL, Simon R. Using the tolerable-dose diagram in the design of phase I combination 
chemotherapy trials. Journal of Clinical Oncology. 1993; 11:794–801. [PubMed: 8478673] 

2. Kramar A, Lebecq A, Candalh E. Continual reassessment methods in phase I trials of the 
combination of two agents in oncology. Statistics in Medicine. 1999; 18:1849–1864. [PubMed: 
10407256] 

3. Harrington JA, Wheeler GM, Sweeting MJ, Mander AP, Jodrell DI. Adaptive designs for dual-agent 
phase I dose-escalation studies. Nature Reviews Clinical Oncology. 2013; 10:277–288.

4. Hirakawa A, Hamada C, Matsui S. A dose-finding approach based on shrunken predictive 
probability for combinations of two agents in phase I trials. Statistics in Medicine. 2013; 32:4515–
4525. [PubMed: 23650098] 

5. Braun TM, Jia N. A generalized continual reassessment method for two-agent phase I trials. 
Statistics in Biopharmaceutical Research. 2013; 5:105–115. [PubMed: 24436776] 

6. Riviere M-K, Yuan Y, Dubois F, Zohar S. A Bayesian dose-finding design for drug combination 
clinical trials based on the logistic model. Pharmaceutical Statistics. 2014; 13:247–257. [PubMed: 
24828456] 

7. Jin IH, Huo L, Yin G, Yuan Y. Phase I trial design for drug combinations with Bayesian model 
averaging. Pharmaceutical Statistics. 2015; 14:108–19. [PubMed: 25641851] 

8. Lin, R.; Yin, G. Bayesian optimal interval design for drug combination trials.. Statistical Methods in 
Medical Research. 2015. [epub ahead of print] http://dx.doi.org/10.1177/0962280215594494

9. Thall PF, Millikan RE, Mueller P, Lee SJ. Dose-finding with two agents in phase I oncology trials. 
Biometrics. 2003; 59:487–496. [PubMed: 14601749] 

10. Ivanova A, Wang K. A non-parametric approach to the design and analysis of two-dimensional 
dose-finding trials. Statistics in Medicine. 2004; 23:1861–1870. [PubMed: 15195320] 

11. Mandrekar SJ. Dose-finding trial designs for combination therapies in oncology. Journal of 
Clinical Oncology. 2014; 32:65–67. [PubMed: 24323038] 

12. Gandhi L, Bahleda R, Tolaney SM, et al. Phase I study of neratinib in combination with 
temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid 
tumors. Journal of Clinical Oncology. 2014; 32:68–75. [PubMed: 24323026] 

13. Wang K, Ivanova A. Two-dimensional dose finding in discrete dose space. Biometrics. 2005; 
61:217–222. [PubMed: 15737096] 

14. O'Quigley J, Pepe M, Fisher J. Continual reassessment method: a practical design for phase 1 
clinical trials in cancer. Biometrics. 1990; 46:33–48. [PubMed: 2350571] 

15. Yuan Y, Yin G. Sequential continual reassessment method for two-dimensional dose-finding. 
Statistics in Medicine. 2008; 27:5664–78. [PubMed: 18618901] 

16. Tighiouart M, Piantidosi S, Rogatko A. Dose finding with drug combinations in cancer phase I 
clinical trials using conditional escalation with overdose control. Statistics in Medicine. 2014; 
33:3815–29. [PubMed: 24825779] 

17. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose 
control. Statistics in Medicine. 1998; 17:1103–20. [PubMed: 9618772] 

18. Mander A, Sweeting M. A product of independent beta probabilities dose escalation design for 
dual-agent phase I trials. Statistics in Medicine. 2015; 34:1261–76. [PubMed: 25630638] 

19. O'Quigley J, Iasonos A. Bridging solutions in dose-finding problems. Statistics in 
Biopharmaceutical Research. 2014; 6:185–97. [PubMed: 25071878] 

20. Wages NA, Read PW, Petroni GR. A Phase I/II adaptive design for heterogeneous groups with 
application to a stereotactic body radiation therapy trial. Pharmaceutical Statistics. 2015; 14:302–
10. [PubMed: 25962576] 

21. Shen LZ, O'Quigley J. Consistency of continual reassessment method under model 
misspecification. Biometrika. 1996; 83:395–405.

22. Akaike, H. Information theory and an extension of the maximum likelihood principle.. In: Petrov, 
BN.; Csaki, F., editors. Second International Symposium on Information Theory. Akademia Kaido; 
Budapest: 1973. p. 267-81.

Wages Page 11

Stat Med. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1177/0962280215594494


23. Buckland ST, Burnham KP, Augustin NH. Model Selection: An Integral Part of Inference. 
Biometrics. 1997; 53:603–618.

24. Jia X, Lee SM, Cheung YK. Characterization of the likelihood continual reassessment method. 
Biometrika. 2014; 101:599–612.

25. Lee SM, Cheung YK. Model calibration in the continual reassessment method. Clinical Trials. 
2009; 6:227–238. [PubMed: 19528132] 

26. Cheung, YK. Dose-finding by the continual reassessment method. Chapman and Hall/CRC Press; 
New York: 2011. 

27. Yuan Z, Chappell R. Isotonic designs for phase I cancer clinical trials with multiple risk groups. 
Clinical Trials. 2004; 1:499–508. [PubMed: 16279290] 

28. Mayer K, Karim S, Kelly C, Maslankowski L, Rees H, Profy A, Day J, Welch J, Rosenberg Z. 
Safety and tolerability of vaginal pro 2000 gel in sexually active HIV-uninfected and abstinent 
HIV-infected women. AIDS 2003. 17:321–329.

29. Graux C, Sonet A, Maertens J, Duyster J, Greiner J, Chalandon Y, Martinelli G, Hess D, Heim D, 
Giles FJ, Kelly KR, Gianella-Borradori A, Longerey B, Asatiani E, Rejeb N, Ottman OG. A phase 
I dose-escalation study of MSC1992371A, an oral inhibitor of aurora andother kinases, in 
advanced hematologic malignancies. Leukemia Research. 2013; 37:1100–1106. [PubMed: 
23746966] 

Wages Page 12

Stat Med. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Illustration of a drug combination matrix and the unknown toxicity relationships between 

off-diagonal elements. Often a single path with a known ordering is chosen to explore.
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Figure 2. 
Summary of the operating characteristics of the 2 methods in all scenarios.
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Table 1

Treatment labels for a 2 × 4 drug-combination matrix

Doses of B (mg)

140 280 420 560

Doses of A (mg) 400 d 21 d 22 d 23 d 24

200 d 11 d 12 d 13 d 14
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Table 2

Simulated sequential trial of N = 30 patients illustrating the proposed approach.

n dij yij h θnh
n dij yij h θnh

1 d 11 0 - - 16 d 22 0 1 −0.234

2 d 12 0 - - 17 d 22 0 1 −0.189

3 d 13 0 - - 18 d 13 0 1 −0.134

4 d 14 1 4 −0.305 19 d 23 1 1 −0.226

5 d 13 0 4 −0.111 20 d 22 0 1 −0.188

6 d 21 1 4 −0.436 21 d 13 0 1 −0.141

7 d 21 0 4 −0.248 22 d 13 1 1 −0.220

8 d 13 1 4 −0.557 23 d 12 0 1 −0.187

9 d 21 0 3 −0.117 24 d 13 0 1 −0.145

10 d 21 0 2 −0.198 25 d 13 0 1 −0.107

11 d 13 1 2 −0.351 26 d 13 0 2 0.116

12 d 21 0 1 −0.478 27 d 22 0 1 −0.048

13 d 22 0 1 −0.404 28 d 13 0 2 0.172

14 d 22 0 1 −0.340 29 d 13 0 2 0.198

15 d 12 0 1 −0.284 30 d 23 1 2 0.222

Maximum tolerated contour (MTC): S = {d14, d23}
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Table 3

Six scenarios of true toxicity probabilities for 3 × 6 (Scenarios I–III) and 2 × 6 (Scenarios IV–VI) drug 

combination matrices. The target toxicity rate is ϕ = 0.20 in each scenario. True maximum tolerated dose 

combinations are indicated in bold-type, and the set of maximum tolerated dose combinations forms a 

maximum tolerated contour. These scenarios orginally appeared in Ivanova and Wang [10]

Scenario 1 2 3 4 5 6

I 3 0.11 0.22 0.32 0.45 0.52 0.66

2 0.07 0.12 0.23 0.40 0.48 0.58

1 0.05 0.08 0.13 0.15 0.23 0.34

II 3 0.05 0.08 0.11 0.15 0.21 0.29

2 0.04 0.06 0.09 0.13 0.18 0.25

1 0.04 0.05 0.08 0.11 0.15 0.21

III 3 0.20 0.30 0.41 0.53 0.65 0.70

2 0.10 0.20 0.25 0.32 0.41 0.50

1 0.03 0.05 0.13 0.20 0.27 0.35

IV 2 0.08 0.13 0.20 0.29 0.40 0.52

1 0.06 0.09 0.14 0.22 0.31 0.43

V 2 0.10 0.16 0.22 0.34 0.46 0.59

1 0.04 0.06 0.10 0.15 0.22 0.32

VI 2 0.20 0.29 0.40 0.53 0.65 0.75

1 0.13 0.20 0.29 0.40 0.53 0.65
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Table 6

Proportion of trials that correctly recommend 0, 1, 2, and 3 maximum tolerated dose combinations.

Scenario 0 1 2 3

I 0.17 0.46 0.32 0.05

II 0.18 0.43 0.29 0.10

III 0.11 0.41 0.40 0.08

IV 0.38 0.52 0.10 -

V 0.41 0.49 0.10 -

VI 0.15 0.62 0.23 -
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