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Although anti�cancer immuno�based combinatorial therapeutic approaches have shown promising
results, efficient tumour eradication demands further intensification of anti�tumour immune response.
With the emerging field of nanovaccinology, multi�walled carbon nanotubes (MWNTs) have manifested
prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in
co�delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs)
has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of
cytosine�phosphate�guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (aCD40), as immunoadju-
vants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced
against OVA�expressing tumour cells. We initially investigated the effective method to co�deliver OVA
and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs
markedly augmented the CpG�mediated adjuvanticity, as demonstrated by the significantly increased
OVA�specific T cell responses in vitro and in C57BL/6 mice. aCD40 was then included as a second
immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo
by OVA, CpG and aCD40 was significantly potentiated by their co�incorporation onto the MWNTs.
Furthermore, MWNT remarkably improved the ability of co�loaded OVA, CpG and aCD40 in inhibiting
the growth of OVA�expressing B16F10 melanoma cells in subcutaneous or lung pseudo�metastatic
tumour models. Therefore, this study suggests that the utilization of MWNTs for the co�delivery of
tumour�derived antigen, CpG and aCD40 could be a competent approach for efficient tumours
eradication.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cancer therapeutic vaccines rely on the ability of professional
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antigen presenting cells (APCs), specifically dendritic cells (DCs), to
detect, process and then present administered tumour�antigens
via the major histocompatibility complex molecules class (MHC) II
or I to CD4þ or CD8þ T cells, respectively, leading to anti�tumour
immune responses induction [1]. However, tumour�induced
immunosuppression and abundance of immunosuppressive regu-
latory T cells in the tumour micro�environment hinder the im-
mune system to effectively eradicate established tumours [2]. This
could be overcome by the use of combinatorial immunotherapeutic
approaches, for instance by administration of tumour antigens
along with different types of immunoadjuvants, rather than the
single immunotherapeutic ones [3].

Carbon nanotubes (CNTs) have been developed as needle�like
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nanoscopic carriers capable of improving therapeutic agents de-
livery to the intracellular compartments via energy�dependent
and/or passive mechanisms of cellular uptake [4e6]. We have
previously demonstrated that altering the surface chemistry of
multi�walled CNTs (MWNTs) conjugated to the model antigen
ovalbumin (OVA) can affect the extent of their cellular internali-
zation into APCs, and thus the intensity of the resulting immune
responses elicited in vitro and in vivo [7]. As a delivery vector for
tumour antigens, MWNTs have markedly improved antitumour
immune response against breast or liver cancerederived tumour
proteins in vitro [8] or in vivo [9], respectively. Single�walled CNTs
(SWNTs) conjugation with the immunoadjuvant cytosine�phos-
phate�guanine oligodeoxynucleotide (CpG) enhanced the
CpG�induced stimulatory activities in vitro [10] and amplified the
anti�tumour response in glioma�bearing mice [11,12]. Despite the
demonstrated proficiencies of CNTs as an efficient delivery vector
for antigen or immunoadjuvant, the utilization of CNTs to
co�deliver antigen along with various types of immunoadjuvants
has not been studied yet.

Agonist for Toll�like receptors (TLRs) expressed by APCs have
shown marked capabilities in augmenting the antigen�specific
immune response via various mechanisms, including the ability to
enhance antigen presentation by APCs [13]. CpG, an agonist for
endosomal TLR9, has been included in various cancer vaccine for-
mulations tested in clinical trials [14]. The co�internalization of
both antigen and TLR agonist by the same APC has been shown to
influence the TLR agonist�mediated improvement of antigen pre-
sentation, thus the induced T cell responses. Yarovinsky et al.
showed that potent induction of antigen�specific CD4þ T cell
response in mice required the activation of TLR11 and antigen
presentation via MHC II to occur “in cis” in the same DC instead of
separate DCs [15]. Wilson et al. demonstrated the significance of
APC activation by TLR agonists at the time of antigen uptake
showing that pre�treatment of mice with CpG reduces the ability
of DCs to take up and present viral antigens to the CD8þ T cells [16].
Posing additional complexity, Blander et al. reported that more
efficient antigen presentation by DCs could be achieved following
the internalization of antigen and TLR4 agonist into the same rather
than separate phagosome(s) in vitro [17]. In light of these studies,
we hypothesized that designing an efficient method to
co�incorporate antigen and CpG onto MWNT could improve their
concomitant delivery to APC, and thus the induction of an antigen-
specific immune response.

APCs express a number of receptors known as tumour necrosis
factor receptors (TNFRs) such as CD40. Anti-CD40 Ig (aCD40), an
agonist for the CD40 co-stimulation molecule, has exhibited po-
tential benefits in amplifying antigen�specific immune responses
[18,19]. It has been reported that DC stimulation with aCD40
chemically conjugated to peptide antigens increased the DC ca-
pacity to induce antigen�specific CD8þ T cell response in vitro
[20,21]. This has been attributed to the demonstrated aCD40 ability
to intracellularly target the conjugated antigen to the early endo-
somes of DCs. Antigen routing to the early endosomes of DCs has
shown to facilitate antigen proteasomal degradation, loading onto
MHC I and, subsequently, presentation to CD8þ T cells [22].
Thereby, by utilizing the aCD40�mediated enhancement of antigen
presentation, stimulation of DCs with MWNT loaded with aCD40 in
addition to OVA could further improve the induction of OVA�-
specific CD8þ Tcell response [23]. CD40 interactionwith aCD40 has
been found to provide APCs with the CD4þ T cell�derived licensing
signals required for CD8þ T cell stimulation. This has been
demonstrated by the ability of administered aCD40 to restore an-
tigen specific CD8þ T cell response in CD4þ T cell�depleted mice
[24,25]. In addition, for an efficient CD8þ T cell response induction,
the process of antigen recognition by both CD4þ and CD8þ T cells
has to occur via the same APC [26]. Hence, theoretically, higher
immune response intensity could be achieved using delivery ap-
proaches that co�deliver the antigen and aCD40 signal to the same
APC.

We hypothesized that CpG and aCD40 co�incorporation onto
MWNT carrying the model antigen OVA would synergistically and
significantly improve the OVA�specific immune responses, and
effectively retard the growth of OVA�expressing B16F10melanoma
cells in solid or pseudo�metastatic tumour models.

2. Materials and methods

2.1. Mice

All the experiments involving the animal use were carried out in
accordance with the project and personal license authorized by the
UK Home Office and UKCCCR Guidelines (1998). The C57BL/6 mice
were purchased from Harlan (UK). The OT1 Rag�/� and OT2 Rag�/�

mice were maintained at Charles River (UK). All experiments use
were performed using female 6e8 weeks old mice.

2.2. Synthesis of S�/þ(OVA�CpG) or (OVA)S�/þ(CpG)

Synthesis of chemically functionalized MWNT has been
described before and is shown in Scheme 1 [7]. Briefly, pristine
MWNTs (p�MWNTs) (20e30 nm diameter, 0.5e2 mm length,
Nanostructured and Amorphous Materials, USA) were oxidized
using acidic mixture, followed by incorporation of amine�termi-
nated spacer using amide coupling reaction yielding a functional-
izedMWNT named S�/þ. The synthesis of OVA�CpG is illustrated in
Scheme S1 and described in Supplementary Information [27,28].
For the synthesis of (OVA)S�/þ(CpG), 0.5 ml of PBS (PAA Labora-
tories Ltd, UK) containing 1 mg OVA (EndoGrade® Ovalbumin,
Hyglos GmbH, Germany) and 1.1 mg CpG (phosphorothioate ODN
CpG 1668 (50�(TCCATGACGTTCCTGATGCT)�30), Eurogentec,
Belgium)weremixedwith a dispersion of 2mg S�/þ in 2ml PBS. For
the synthesis of S�/þ(OVA�CpG), OVA�CpG containing 1 mg OVA
and 1.1 mg CpG in 0.5 ml PBS was mixed with a dispersion of
2mg S�/þ in 2ml PBS. Both reactions weremixed for 8 h at 4 �C. The
reaction mixtures were briefly sonicated then vacuum filtered
through 0.22 mm polycarbonate membrane filter (Isopore™ Mem-
brane, Merck Millipore, Germany). The solids recovered were
re�dispersed in 2.5 ml PBS and the obtained dispersion was briefly
sonicated and then vacuum filtered. Unreacted OVA and CpG con-
tained in the collected filtrates were quantified using bicinchoninic
acid protein (BCA) assay reagent (Fisher Scientific, UK) and Nano-
Drop (ND�1000 spectrophotometer, NanoDrop Technologies, USA),
respectively, as described in Supplementary Information. The
recovered S�/þ(OVA�CpG) or (OVA)S�/þ(CpG) solids were further
washed with methanol (Fisher Scientific, UK) and then vacuum
filtered through 0.22 mm polycarbonate membrane filter, dried and
recovered. Synthesized conjugates were characterized using ther-
mogravimetric analysis (TGA) and polyacrylamide gel electropho-
resis (PAGE) that were performed as described before [7].

2.3. Synthesis of (aCD40)S�/þ(OVA�CpG)

To a dispersion of 3 mg S�/þ in 2 ml PBS, 1 mg of aCD40 (purified
rat anti�mouse CD40 monoclonal antibody, BD Biosciences, USA)
in 0.5 ml PBS was added. The reactionwas mixed for 8 h at 4 �C. The
reaction mixture was briefly sonicated then vacuum filtered
through 0.22 mm polycarbonate membrane filter. The solids
recovered were re�dispersed in 2.5 ml PBS and the obtained
dispersion was briefly sonicated and then vacuum filtered.
Unreacted aCD40 contained in the collected filtrates was quantified
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Scheme 1. Synthesis of the conjugates. (A) Synthesis of (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) conjugates. p�MWNT was oxidized using acidic mixture yielding MWNT 1. The
carboxylic acid moieties of MWNT 1 were reacted with Boc�protected amine�terminated spacer via amide coupling reaction yielding S�/þ. (OVA)S�/þ(CpG) was synthesized by the
simultaneous addition of OVA and CpG to S�/þ, while S�/þ(OVA�CpG) was synthesized by reacting the OVA�CpG with S�/þ. (B) Synthesis of (aCD40)S�/þ(OVA�CpG). aCD40 was
first conjugated with S�/þ yielding (aCD40)S�/þ that following conjugation with OVA�CpG yielded (aCD40)S�/þ(OVA�CpG).
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using BCA assay as described in Supplementary Information. The
recovered (aCD40)S�/þ solids werewashedwithmethanol, vacuum
filtered through 0.22 mm polycarbonate membrane filter, dried and
re�dispersed in 2ml PBS. To the (aCD40)S�/þ dispersion, OVA�CpG
containing 1 mg OVA and 1.1 mg CpG in 0.5 ml PBS was added. The
reactionwas mixed for 8 h at 4 �C. The reaction mixture was briefly
sonicated then vacuum filtered through 0.22 mm polycarbonate
membrane filter. The solids recovered were re�dispersed in 2.5 ml
PBS and the obtained dispersion was briefly sonicated and then
vacuum filtered. Unreacted OVA and CpG contained in the collected
filtrates were quantified using BCA assay and NanoDrop, respec-
tively, as described in Supplementary Information. The recovered
(aCD40)S�/þ(CpG) solids were further washed with methanol and
then vacuum filtered through 0.22 mm polycarbonate membrane
filter, dried and recovered.
2.4. Assessment of OVA presentation induced by (OVA)S�/þ(CpG) or
S�/þ(OVA�CpG) treated BM�DCs in vitro

DCs were generated from the bone marrow of C57BL/6 mice and
characterized for their purity as previously described [7]. Bone
marrow�derived DCs (BM�DCs) were incubated for 24 hwith OVA,
mixture of unconjugated OVA and CpG (referred to as OVA þ CpG),
OVA�CpG, (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) each containing
5 mg/ml OVA. The used doses were determined from the optimi-
zation studies described in Supplementary Information (Figure S1).
BM�DCs were incubated, as a control, with S�/þ alone at concen-
trations equivalent to those contained in (OVA)S�/þ(CpG) or S�/

þ(OVA�CpG) (20e38 mg/ml). Treated BM�DCs were harvested,
washed several times with RPMI 1640 and gamma�irradiated us-
ing Cesium�137 at 3000 Gy for 10min. CD4þ and CD8þ T cells were
isolated from the OT�II and OT�I mice spleen, respectively, and
characterized for their purity as described before [7]. In 96�well
round�bottom plate, 25 � 103 of CD4þ or CD8þ T cells were
co�cultured with the BM�DCs at 1:4 ratio in a total volume of
200 ml complete medium per well. The BM�DCs: T cell co�culture
ratio was determined from previous optimization studies [7]. As a
control, CD4þ or CD8þ T cells were cultured alone or with naïve
BM�DCs. Cultured cells weremaintained for 3 days at 37 �C. For the
last 18 h of incubation, 50 ml of the supernatants were removed and
replaced with a fresh 50 ml of complete medium containing 1 mCi of
3H�thymidine (Thymidine (Methyl�3H), Perkin Elmer, USA). T cell
proliferation was assessed by measuring the incorporated
3H�thymidine emitted radiation using liquid scintillation counter
(Wallac 1205 Betaplate) [7]. The levels of IFN�g in the supernatants
collected from BM�DCs co�cultured with CD4þ or CD8þ T cells
were quantified using anti�mouse IFN�g sandwich ELISA kit
(eBioscience, USA) following the manufacturer's protocol. The
absorbance of each well was measured at 450 nm using a plate
reader (FLUOstar Omega, BMG LABTECH, Germany).
2.5. Assessment of OVA presentation induced by (aCD40)S�/

þ(OVA�CpG) treated BM�DCs in vitro

BM�DCs were incubated for 24 h with mixture of unconjugated
aCD40 and OVA�CpG (referred to as aCD40 þ OVA�CpG), mixture
of unconjugated aCD40 and S�/þ(OVA�CpG) (referred to as
aCD40 þ S�/þ(OVA�CpG)) or (aCD40)S�/þ(OVA�CpG), each con-
taining 0.5 mg/ml of both OVA and CpG, and 1.8 mg/ml aCD40. As a
control BM�DCs were incubated for 24 h with OVA�CpG or S�/

þ(OVA�CpG), each containing 1 mg/ml OVA. CD8þ T cell prolifera-
tion and IFN�g production were then determined using
3H�thymidine incorporation assay and ELISA as described before,
respectively.
2.6. Assessment of the immune response induced by (OVA)S�/

þ(CpG), S�/þ(OVA�CpG) or (aCD40)S�/þ(OVA�CpG) in mice using
in vivo CTL assay

C57BL/6 mice (n ¼ 3e5) were immunized, via the footpad
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injection, with OVA�CpG, (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) each
containing 6 mg OVA in 50 ml PBS. Alternatively, mice were injected
via the footpad with aCD40 þ OVA�CpG or (aCD40)S�/

þ(OVA�CpG), each containing 3 mg of both OVA and CpG, and 10 mg
aCD40 in 50 ml PBS. Mice injected with PBS were used as a control.
The in vivo cytotoxic T lymphocyte (CTL) assay was performed
following previously described method [7]. Briefly, a 1:1 spleno-
cytes mixture consisting of 0.5 mM CFSE (carboxyfluorescein diac-
etate succinimidyl ester, eBioscience, USA) �labelled and
SIINFEKL�pulsed splenocytes (referred to as 0.5 mM CFSESIINFEKL)
and 5 mM CFSE�labelled un�pulsed splenocytes (referred to as
5 mM CFSEno SIINFEKL), were administered in immunized mice or
mice injected with PBS via the tail vein at 10 � 106 cells per 200 ml
per mouse, on the 8th day post immunization. At 18 h post-
�injection, mice were scarified; spleens were harvested and
digested in collagenase/DNase solution. The percentage of SIIN-
FEKL�pulsed and un�pulsed splenocytes, induced by each treat-
ment, in the harvested splenocytes was determined using flow
cytometry. Antigen�specific killing was calculated using the
following equation:

�
1�

�
Percentage of 0:5 mM CFSESIINFEKL

�
�
Percentage of 5 mM CFSEno SIINFEKL�

�
� 100

2.7. Assessment of the anti�tumour response induced by (aCD40)
S�/þ(OVA�CpG) in subcutaneous tumour model

Luciferase�transfected melanoma B16F10 cells were obtained
from Perkin Elmer (USA) and were transduced with vesicular sto-
matitis virus G pseudotyped retrovirus encoding green fluores-
cence protein (GFP)�tagged OVA [27,29]. GFP positive cells were
then sorted as single cells using GFP filter. C57BL/6 mice were
subcutaneously inoculated in both flanks with 2.5 � 105 OVA-
�expressing and luciferase�transfected B16F10
(OVA�B16F10�Luc) cells. On the 7th day post tumour inoculation,
mice were randomly assigned to 5 groups (n ¼ 7). On the 7th and
14th days post tumour inoculation, mice were immunized via
footpad injection with S�/þ(OVA�CpG), aCD40 þ OVA�CpG,
aCD40 þ S�/þ(OVA�CpG) or (aCD40)S�/þ(OVA�CpG), each con-
taining 6 mg OVA, 6 mg CpG and/or 21 mg aCD40 in 50 ml PBS. PBS
injected mice were used as untreated controls. A calliper was used
to measure the tumour length (L) and width (W), and the tumour
volume was calculated using the following equation: Tumour
volume ¼ 0.52 � W2 � L. Mice were sacrificed when the tumour
volume reached 1000 mm3.

2.8. Assessment of anti�tumour response induced by (aCD40)S�/

þ(OVA�CpG) in lung pseudo�metastatic tumour model

C57BL/6 mice were intravenously inoculated with 2.5 � 105

OVA�B16F10�Luc cells. On the 4th day post tumour inoculation,
micewere randomly assigned to 3 groups (n¼ 6e8). On the 4th and
9th days post tumour inoculation, mice were immunized via
footpad injection with S�/þ(OVA�CpG) or (aCD40)S�/þ(OVA�CpG)
containing 6 mg OVA, 6 mg CpG and/or 21 mg aCD40. PBS injected
mice were used as untreated controls. Tumour growth was moni-
tored by detecting the bioluminescence emitted from the inocu-
lated OVA�B16F10�Luc cells following D�Luciferin (Perkin Elmer,
USA) injection. Every 3e4 days post tumour inoculation, mice were
anesthetized and subcutaneously injected with D�Luciferin
(150 mg/kg) in PBS. Imaging was performed using IVIS Lumina III
and images analysis was conducted with Living Image® 4.3.1 Ser-
vice Pack 2 software (Perkin Elmer, USA).
2.9. Histological analysis

Heart, lung, kidney, spleen and lymph nodes were isolated from
mice at sacrifice. Isolated tissues were fixed using 10% neutral
buffer formalin (Sigma, UK) and tissue sections were stained using
haematoxylin and eosin (H & E) or Neutral Red (NR) following the
standard staining protocols of the Royal Veterinary College (UK).
Images of the stained histological specimens were captured using
Leica DM 1000 LED Microscope (Leica Microsystems, UK) con-
nected to CDD digital camera (Qimaging, UK).

2.10. Statistical analysis

Results are expressed as mean value ± standard deviation (S.D.),
unless otherwise stated. Statistical analysis was performed using
GraphPad Prism version 5.01 (USA). Statistical differences were
determined using one�way ANOVA followed by Bonferroni
post�test.

3. Results

3.1. Synthesis and characterization of (OVA)S�/þ(CpG), S�/

þ(OVA�CpG) and (aCD40)S�/þ(OVA�CpG) conjugates

As depicted in Scheme 1A, the length of p�MWNTs was short-
ened by oxidation reaction using sulphuric and nitric acids mixture
and bath sonication, yielding MWNT 1. This step was followed by
partial neutralization of the incorporated negatively charged car-
boxylic acid moieties using an amine terminated spacer, yielding
S�/þ. We have previously reported that this functionalization
approach, compared to other chemical functionalization methods,
yields a functionalized MWNT (S�/þ) capable of significantly
improving the loaded antigen internalization by APCs in vitro and
in vivo [7].

Utilizing the ability of CNTs to non�covalently interact with
proteins [30] and ssDNA [31], OVA and CpGwere incorporated onto
S�/þ surface using two distinct methods (Scheme 1A). (OVA)S�/

þ(CpG) was synthesized by mixing an aqueous dispersion of S�/þ

with OVA and CpG. Alternatively, OVA and CpG were covalently
conjugated to yield OVA�CpG (Scheme S1) prior to the reaction
with S�/þ, yielding S�/þ(OVA�CpG). The third conjugate, (aCD40)
S�/þ(OVA�CpG), was prepared by prior mixing of aCD40 with S�/þ

followed by OVA�CpG loading (Scheme 1B).
The zeta potential values of S�/þ, (OVA)S�/þ(CpG) and S�/

þ(OVA�CpG) were found to be �7.27, �43.7 and �41.9 mV,
respectively (Table S1). Transmission electron microscopy (TEM)
revealed individualized nanotubes with a mean length of
122 ± 82 nm (Fig. 1A). OVA or aCD40 loading was quantified using a
BCA assay [7], while CpG quantification was performed using
NanoDrop Spectrophotometer [11]. The loading values and loading
efficiency are summarized in Table 1 and Table S2, respectively.
OVA: CpG molar ratios of 1:10, 1:7.3 and 1:7.4 were reported for
(OVA)S�/þ(CpG), S�/þ(OVA�CpG) and (aCD40)S�/þ(OVA�CpG),
respectively. Stability studies were carried out up to 7 days by
stirring in PBS at 37 C◦; the stability of the loaded cargo was
confirmed (Figure S2).

OVA, CpG and/or aCD40 loading onto S�/þ was also confirmed
using TGA [32]. TGA was performed under inert gas (nitrogen) by
exposing the tested samples to gradually increasing temperature
(up to 800 �C). The graphitic structure of the pristine CNT (p-
MWNT) is stable against sublimation within the applied tempera-
tures. However, surface defects and impurities such as amorphous
carbon (that constitute approximately 2% of p-MWNT) are less
stable and thermally decompose by sublimation at 600 �C [33,34].
Organic functional groups decomposition also occurs at



Fig. 1. Characterization of the conjugates. (A) Representative TEM image of an aqueous dispersion of S�/þ. (B) Thermogravimetric profiles. S�/þ or the conjugates, of know
weights, were subjected to increasing temperatures and the weight loss was measured at the increased temperature. (C) PAGE of (OVA)S�/þ(CpG) or S�/þ(OVA�CpG). Free OVA, or
OVA contained in the conjugates, each at 10 mg OVA, were loaded in the appropriate lane of 10% native, non�reducing gel. (D) PAGE of (aCD40)S�/þ(OVA�CpG). OVA�CpG conjugate
containing 3 mg OVA, 10 mg of aCD40 or (aCD40)S�/þ(OVA�CpG) containing 3 mg OVA and 10 mg aCD40 were loaded in the appropriate lane of 10% native, non�reducing gel. Bands
were detected by gel staining with Coomassie Brilliant blue.

Table 1
Physicochemical characterization of conjugates.

Lengtha,b

(nm)
Primary amine loadingb,c

(mmole/g S�/þ)
OVA loadingb,d (mg/g S�/þ)

[mmol/g S�/þ]
CpG loadingb,e (mg/g S�/þ)

[mmol/g S�/þ]
aCD40 loadingb,d (mg/g S�/þ)

[mmol/g S�/þ]

(OVA)S�/þ(CpG) 122 ± 82 263 ± 72 205 ± 24 [4.5 ± 0.53] 288 ± 20 [45 ± 3.1] e

S�/þ(OVA�CpG) 122 ± 82 263 ± 72 130 ± 21 [2.9 ± 0.47] 136 ± 18 [21.2 ± 2.8] e

(aCD40)S�/

þ(OVA�CpG)
122 ± 82 263 ± 72 55 ± 15 [1.2 ± 0.33] 57 ± 11 [8.8 ± 1.7] 188 ± 17 [1.3 ± 0.1]

a Determined from TEM images (n ¼ 100 nanotubes).
b Data are represented as mean ± SD.
c Measured using TGA (n ¼ 3).
d Measured using BCA assay (n ¼ 3).
e Measured using NanoDrop (n ¼ 3).
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temperatures lower than 600 �C. It was previously reported that
thermally degraded functional groups or biomolecules decompose
mainly into carbon dioxide, carbon monoxide, ammonia [35].

The density of the loaded functional groups and biomolecules is
directly related to the sample weight loss 600 �C, as a result of
thermal decomposition. As demonstrated in Fig. 1B, a greater
reduction in the thermal stability was observed for S�/þ compared
to p�MWNT as a result of decomposition of the functional groups.
Expectedly, (OVA)S�/þ(CpG), (aCD40)S�/þ(OVA�CpG) and S�/

þ(OVA�CpG) achieved higher weight losses than S�/þ, in the same
order. This observation could be assigned to the fact that (OVA)S�/
þ(CpG) possessed the highest content of incorporated biomolecules
followed by (aCD40)S�/þ(OVA�CpG) then S�/þ(OVA�CpG)
(Table 1). TGA confirmed the success of chemical modification of S�/

þ and loading of OVA, CpG and aCD40 onto S�/þ.
PAGE electrophoresis was employed to visualize the loaded OVA

and/or aCD40. Similar to unconjugated OVA, the OVA contained in
(OVA)S�/þ(CpG) appeared as an intense band of ~45 kDa (Fig.1C). In
case of OVA�CpG or S�/þ(OVA�CpG), an increase in OVAmolecular
weight was observed (>45 kDa) due to successful conjugation with
CpG. Exposing (aCD40)S�/þ(OVA�CpG) to gel electrophoresis
confirmed the presence of aCD40 as a main intense band of
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~150 kDa and CpG�conjugated OVA bands (Fig. 1D).

3.2. Loading of OVA�CpG conjugate onto S�/þ offers more potent
in vitro antigen presentation than the loading of unconjugated OVA
and CpG

To determine the effect of (OVA)S�/þ(CpG) or S�/þ(OVA�CpG)
on the maturation of DC, the synthesized conjugates were incu-
bated with BM�DCs for 24 h and the expression of MHC as well as
co-stimulatory molecules were determined using specific anti-
bodies and flow cytometry as described in Supplementary
Information. Similar to the CpG treatment alone, incubation of
BM�DCs with (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) increased the
expression of MHC I, MHC II, CD40 and CD86 (Fig. 2A and Figure S3)
with no significant differences seen between groups. OVA�treated
BM�DCs showed no signs of maturation. Incubation of BM�DCs
with S�/þ alone has been shown previously to not affect the
expression of these molecules [7]. Taken together the data suggest
that maturation of BM�DCs induced by (OVA)S�/þ(CpG) or S�/

þ(OVA�CpG) was CpG�dependant.
Next, the efficiency of the two approaches in enhancing OVA

presentation by BM�DCs was assessed in vitro using OVA�specific
transgenic CD4þ or CD8þ T cells. After incubation of BM�DCs with
the S�/þ based conjugates (containing 5 mg/ml OVA), (OVA)S�/

þ(CpG) or S�/þ(OVA�CpG) significantly enhanced OVA�specific T
cells proliferation as compared to their control treatments, namely
OVA þ CpG or OVA�CpG (p < 0.001), respectively (Fig. 2B). How-
ever, treatment with S�/þ(OVA�CpG) resulted in elevated re-
sponses compared to (OVA)S�/þ(CpG) (p < 0.05). This was further
confirmed with IFN�g cytokine production profiles (Fig. 2C).
Similar T cell responses were obtained when BM�DCs were treated
with the synthesized conjugates containing a lower dose of 2.5 mg/
ml OVA (data not shown).

These observations indicated that loading OVA and CpG onto S�/

þ in the form of a conjugate can lead to enhanced OVA presentation
by BM�DCs in vitro, compared to loading unconjugated OVA and
CpG.

3.3. Immunization with S�/þ loaded with OVA�CpG elicits potent
cellular and humoral immune responses

The capability of (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) to induce a
cell�mediated immune response in vivo was determined using an
in vivo CTL assay [27]. In these experiments, the OVA immunization
dose used in (OVA)S�/þ(CpG), S�/þ(OVA�CpG) or their controls was
6 mg, given our observation that in C57BL/6 mice treated with
various doses of OVA�CpG, a measureable OVA�specific CTL im-
mune response was detected at OVA content of 6 mg (Figure S4).

It was revealed that immunization with S�/þ(OVA�CpG)
induced a greater level of antigen�specific killing (47.7% ± 11.7) in
contrast to OVA�CpG (10.8% ± 4.2) or (OVA)S�/þ(CpG) (29.1% ± 3.0)
(P < 0.0001) (Fig. 3A and Figure S5).

To assess the humoral response induced by the conjugates
in vivo, C57BL/6 mice were treated with the conjugates or appro-
priate controls, and OVA�specific antibodies were quantified using
an OVA�specific ELISA 21 days post immunization (Fig. 3B). Im-
munization with S�/þ(OVA�CpG) significantly boosted the pro-
duction of anti�OVA IgG and IgG2c antibodies titres compared to
(OVA)S�/þ(CpG) or other treatments. Both conjugates, however,
ensued comparable anti�OVA IgG1 titres.

These findings demonstrated further the augmentation in an-
tigen specific immune response in vivo achieved by S�/þ(OVA�CpG)
over (OVA)S�/þ(CpG). We adopted this conjugate S�/þ(OVA�CpG)
for subsequent studies in combination with aCD40 as a second
immunoadjuvant.
3.4. Incorporation of aCD40 as a second immunoadjuvant improves
OVA presentation in vitro and intensifies OVA�specific immune
response in vivo even at lower OVA doses

To further intensify the antigen�specific immune responses
observed, aCD40 antibody was loaded onto S�/þ as a second
immunoadjuvant. In order to assess the effect of aCD40 contained
in (aCD40)S�/þ(OVA�CpG) on DC activation markers, BM�DCs
were stimulated with the conjugate or control treatments and
known DC markers were assessed using flow cytometry as
described in Supplementary Information. BM�DC stimulated with
(aCD40)S�/þ(OVA�CpG) expressed significantly higher levels of
MHC I and CD86 compared to those stimulated with S�/

þ(OVA�CpG) or a mixture of unconjugated aCD40 and S�/

þ(OVA�CpG) (aCD40 þ S�/þ(OVA�CpG)) (Fig. 4A). BM�DCs stim-
ulated with (aCD40)S�/þ(OVA�CpG) showed lower expression of
CD40 compared to S�/þ(OVA�CpG). This could be attributed to the
cellular internalization of the CD40 receptor following its ligation
with aCD40 contained in (aCD40)S�/þ(OVA�CpG) [20,21].

Given the increase in MHC I expression, OVA presentation to
CD8þ T cell was assessed, following stimulation with (aCD40)S�/

þ(OVA�CpG). In order to assess the synergy provided by the CpG
and aCD40 loaded onto S�/þ, BM�DCs were incubated with
(aCD40)S�/þ(OVA�CpG) containing half the OVA and CpG amounts
present in S�/þ(OVA�CpG) treatment (Fig. 4B). Higher CD8þ T cell
proliferation was induced following stimulation with (aCD40)S�/

þ(OVA�CpG) containing 0.5 mg/ml of both OVA and CpG compared
to the control treatment aCD40 þ S�/þ(OVA�CpG), and S�/

þ(OVA�CpG) treatment that contained 1 mg/ml of both OVA and
CpG. Production of IFN�g by the stimulated CD8þ T cells correlated
well with their pattern of proliferation. These observations re-
flected the significance of aCD40 conjugation with S�/þ on BM�DC
activation.

Immune enhancement induced by (aCD40)S�/þ(OVA�CpG) was
investigated using the in vivo CTL assay. Immunization of C57BL/6
mice with (aCD40)S�/þ(OVA�CpG) (containing 3 mg OVA and CpG)
led to a robust OVA�specific cellular immune response (80.4% ± 5.4
antigen�specific killing) (P < 0.0001) compared to the CTL
response induced by the control aCD40 þ OVA�CpG (containing
3 mg OVA and CpG) or S�/þ(OVA�CpG) treatment (containing 6 mg
OVA and CpG) showing 48.6% ± 8.8 or 46.2% ± 14.1 antigen�specific
killing, respectively (Fig. 4C and Figure S5).

Taking the in vitro and in vivo data together we can conclude that
inclusion of aCD40 antibody as a second immunoadjuvant resulted
in synergy of the MWNT-mediated delivery of OVA�CpG as shown
by the marked increase in antigen�specific immune responses at
lower OVA and CpG doses.

3.5. aCD40 and OVA�CpG loading onto S�/þ effectively delays the
tumour growth in both solid and lung pseudo�metastatic tumour
models

The therapeutic efficacy of the conjugates in delaying the
growth of a solid tumour was investigated. Immunization of C57BL/
6 mice subcutaneously inoculated with Luc�B16F10�OVA cells
with S�/þ(OVA�CpG) containing 12 or 25 mg of both OVA and CpG
led to significant tumour growth retardation compared to unim-
munized mice (Figure S6A). Furthermore, administration of S�/

þ(OVA�CpG), containing 25 mg of both OVA and CpG, to mice
subcutaneously inoculated with B16 cells (tumour cells which do
not express OVA), failed to impede the B16 cells growth
(Figure S6B), indicating that the induced anti�tumour immune
response was antigen�specific.

To determine the ability of (aCD40)S�/þ(OVA�CpG) to delay the
solid tumour growth at reduced OVA and CpG doses, mice were



Fig. 2. Assessment of BM¡DC maturation and OVA presentation induced by treatment with (OVA)S¡/þ(CpG) or S¡/þ(OVA¡CpG) in vitro. (A) Effect of (OVA)S�/þ(CpG) or S�/

þ(OVA�CpG) on BM�DC maturation. BM�DCs were incubated for 24 h with 5 mg/ml CpG, OVA, (OVA)S�/þ(CpG) or S�/þ(OVA�CpG), each contained 5 mg/ml OVA. BM�DCs were
stained with fluorescently labelled specific antibodies against MHC I, MHC II, CD40, CD80 or CD86, and cell analysis was performed using flow cytometry. The mean fluorescence
intensity (MFI) of the positive CD11c�expressing BM�DCs was measured to assess the fold change in the expression of each marker with respect to the naïve BM�DCs, results
represent the mean ± S.D. (B, C) OVA presentation by (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) treated BM�DCs. BM�DCs were incubated for 24 h with OVA þ CpG, OVA�CpG, (OVA)S�/

þ(CpG) or S�/þ(OVA�CpG), each contained 5 mg/ml OVA. Treated BM�DCs were co�cultured with CD4þ or CD8þ T cells isolated from the spleen of OT�2 or OT�1 C57BL/6 mice,
respectively, at 1:4 ratio for 3 days. On the last 18 h of incubation, CD4þ T cells (B, left) or CD8þ T cells (B, right) were pulsed with 1 mCi of 3H�thymidine and the proliferation was
measured using 3H�thymidine incorporation assay. The content of IFN�g in the supernatants of the proliferating CD4þ T cells (C, left) or CD8þ T cells (C, right) was quantified using
ELISA. Measurements were performed in triplicates for each condition, results represent the mean ± S.D. *P < 0.05, **P < 0.01, ***P < 0.001.
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subcutaneously inoculated with Luc�B16F10�OVA cells and then
immunizedwith (aCD40)S�/þ(OVA�CpG), S�/þ(OVA�CpG) or other
controls at 6 mg of both OVA and CpG. As demonstrated in Fig. 5A,
immunization with S�/þ(OVA�CpG) at 6 mg OVA did not signifi-
cantly delay the tumour growth compared to unimmunized mice.
However, immunization with (aCD40)S�/þ(OVA�CpG) led to sig-
nificant tumour growth retardation compared to unimmunized
mice, and mice immunized with S�/þ(OVA�CpG). Immunization
with aCD40þ S�/þ(OVA�CpG) failed to delay the tumour growth to
the same extent as (aCD40)S�/þ(OVA�CpG), highlighting the in-
crease in aCD40�mediated immune enhancement achieved on
incorporating aCD40 onto S�/þ in addition to OVA�CpG. Addi-
tionally, vaccination with (aCD40)S�/þ(OVA�CpG) prolonged the
tumour�inoculated mice survival in a significant manner
compared to the other treatments (Fig. 5A).

No changes in the histological features of the excised organs
between the untreated and treated tumour bearing mice were
observed indicating lack of organotoxicity (Fig. 5B). Dark black



Fig. 3. Assessment of immune response induced by (OVA)S¡/þ(CpG) or S¡/þ(OVA¡CpG) in vivo. (A) Determination of the antigen�specific killing using in vivo CTL assay. C57BL/6
mice (n ¼ 3e5) were immunized with the indicated treatments via footpad injection. Each treatment contained 6 mg of OVA. On day 7 following immunization, a 1:1 splenocytes
mixture consisting of target cells pulsed with 200 nM SIINFEKL and labelled with 0.5 mM CFSE and unpulsed control cell labelled with 5 mM CFSE was intravenously administered to
the control or immunized mice. Splenocytes were harvested, 18 h later, from the control or immunized mice and analyzed using flow cytometry analysis. Antigen�specific killing
induced by each treatment was determined. Each dot represents killing of target cells by each mouse, the mean value for each treatment is shown as a horizontal bar. (B)
Quantification of OVA�specific IgG. C57BL/6 mice (n ¼ 3) were immunized with the indicated treatments, via footpad injection, each treatment contained 6 mg of OVA and CpG. On
day 21 following injection, control or immunized mice sera were collected. The OVA�specific IgG, IgG1 or IgG2c were determined using ELISA. Data represent the mean value ± S.D.
*P < 0.05, **P < 0.01, ***P < 0.001.
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aggregates, which were absent in naïve mice, were detected in the
popliteal lymph nodes from mice immunized with (aCD40)S�/

þ(OVA�CpG), suggesting drainage of S�/þ into the popliteal lymph
nodes.

Therapy studies were then performed in the more challenging
pseudo�metastatic lung tumourmodel. The conjugates, containing
6 mg of both OVA and CpG, were administered to C57BL/6 mice
previously intravenously inoculated with OVA�B16F10�Luc cells.
Smaller bioluminescence signals and lung weights were observed
in mice immunized with (aCD40)S�/þ(OVA�CpG) compared to S�/

þ(OVA�CpG) treated mice (Fig. 6).
From our data we conclude that vaccination with (aCD40)S�/

þ(OVA�CpG) efficiently delayed the OVA�B16F10�Luc tumour
growth in both solid and pseudo�metastatic tumour models,
consistent with the immune enhancements observed in vitro and
in vivo.

4. Discussion

One of the purposes of using delivery vectors for antigens is to
improve the antigen uptake by the antigen presenting cells (APCs)
in order to increase the intracellular antigen concentration, thus
the density of antigen presented by the APCs to T cells. It has been
previously reported that polymeric spherical nanoparticles, e.g.
PLGA nanoparticles, mainly utilise energy�dependent mechanisms
of cellular uptake rather than energy�independent ones [36e38].
The reported findings that demonstrated the CNTs' ability to enter
the cells via more than one route i.e. energy�dependent and/or
passive routes [4e6], may suggest that CNTs can deliver higher
amounts of antigens into the APCs compared to spherical nano-
particles. However, comparative studies need to be carried out to
investigate the cellular uptake of CNTs versus the extensively
studied spherical nanoparticles, e.g. PLGA nanoparticles and lipo-
somes, by the APCs and the ensuing effects on the magnitude of
immune response elicited against incorporated antigen.

Covalent conjugation of OVA and CpG and their loading onto S�/

þ improved OVA presentation in vitro by BM�DCs and efficiently
elevated the magnitude of OVA�specific immune response in vivo.
Additionally, the presence of aCD40 in S�/þ containing conjugated
OVA�CpG led to i) more advanced augmentation of the OVA�-
specific immune response in vitro and in vivo, and ii) delayed
growth of OVA�expressing B16F10 cells effectively in both subcu-
taneous and lung pseudo�metastatic tumour models, at reduced
OVA and CpG doses.

We initially proposed two distinct approaches for the concom-
itant delivery of themodel antigen OVA and CpG using S�/þ to APCs.
Mixing S�/þwith OVA and CpGwas the first method, yielding (OVA)
S�/þ(CpG); however, the loading of OVA and CpG onto each S�/þ

was uncontrolled. In other words, the prepared (OVA)S�/þ(CpG)
might possessed lower OVA and CpG co�loading onto each S�/þ

compared to S�/þ(OVA�CpG), and the formation of OVA or CpG
only �conjugated S�/þ was also possible. Accordingly, the other
approach was loading both agents in the form of the chemical
conjugate, OVA�CpG, to ensure the co�incorporation of OVA and
CpG onto the same S�/þ (S�/þ(OVA�CpG)). PAGE gel results
confirmed that OVA contained in S�/þ(OVA�CpG) was in the
CpG�conjugated form. (OVA)S�/þ(CpG) or S�/þ(OVA�CpG) elicited
higher immune response potency in vitro and in vivo, compared to
their control treatments, namely the mixture of unconjugated OVA
and CpG or OVA�CpG, respectively. This was in agreement with the
previously reported benefits of CNTs as a delivery vehicle for an-
tigens [7,9] or immunoadjuvants [11,12] in vitro and in vivo.

The co�delivery of antigen and CpG to APC has also been
demonstrated using other particulate delivery systems. For
instance, mice immunization with microparticles
co�encapsulating OVA and CpG increased the anti�OVA antibodies
[39] and CD8þ T cell responses [40,41], and utilization of gold
nanoclusters for the co�delivery of OVA�derived peptide and CpG
augmented the production of anti�OVA antibodies in mice [42].

In a study by de Faria et al., OVA and CpG were co�incorporated
onto MWNTs by mixing MWNTs with un�conjugated OVA and
CpG, yielding a conjugate that induced higher immune response
compared to mixture of unconjugated OVA and CpG (MWNT-free)
in vivo [43]. We utilized the same approach to prepare (OVA)S�/

þ(CpG), but additionally, we introduced in this study a more robust
approach for comparison, where a covalently conjugated OVA and



Fig. 4. Assessment of immune response induced by (aCD40)S¡/þ(OVA¡CpG) in vitro and in vivo. (A) Assessment of BM�DC maturation. BM�DCs were incubated for 24 h with
S�/þ(OVA�CpG), aCD40 þ S�/þ(OVA�CpG) or (aCD40)S�/þ(OVA�CpG)) each contained 0.5 mg/ml OVA, 0.5 mg/ml CpG and/or 1.8 mg/ml aCD40. BM�DCs were stained with fluo-
rescently labelled antibodies and analyzed using flow cytometry. The MFI was measured to assess the fold change in the expression of each marker with respect to naïve BM�DCs.
(B) Assessment of OVA presentation. BM�DCs were incubated for 24 h with either 1 mg/ml OVA (contained in OVA�CpG or S�/þ(OVA�CpG)) or 0.5 mg/ml OVA (contained in
OVA�CpG þ aCD40, S�/þ(OVA�CpG) þ aCD40 or (aCD40)S�/þ(OVA�CpG)). S�/þ unconjugated or conjugated aCD40 was used at 1.8 mg/ml. BM�DCs were co�cultured with CD8þ T
cells. (Left) CD8þ T cell proliferation. CD8þ T were pulsed with 3H�thymidine and proliferation was measured. (Right) IFN�g quantification. The content of IFN�g in the super-
natants of the proliferating CD8þ T cell was quantified using ELISA. Measurements were performed in triplicates for each condition, results represent the mean ± S.D. (C) CTL
response. C57BL/6 mice (n ¼ 3e5) were immunized, via footpad injection, with either 6 mg OVA (contained in S�/þ(OVA�CpG)) or 3 mg OVA (contained in OVA�CpG þ aCD40 or
(aCD40)S�/þ(OVA�CpG)). The S�/þ unconjugated or conjugated aCD40 was 10 mg. Each dot represents killing of target cells by each mouse, the mean value for each treatment is
shown as a horizontal bar. *P < 0.05, **P < 0.01, ***P < 0.001.
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CpG were loaded onto MWNTs yielding S�/þ(OVA�CpG). When,
comparing the two MWNT based conjugates for OVA and CpG
co�delivery, S�/þ(OVA�CpG) resulted in better OVA presentation
by BM�DCs than (OVA)S�/þ(CpG). This could be attributed to the
better capability of S�/þ(OVA�CpG), compared to (OVA)S�/þ(CpG),
to co�internalize OVA and CpG into the same BM�DC. The



Fig. 5. Assessment of anti¡tumour response in subcutaneous tumour models. C57BL/6 mice (n ¼ 7) were subcutaneously injected with 2.5 � 105 OVA�B16F10�Luc cells. On
the 7th and 14th days post tumour cells injection, tumour�inoculated mice were immunized via footpad injection with the indicated treatments, each contained 6 mg OVA. (A)
Tumour growth curve and mice survival. (Left) Tumour growth monitored by calliper measurement. Values are expressed as mean value ± SEM. (Right) Tumour�inoculated mice
survival. *P < 0.05, **P < 0.01, ***P < 0.001. (B) Histological analysis. The main organs and lymph nodes excised from scarified subcutaneous tumour inoculated mice stained with
haematoxylin and eosin (H & E) (left) or neutral red (NR) (right). Images were captured at �40 magnification. S�/þ appeared as dark black aggregates (arrows). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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enhanced OVA presentation might account for the higher cellular
and humoral immune responses elicited by vaccination of C57BL/6
mice with S�/þ(OVA�CpG). Similar to our findings, but without the
use of a delivery system, previous studies have demonstrated that
mice immunization with covalently conjugated OVA and CpG
induced higher OVA�specific immune response compared to



Fig. 6. Assessment of anti¡tumour response in lung pseudo¡metastatic tumour models. C57BL/6 mice (n ¼ 6e8) were intravenously injected with 2.5 � 105 OVA�B16F10�Luc
cells. On the 4th and 9th days post tumour cells injection, tumour�inoculated mice were immunized via footpad injection with the indicated treatments, each contained 6 mg OVA.
(A) Lung pseudo�metastatic tumour model. Tumour growth was monitored by whole body imaging. Representative images for in vivo bioluminescent imaging and the corre-
sponding post�mortem lung photographs are shown. (B) Quantification of photon flux, expressed as number of photons per second (p/s). Values are expressed as mean
value ± SEM. (C) The weights of the lung excised from scarified tumour inoculated mice. Values are expressed as mean value ± S.D. *P < 0.05, **P < 0.01, ***P < 0.001.
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immunization with a mixture of unconjugated OVA and CpG
[15,28].

Schlosser et al. demonstrated that mixing PLGA polymer with
OVA and CpG yielded microparticles that were described as OVA
and CpG co�encapsulating microparticles, these microparticles
induced higher CD8þ T cell response in vitro and in vivo in contrast
to a mixture of OVA only�encapsulating microparticle and CpG
only�encapsulating microparticle [44]. Similarly, Li et al. mixed
lipid polymer with HER�2/neu derived peptide and CpG to yield
liposomes that were referred to as antigen and CpG
co�encapsulating liposomes, mice immunization with these lipo-
somes induced higher immune response compared to a mixture of
antigen�containing liposome and CpG�containing liposome [45].
The approach applied in these studies for antigen and CpG
co�incorporation into a delivery system by mixing polymers with
unconjugated antigen and CpG is similar, in its basic principle, to
the onewe followed for the synthesis of (OVA)S�/þ(CpG) but not S�/

þ(OVA�CpG). These studies highlighted the importance of antigen
and CpG co�delivery using a delivery system by comparing
co�incorporated to separately incorporated antigen and CpG.
However, our study is introducing a more advanced line of
complexity by contrasting two methods for antigen and CpG
concomitant delivery using a delivery vehicle as demonstrated by
(OVA)S�/þ(CpG) versus S�/þ(OVA�CpG).

Previous studies reported the use of spherical�shaped delivery
systems to improve antigen and aCD40 co�delivery. Hatzifoti et al.
demonstrated that co�encapsulation of tetanus toxoid and aCD40
in liposomes augmented the antigen�specific antibody response in
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BALB/c mice [46], and Rosalia et al. reported an increase in CD8þ T
cell response following mice immunization with aCD40�coated
PLGA nanoparticles co�incorporating an oncoprotein and ligands
for TLR2 and TLR3 [47]. Instead of harnessing the conventional
spherical particulate delivery systems to co�deliver CpG and
aCD40, we utilized an emerging cylindrical vectors, namely the
MWNTs, as a nano�carrier for both CpG and aCD40. In addition, the
therapeutic outcome provided by the MWNT-delivered CpG and
aCD40 was not only evaluated in a standard subcutaneous tumour
model but also lung pseudo-metastatic tumour model.

The intensified strength of OVA specific�CTL response induced
by vaccination of C57BL/6 mice with (aCD40)S�/þ(OVA�CpG)
might be assigned to the better ability of this conjugate to induce
DC maturation and to further fortify OVA presentation as observed
in vitro. Stimulation of APC with aCD40 has been shown to upre-
gulate MHC I and CD86 expression [48,49]. Intracellular signalling
induced by ligation of CD40 receptor with aCD40 requires CD40
receptor cross�linking that increases, accordingly, with the in-
crease in the number of aCD40 interacting at the cell surface [50].
The observed better ability of (aCD40)S�/þ(OVA�CpG) than
aCD40 þ S�/þ(OVA�CpG) in upregulating MHC I and CD86
expression by BM�DCs could be attributed to the more efficient
CD40 receptor cross�linking by the multiple, surface�bound,
aCD40 contained in (aCD40)S�/þ(OVA�CpG) [51]. Expression of
CD86 by APCs was increased following stimulation with aCD40�-
coated polymeric nanoparticles [51] or silicon nanoparticles [52]
compared to free aCD40.

The fact that the MWNT�based conjugates were detected in the
lymph nodes was in agreement with our previous study.Where, we
were able to detect the presence of S�/þ and the processing of S�/þ

conjugated OVA in the CD11cþve DCs subsets in the popliteal lymph
nodes [7]. These observations reflected the proficiency of MWNT as
vaccine delivery vectors. Since efficient antitumour�immune
response induction demands antigen trafficking through the
lymphatic vessels and internalization by the lymph node�residing
CD8þ DC, which is the only DC subset capable of inducing CD8þ T
cell response in vivo [53].

Efficient eradication of B16�OVA or B16F10�OVA tumours in
mice has been found to be associated with the cytolytic activity of
CD8þ T cells demonstrated by OVA�specific CTL response
[41,47,54]. The fact that lower OVA and CpG doses were required by
(aCD40)S�/þ(OVA�CpG) than S�/þ(OVA�CpG) to induce strong
anti�tumour response indicates the higher potency and better ef-
ficacy of the former conjugate in vivo. Collectively, the results
shown in this study highlighted the exploitation of MWNTs as
antigen and immunoadjuvants nanocarrier for the purpose of
inducing potent anti�tumour immune response.

5. Conclusions

OVA incorporation onto the MWNT in the form of CpG�conju-
gated OVA improved the CpG�mediated enhancements of OVA�-
specific immune response in vitro and in vivo. Furthermore, the
utilization of MWNTs as vaccine delivery vector has intensified the
CpG and aCD40�derived synergism that markedly retarded the
OVA�B16F10 growth in the tested tumour models. The
MWNT�delivered immuno�based combinatorial therapeutic
approach presented in this study could be exploited for potent
anti�tumour immune response induction against challenging
cancer diseases.
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