
Survival Impact Index and Ultrahigh-dimensional Model-free 
Screening with Survival Outcomes

Jialiang Li1,2,3,*, Qi Zheng4,**, Limin Peng4,***, and Zhipeng Huang1,3,5,****

1Department of Statistics and Applied Probability, National University of Singapore, Singapore 
117546, Singapore

2Duke-NUS Graduate Medical School, Singapore

3Singapore Eye Research Institute, Singapore

4Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30321, U.S.A

5McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 
Dallas, TX 75390, U.S.A

Summary

Motivated by ultrahigh-dimensional biomarkers screening studies, we propose a model-free 

screening approach tailored to censored lifetime outcomes. Our proposal is built upon the 

introduction of a new measure, survival impact index (SII). By its design, SII sensibly captures the 

overall influence of a covariate on the outcome distribution, and can be estimated with familiar 

nonparametric procedures that do not require smoothing and are readily adaptable to handle 

lifetime outcomes under various censoring and truncation mechanisms. We provide large sample 

distributional results that facilitate the inference on SII in classical multivariate settings. More 

importantly, we investigate SII as an effective screener for ultrahigh dimensional data, not relying 

on rigid regression model assumptions for real applications. We establish the sure screening 

property of the proposed SII-based screener. Extensive numerical studies are carried out to assess 

the performance of our method compared with other existing screening methods. A lung cancer 

microarray data is analyzed to demonstrate the practical utility of our proposals.
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1. Introduction

This paper addresses the ultrahigh-dimensional screening problem encountered in bio-

medical data analysis. For example, in an ultrahigh-dimensional gene expression setting, the 

first step of data analysis is usually to rank the importance of genes based on their marginal 

associations with the outcome variable and remove unimportant genes from the bottom of an 

ordered list. Many ad hoc screeners were implemented in published studies. Recent 

statistical literature has favored the marginal regression-based screening measures owing to 

their desirable theoretical properties (Fan and Lv, 2008; Fan et al., 2009; Li et al., 2012; 

Cheng et al., 2014). It may be more appealing to consider a robust approach that can be 

resistant against model misspecification; see (Zhu et al., 2011; Li et al., 2012) for related 

discussions.

We consider censored lifetime outcomes in this paper. Though variable screening and 

variable selection methods for continuous and binary outcomes are abundant, the related 

development in survival analysis has been relatively sparse and most existing approaches 

focus on Cox proportional hazards model (Fan and Li, 2002; Fan et al., 2010; Bradic et al., 

2011; Zhao and Li, 2012) or other regression methods (Huang et al., 2006; Johnson et al., 

2008). These methods may be problematic when the assumed data generating mechanism is 

not adequate for the actual failure process.

To overcome this limitation, several authors have proposed non-model based screening 

methods. For example, He et al. (2013) introduced a novel model-free screener, named as 

the quantile adaptive sure independence screening (QaSIS) procedure. They proposed to 

perform screening based on the disparity between unconditional and conditional quantiles 

given each covariate under investigation. QaSIS abandons the specification of a statistical 

model by utilizing nonparametric estimators of distribution quantiles and can be flexibly 

applied to different quantiles. More recently, Song et al. (2014) studied the use of Kendall’s 

τ as a variable screening criterion for randomly censored data. Their method is robust to 

outliers and can well capture nonlinear covariate-response relationships. The technique of 

inverse probability of censoring weighting (IPCW) was adopted by these approaches to 

handle the random censoring of outcomes.

Motivated by He et al. (2013)’s work while intending to develop a screening device with 

better generalizability and estimability with survival outcomes, we propose a new and 

sensible measure, called survival impact index (SII). By the definition, SII characterizes the 

impact of a covariate on the outcome distribution by evaluating the absolute deviation of the 

covariate-stratified survival distribution from the unstratified survival distribution.

The proposed SII renders multi-fold potential advantages of SII-based screener over QaSIS. 

First, SII works on the probability scale and is naturally bounded. This largely reduces the 

variability of the screening procedure while the estimated quantiles for QaSIS are not 

necessarily bounded and could be extrapolated to extreme values from the fitted model for 

certain covariates. Secondly, SII integrates the absolute survival differences across a 

meaningful range of the failure time. In contrast, QaSIS only focuses on a single quantile 

level and therefore may lack sufficient capacity to capture the full-range covariate impact on 
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the overall survival experiences. Thirdly, as we shall elaborate in Section 2, the definition of 

SII naturally entails smoothing-free estimation and thus avoids the complexity involved in 

smoothing parameter specification. Further, compared to IPCW, the proposed technique for 

handling random censoring enables easier adaptations to different censoring and truncation 

mechanisms which may emerge in various survival studies.

In Section 2, we introduce the concept of SII and develop an inferential framework for the 

classical multivariate setting. In Section 3, we investigate the utility of SII as a screener for 

ultrahigh dimensional data. In Section 4, we carry out extensive numerical simulations to 

assess the performance of the proposed SII screener and make comparisons with other 

existing approaches. In Section 5, a lung cancer data is analyzed as an illustration.

2. Survival impact index

Let T be the failure time subject to random right censoring by C, and X = (X1,⋯, Xp)T be 

the corresponding p-dimensional covariate vector. For a random sample of size n, we can 

only observe {(Yi, δi, Xi) : i = 1,⋯, n}, where Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci).

We define the survival impact index (SII) for each marker Xj, j = 1,⋯, p by

(1)

where S(t|Xj > x) is a covariate-stratified survival function defined as the conditional 

survival function of T given Xj > x, and S(t) is the unconditional (or unstratified) survival 

function of T. The integration is over a range of values of interest for T and Xj, namely 

and  respectively. Here Wξ(t, x) is a pre-determined weight function, which offers 

additional flexibility for capturing the impact of Xj. For example, one may emphasize the 

covariate impact on early (or late) survival by letting Wξ(t, x) be a decreasing (or increasing) 

function of t. Without loss of generality, we assume 

The proposed survival impact index ξj may be interpreted as the weighted average absolute 

difference between the survival function assessment with and without considering Xj. If for 

at least one t and one x the survival function stratified on Xj > x differs from the unstratified 

survival function at t, the value of ξj will be non-degenerate under mild distributional 

smoothness assumption. On the other hand, ξj = 0 would result from T and Xj being 

independent. Therefore ξj is a sensible index for characterizing the importance of Xj in 

affecting the distribution of T.

The definition of SII also entails a good estimability. We can naturally estimate the unknown 

ξj by
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where Ŝ(t|Xj > x) is the Kaplan-Meier (KM) estimator for the conditional survival function 

of T given Xj > x and Ŝ(t) is the KM estimator for the survival function of T, respectively. 

The KM estimator is implemented in most statistical software and can be easily adopted to 

calculate . Note that, Ŝ(t|Xj > x) can be obtained simply as the KM estimator based on the 

sub-sample where Xj > x.

By adopting KM estimators in , we implicitly impose a random censoring assumption, 

which requires that T and C are independent given Xj > x for each . This is not 

stronger than the assumption usually required by model-based method (Fan and Lv, 2008; 

Fan et al., 2009, among others). It is clear that the computation of  does not involve 

smoothing. When T is subject to more complex censoring or truncation, we may readily 

evaluate  by replacing Ŝ(t|Xj > x) and Ŝ(t) with suitable survival estimators for the 

covariate stratified sample and the unstratified sample respectively. See Turnbull (1976); 

Vardi (1982); Wang et al. (1986), among others for examples.

Note that  offers a nonparametric test statistic for evaluating the effect of covariate Xj on 

the survival outcome T. For this type of testing problems, Peng and Fine (2008) exploited a 

similar idea of utilizing stratification by covariates. However they only investigated test 

statistics that capture the weighted average difference (rather than the weighted average 

absolute difference used by ) between survival functions. As a test statistic,  is then 

expected to have superior power compared to Peng and Fine (2008)’s test statistics, 

particularly in the presence of cross-over effects. As a summary statistic,  may provide a 

more appropriate characterization for the overall impact from a variable on the survival 

outcome.

The consideration of weighted average absolute difference between covariate-stratified 

survival functions and the unstratified survival function, nevertheless, poses complications 

for the asymptotic studies for . The common linearization technique (Kosorok, 2008), 

though working for Peng and Fine (2008), is not applicable for studying . To spell it out, 

though a uniform i.i.d. summation representation for {Ŝj(t; x)−Ŝ(t)}−{Sj(t; x)−S(t)} can 

follow from rather standard arguments, it cannot be extended to help derive the limit 

distribution of  ,which equals to 

To tackle this challenge, we resort to other statistical techniques including the functional 

delta method (Van Der Vaart and Wellner, 2000) and establish the large sample properties of 

 in the following theorem.

Theorem 1

As n → ∞, we have  in probability, and furthermore,

a. if ξj = 0, then
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(2)

b. if ξj ≠ 0, and there exists a positive constant κj such that the Lebesgue 

measure of  is 

0, then

(3)

where  is a mean-zero Gaussian process defined in (8) in Appendix.

Theorem 1 indicates that the asymptotic distribution of  warrants separate discussions as in 

(a) and (b), depending on the value of ξj as well as the measure of 

. The restriction on the latter is primarily 

owing to the fact that, though the absolute value function is not differentiable at zero, 

Hadamard-differentiability of the functional  can be achieved when 

the measure of  equals zero. It is clear that 

the condition in (a) is satisfied when Xj is independent of T, and hence the asymptotic result 

in (2) is useful for characterizing the SII of noise variables. In case (b), a zero measure of 

 does not pose an unrealistic data 

assumption. Under most typical regression modeling of Xj and T, such as the Cox 

proportional hazards model, the condition in (b) would hold when Xj has a non-zero 

coefficient given that κj can be arbitrarily small. The proof of Theorem 1 is given in the 

Appendix.

The asymptotic results in Theorem 1 can be applied to construct confidence intervals for ξj. 

The unknown covariance functions may be hard to estimate. In practice, we may adopt a 

nonparametric bootstrap procedure to resample {Y, δ, Xj} and construct confidence intervals 

from the bootstrap empirical distributions. The construction of confidence intervals can be 

readily converted to a testing procedure for the null hypothesis, ξj = 0.

When the interest lies in the comparison of the survival impact of two markers, say ξj and 

, j ≠ j′, we may test the following hypothesis:

(4)

A two-sided test may be constructed based on . However, similar to Theorem 1, 

we can show that the limit distribution of Q could involve even more complicated stochastic 

integrals. Therefore we suggest using a permutation test for (4). Specifically a permutation 

sample is constructed as , where Yi and δi are the sample 

observations and ,  are independently drawn from a discrete uniform with atoms {Xji, 
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Xj′i}. A large number of permutation samples are obtained and we evaluate 

for each permutation. The test p-value is the empirical proportion that Q* > Q. Our extensive 

simulation studies indicate satisfactory performance of the permutation test.

3. Variable screening

The preceding section addresses estimation and inference of SII in the classical setting with 

a finite number of covariates. A more important goal of this work is to investigate the utility 

of SII as a screening device for ultrahigh dimensional data. To this end, we assume the total 

number of covariates p satisfying p = O(exp(nc)) for a positive c < 1. We adopt the common 

sparsity assumption and believe that only a small subset of these p covariates are indeed 

related to the survival outcome. Directly applying any penalty-based estimation with p 
markers is infeasible in most statistical programs. It is necessary to first implement a 

screening procedure and cut the number p from the non-polynomial order to a much smaller 

(polynomial) order. For the survival-based screening, we intend to recover a sparse subset

(5)

with nonsparsity size s* = |ℳ*|. The set defined in (5) is indeed model free and the 

dependence of ξj on the covariates is only via the conditional distribution of survival time. 

While the data in the simulation settings are generated from certain known parametric 

models, our estimation and screening procedures do not require a pre-specified model and 

hence do not utilize any distribution information from the true model.

We propose to compute the estimated survival impact index  for each Xj using the methods 

introduced in the preceding section and then select the subset of variables

(6)

where νn is a pre-defined threshold value. In practice, we often rank the markers by  and 

keep the top [n/log(n)] markers, where [a] denotes the integer part of a. Our screening 

procedure does not involve any model-fitting and is thus immune to model misspecification.

To justify the proposed screener based on SII, we need to show  has a high 

probability. We impose the following regularity conditions to facilitate our technical 

derivations.

1. Let Sj(·) and SC(·) be the marginal survival functions of Xj and C, 

respectively. Given , , there exist constants γ, τ and λ, such 

that 0 < γ ≤ S(t0)SC(t0), 0 < τ ≤ Sj(x0) and 0 < λ ≤ Pr (Y > t0, Xj > x0), for 

all 1 ≤ j ≤ p.

2. p = O(exp(nc)) for some 0 < c < 1, and  for some 

positive constant c0 and 0 ≤ α < (1 − c)/2.
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Condition (C1) ensures that the information collected from the region  can produce a 

rather stable estimation of Xj’s impact on the distribution of T. Condition (C2) assumes that 

the variables in the signal set ℳ* have strong enough influences upon T ; a smaller α 
represents a higher impact. The constraint, 0 ≤ α < (1 − c)/2, in (C2) then indicates that a 

larger p (corresponding to a larger c) would demand a greater minimal “signal strength”, 

given by c0n−α.

The following theorem characterizes the finite sample behavior of , j = 1,⋯, p.

Theorem 2

Under the condition (C1), given 24/(nτγ4) < ε < 1,

where c3, c4 and c5 are some positive constants only depending on τ, γ, and λ, and n is 

sufficiently large.

Theorem 2 indicates that ’s are uniformly consistent to ξj’s with an exponential rate error 

bound. This sharp bound allows us to obtain the desirable sure screening property 

immediately:

Corollary 1

(Sure screening property). Under the conditions (C1) and (C2), if νn is chosen to be bn−α 

with b ≤ c0/2, then

where positive constants c3, c4 and c5 are specified in Theorem 2. In particular, 

 as n → ∞.

Another interesting question is how many noise variables are retained after the screening. 

The following corollary provides a bound on the size of incorrect selection from the 

screening.

Corollary 2

(False positive control). Under the condition (C1) and (C2), if νn is chosen to be no less than 

,
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where c3, c4, c5 are specified in Theorem 2 and c is specified in the condition (C2). In 

particular  as n → ∞.

The above corollary is analogous to Theorem 3.4 in He et al. (2013). It indicates that if the 

screening threshold, νn is no less than , the number of noise 

variables (false positives) retained after screening is of polynomial rate with high 

probability. In practice, since the constants c4 and c5 are unknown, we may choose νn of rate 

. Notice that  according to the 

condition (C2). This choice of threshold satisfies the conditions in Corollary 1, and thus still 

guarantees the sure screening property. The proof of Theorem 2 is provided in the Appendix, 

and the proofs of Corollaries 1 and 2 are relegated to Supplementary Web Material.

4. Simulation

4.1 Estimation and inference for SII

We first evaluate the proposed estimation and inference for SII in the classical multivariate 

setting with finite p. We consider two cases with different error distributions. The sample 

sizes are set as n = 200 or 400 in the following. The sample sizes considered in this paper are 

comparable to most medical studies where usually hundreds of subjects are screened for a 

disease. In the real case study of this paper, the sample size is slightly larger and is above 

400. The large sample condition may be better satisfied for such an example and the desired 

theoretical properties established in this paper may follow. Our simulation provides further 

empirical support for practitioners facing moderate sample sizes. Investigators may also use 

numerical results in this section to decide the sample size when designing a screening study 

with a pre-fixed error margin.

Case A—We consider model log(T) = 2X1 + 2X2 + 4X3 + 8X4 + ε. The vector of 

covariates X = (X1,…, Xp) is generated from the multivariate normal distribution with mean 

0 and the covariance matrix Σ = (σij)p×p with number of covariates p = 4, σii = 1 and σij = ρ, 
i ≠ j, ε ~ N(0, 1) is independent of X. In this case, we consider different correlation ρ = 0, 

0.4, and 0.8. The logarithm of censoring time C is generated from a 3-component normal 

mixture distribution N(0, 4) − N(5, 1) + 0.5N(20, 1). The censoring rate is about 30%.

Case B—The setting is the same as that in Case A except that ε ~ logit(2, 2) is independent 

of X, where logit(a, b) is logistic distribution with location a and scale b and the logarithm of 

censoring time C is generated from N(0, 4) − N(5, 1) + 0.5N(25, 1). The censoring rate is 

also about 30%.

The number of repetitions is 500. For the bootstrap confidence intervals, we set the size of 

bootstrap resamples to be 500. For the permutation tests, we set the number of permutations 

to be 1000. The true ξ for each covariate is evaluated from a sample of size 50,000. To 

compute , we used the uniform weight W (t, x) = 1 over the observation range for all cases. 

The results on point estimation, bootstrap confident intervals and permutation tests for Cases 

A and B are shown in Table 1. The means of the estimates for SII are reported under 
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different settings. For the bootstrap 95% confidence intervals, we report the coverage 

probabilities. For the permutation tests, we examine the rejection rates for testing H0 : ξ1 = 

ξj.

In all scenarios, the nonparametric KM-based estimates for SIIs are close to the true SIIs. 

The bootstrap confidence intervals provide satisfactory coverage for the true parameters as 

the observed coverage rate is close to the nominal confidence level. The permutation tests 

also work very well. We note that ξ1 = ξ2 in both case A and B, and thus the average 

rejection rates reported in the column of ξ2 represent the empirical sizes of the proposed 

permutation tests for H0 : ξ1 = ξj. Table 1 suggests that our tests achieve the correct size, 

with average rejection rates close to the nominal significance level. As the difference 

between ξ1 and ξj (j = 3, 4) becomes larger, the test for the hypothesis H0 : ξ1 = ξj becomes 

more powerful with an increasing rejection rate.

4.2 Screening performance

We now consider different screening methods with simulated random samples. The proposed 

SII screening method, the model-based (MB) screening method and the quantile-adaptive 

screening (QaSIS) method were compared across all scenarios. In the MB method, we 

simply fit a Cox PH regression model to the data for each covariate and rank the covariates 

by the Wald test P-value. For the QaSIS method, we consider the first and second quartiles 

(corresponding to α = 0.25 and α = 0.5, respectively) of the distribution. In addition, we also 

include a practical screening approach based on Harrell’s C-statistic (Harrell et al. (1996)). 

We note that Harrell’s C-statistic is usually interpreted as a survival concordance measure or 

the integrated time-dependent area under ROC curve (Li and Ma (2011)). Similar to SII, a 

greater value of C-statistic may suggest a stronger association between the failure outcome 

and the marker. We consider a large number of covariates in this section with p = 200. The 

purpose is to screen from this set to identify important markers. Simulation results with 

other choices of p are available from the authors upon request.

The following data generation mechanisms represent various types of covariate functions 

with different degree of nonlinearity, different correlation structures among the covariates, 

different numbers of important predictors and multiple failure and censoring distributions.

Case I—Let g1(x) = 5x, g2(x) = −4x(1−x), g3(x) = 10(exp(−(3x−1)2)+exp(−4(x−3)2))−1.5, 

g4(x) = 4 sin(2πx). We consider the following model: log(T) = g1(X1)+g2(X2)+g3(X3)+ 

g4(X4) + ε, where the vector of covariates X = (X1,…, Xp) is generated from the 

multivariate normal distribution with mean 0 and the covariance matrix Σ = (σij)p×p,σii = 1 

and σij = ρ|i−j| for i ≠ j, ε ~ N(0, 1) is independent of X, where ρ = 0, 0.4, and 0.8. The 

censoring time C is generated from a 3-component normal mixture distribution N(0, 4) − 

N(5, 1) + 0.5N(25, 1).

Case II—The setting and estimation are the same as those in Case I except that log(T) = X1 

+ X2 + X3 + 2X1X2 + 2.5X1X3 + 3X2X3 + 2ε.

Case III—Let g1(x) = 5 cos(2πx), g2(x) = 5 exp(1.2x − 1) − 3, g3(x) = −0.5(x − 1)3, g4(x) = 

3 arctan(3x − 2). We consider fitting log(T) = g1(X1) + g2(X2) + g3(X3) + g4(X4) + ε. The 
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generation of X is the same as that in Case I. We let ε ~ logit(2, 2). The censoring time C is 

generated from N(0, 4) − N(5, 1) + 0.5N(20, 1).

Case IV—Let g1(x) = 5(2x−1)2, β1 = 8, β2 = 9, β3 = 7. We consider fitting 

. The covariates are simulated according to 

the random-effect model , j = 1,…, p, where W1,…, Wp and U are i.i.d 

Unif(0,1) random variables, and ε ~ N(0, 1). The censoring time C is generated from N(0, 4) 

− N(5, 1) + 0.5N(45, 1). In this case, we consider ρ = 0, 0.5, and 1. The other settings remain 

the same as that in Case I.

Case V—Let g1(x) = 4 cos(2πx), g2(x) = 4 exp(1.2x)−8, g3(x) = 5x, g4(x) = 3 arctan(3x−2). 

We consider fitting log(T) = g1(X1)+g2(X2)+g3(X3)+g4(X4)+ε. The generation of covariates 

are the same as that in Case IV. The censoring time C is generated from N(0, 4) − N(5, 1) 

+ 0.5N(15, 1). In this case, we consider ρ = 0, 0.5, and 1.

Case VI—Let g1(x) = 3 cos(2πx), g2(x) = 2 exp(1.2x − 1) − 4, g2(x) = −0.3(x − 1)3, g3(x) = 

2 arctan(3x − 2), β1 = 2.5, β2 = −2, β3 = 3, β4 = −1.5. We consider fitting log(T) = g1(X1) + 

g2(X2) + g3(X3) + g4(X4) + X5β1 + X6β2 + X7β3 + X8β4 + ε. The censoring time C is 

generated from N(0, 4) − N(5, 1) + 0.5N(10, 1). The other settings are identical to that in 

Case I.

The simulation results of all cases over 500 simulations are shown in Table 2. Two main 

performance criteria were computed: (i) ℛ and IQR, median and inter-quartile range of the 

minimum model size that covers all important markers; (ii) , coverage probability that the 

set of top [n/log(n)] markers after screening includes all important markers. A good screener 

should achieve a small ℛ and a large .

When PH assumptions do not hold and marker effects are nonlinear (all six cases), MB 

performs worse than SII. MB may include too many unimportant markers than SII in all 

scenarios with unacceptably high ℛ values. When PH assumptions do not hold but marker 

effects are approximately linear (Case II), MB may perform well but still not as well as SII, 

judging from ℛ and  values.

We observe that QaSIS with α = 0.5 works better than QaSIS with α = 0.25 in all cases. 

QaSIS with α = 0.25 may even have poorer performance compared to MB. This indicates 

that the choice of α matters for the success of this approach in identifying relevant important 

markers. Among all methods compared in simulations, QaSIS, Harrell’s C and MB perform 

less satisfactorily than SII. A strong supporting example is Case IV, where the minimum 

coverage numbers from SII are much smaller than those from median QaSIS and MB, while 

SII’s coverage rates are substantially higher than both median QaSIS and MB. In this 

example, the median QaSIS achieves better performance than MB but not QaSIS with α = 

0.25. All methods improve with increasing sample sizes.

In summary, the simulation results demonstrate that the proposed nonparametric screener is 

clearly more robust than model-based screener. Compared to QaSIS, which focuses on a 
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local outcome region reflected by the selection of quantile level α, the proposed SII-based 

screening procedure can better capture the global influences of covariates on the survival 

outcome.

5. Example: Lung Cancer

Lung cancer represents the leading cause of cancer death for both men and women in the 

United States and many Western countries. Accurate early detection is thus crucial for lung 

cancer treatment. Prognostic gene expression signatures for survival in early-stage lung 

cancer have been proposed for clinical applications (Lu et al., 2006; Chen et al., 2007).

Our example comes from a large retrospective, multi-site, blinded study (Shedden et al., 

2008), which involved 442 lung adenocarcinomas, the specific type of lung cancer that is 

increasing in incidence. Gene expression data were generated by four different laboratories 

under a common protocol. The same data set has been used in Xie et al. (2011) as a 

validation sample for a separate analysis. A total of 437 subjects are included in the 

downstream analysis. The median follow-up time is 46 months. The overall censoring rate is 

46.22%. For each subject, the expressions of 22283 genes are available. A screening is 

necessary prior to any meaningful model construction.

The number of selected covariates is [n/log(n)] = 72 after the screening. For MB screening 

under Cox PH model, we display the ID of selected genes in the following:

20612 4051 14544 7951 20022 4260 4313 149 8236 19150 2875 9847

9311 9835 4809 10999 17303 778 5145 14581 19536 2821 12536 17369

831 6546 21478 1525 4835 265 3406 816 18244 14073 10238 12334

17872 13085 11626 8934 9558 2330 10223 14525 15885 13290 9451 1418

15746 17558 16748 4024 19151 21901 4647 8223 5715 21948 3263 14103

12471 5758 5069 21441 8539 17229 11759 9987 3495 5448 17521 6681

The above screening procedure requires that data follow the Cox PH model. One important 

assumption for Cox model is the proportionality of hazard functions across time. To check 

the PH assumption, a test based on martingale residuals was carried out for each selected 

marker, implemented by cox.zph in R. The proportion of significant p-values (< 0.05) is 

29/72 = 0.40. This raises concerns over the applicability of the MB approach given that the 

key assumption appears to be invalid for a large portion of the models.

We then considered using the proposed model-free SII method. The genes after screening 

(listed below) are now completely different from those obtained from the MB approach with 

0 overlap.

6253 20336 7426 6312 4078 3949 5347 6361 19167 6781 5703 6283

15402 9769 7446 7651 10376 6974 10043 14915 9464 3977 5419 14212

16986 16877 6078 6743 9340 5 5752 10975 4110 6168 19053 4799

7449 20323 5960 5948 4109 7040 14243 6478 6165 6796 10797 13794

7273 5282 18829 5556 5527 19187 20787 5398 5904 6692 5385 9818

6524 6132 9853 16933 6687 4913 16442 5704 7227 15243 5580 7464
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In Table 3, we compare the screening results for the top 9 genes obtained by SII with those 

from MB and QsSIS with α = 0.25 and α = 0.50. The survival impacting values ξ for the top 

9 genes selected by the SII indicate an average of over 40% change in survival probabilities 

after covariate stratification, while most top genes selected by the model-based method only 

change the survival probability < 10%. This comparison clearly indicates that the SII method 

identifies markers with more relevant information to calibrate the survival probability. The 

correlation between ξ and the Wald test p-value from Cox model is −0.098, affirming a very 

weak agreement between SII and the Cox model-based screening. Harrel’s C statistics are 

reported for all genes in this table. Except those identified from the MB method, the C 

statistics are all very close to 50%, suggesting very low concordance. Such a discrimination 

statistic may not work well for the purpose of screening in this example.

We note that the genes selected by the QaSIS at the first (α = 0.25) and the second (α = 0.5) 

quartiles are only slightly different from those obtained under the SII method in Table 3. 

These model-free approaches enjoy better agreement, with an overall sample correlation in ξ 
around 0.40. However, the estimated screening criterion values resulted from QaSIS are 

extremely large (> 103) and may not be easy to interpret in practice. To provide further 

insight on the two approaches, we display in Figure 1 the rankings for top 20 genes obtained 

from SII and QaSIS at 8 different percentiles (α = 0.1,…, 0.8). Almost all the top genes 

identified by the SII are also identified by the QaSIS at some but often different quantile 

levels. Using QaSIS at a single quantile level may not be very desirable since by 

construction it is restricted to a local probability and may not select genes causing large 

modification to the survival distribution. Nonetheless, combining the QaSIS results at 

different percentiles could lead to very similar screening results as the SII. In fact, the 

correlation between QaSIS and SII for all of the top 20 genes selected by the pooled QaSIS 

across τ = 0.1,…, 0.8 is 0.77, showing a strong correspondence between the two model-free 

screening approaches.

We next consider making inferences for the ξ’s. Specifically, we consider comparing the two 

genes selected as the No. 1 by SII and MB, respectively. The estimated ξ for the top genes 

selected by the two methods are 0.463 (bootstrap confidence interval [0.442, 0.485]) and 

0.054 (bootstrap confidence interval [0.025, 0.044]). The permutation test for comparing 

these two genes gives a p-value 0.011, suggesting that the top gene selected by our method is 

associated with a significantly higher SII measure than the top gene selected by MB 

approach. Other inference results can be similarly obtained.

6. Discussion

Recent vast expansion of research efforts on ultrahigh dimensional data produced effective 

screening procedures under various assumptions. When there is little information to support 

a model or clear empirical evidence against certain class of models, it may be safer to 

consider model-free approaches. Both QaSIS and SII are easy to implement, built on 

existing nonparametric estimation programs. By their designs, QaSIS inquires into a 

specified segment of outcome distribution, while SII targets global covariate effects. SII 

being bounded in the probability scale makes it more straightforward to interpret and 

compare. The numerical examples in this paper evince that these methods may lead to 
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meaningful discovery that otherwise is unattainable. More experiments on different data sets 

may be necessary before these approaches are fully accepted by practitioners.

Fan and Lv (2008) and Fan et al. (2010) showed that an iterative screening procedure may 

perform better than non-iterative procedure, especially for complicated designs. It is possible 

to conduct iterative SII screening and further refine the screening results attained in this 

paper. Such an iterative procedure may also be helpful to resolve the dependent censoring 

issue for survival data and reduce the false positive rate. More detailed development is 

beyond the scope of this paper and will be studied in our forthcoming work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We first introduce some notations. Let a ˄ b = min(a, b). Denote S(t|Xj > x) by Sj(t; x). Let 

N+,i(t) = 1{Yi ≤ t, δi = 1}, N+,i,j(t, x) = 1{Yi ≤ t, δi = 1, Xji > x} and R+,j,i(t, x) = 1{Yi ≥ t, 
Xji > x}. Let λ(·) and λj(·|Xj > x) denote the hazard function of T and T given Xj > x 

respectively. Given a 0 < ε < 1,  is a partition for Xj satisfying 

(a) , (b) L(ε) ≤ 6/ε. Let  and 

. If there is no tie at any 

observed time points, then . The following fact 

(Foldes and Rejto (1981)) will be used in the proof, for some universal constants c1 and c2, 

and 12/(nγ4) < ε < 1.

(7)

Proof of Theorem 1

 in probability will be shown in Theorem 2. Following the definition of KM 

estimator, we are able to show that 

 ,where 

means “asymptotically equivalent” and
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Since the class of indicator functions is Donsker and the sum of Donsker classes is also 

Donsker, ,  and 

 are all Donsker. By Donsker Theorem,

(8)

in , where  is the collection of all bounded functions 

. Here,  denotes “converge weakly”. The process  has mean zero 

and covariance matrix 

.

Let hn(t, x) be any sequence uniformly converging to h(t, x) on , where h(·,·) is a 

function with total variation bounded. If ξj = 0, the Lesbegue measure of 

 is 0. Equation (8) becomes 

. By the continuous mapping theorem [Theorem 1.11.1 in 

Van Der Vaart and Wellner (2000)],

If ξj ≠ 0 and the Lebesgue measure of 

 is 0, we argue that the functional 

 is Hadamard-differentiable at Sj(·;·)−S(·), where Ωc(κj) is the 

complementary set of Ω(κj) on . The detailed arguments can be found in 

Supplementary Web Material. For the definition of Hadamard-differentiability, we refer to 

page 372 of Van Der Vaart and Wellner (2000). Applying the functional Delta method 

[Theorem 3.9.4 in Van Der Vaart and Wellner (2000)] yields

This completes the proof of Theorem 1.
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Figure 1. 
The top 20 genes screened from SII and QaSIS at quantiles 0.1 through 0.8 for the lung 

cancer data.
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