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Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham
study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the
parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the
local database. Support vectormachinewas used to determine the effectiveness ofmachine learning approachwith the Framingham
health parameters for risk assessment of cardiovascular disease (CVD).The result shows that while linear model trained using local
database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of
prediction of CVD.This indicates that using the health parameters identified using Framingham study, machine learning approach
overcomes the low sensitivity and specificity of Framingham model.

1. Introduction

Cardiovascular disease (CVD) is the single biggest cause of
mortality worldwide [1]. Globally, an estimated 17.5 million
deaths were attributable to CVD in 2005 [2, 3]. Early identifi-
cation of persons with higher risk of CVD is useful for timely
implementation of preventative strategies for preventing
cardiac episodes that lead to death or disabilities [3, 4]. For
this purpose, risk factors for CVD [4] such as cholesterol,
hypertension, and diabetes have been identified and various
risk assessment models and techniques have been developed
[5].

The commonly used risk assessment models for CVD
prediction are the Framingham Risk Score [1], Reynolds Risk
Score [6], QRISK [7], Prospective Cardiovascular Munster
Heart Study (PROCAM) [8], the Systematic COronary Risk
Evaluation (SCORE) system [9], and UKPDS [10]. Many of
these have been adapted in primary care as simplified charts,

tables, computer programs, and web-based tools which are
routinely referred to in policy documents and guidelines.

The accuracy of the Framingham Risk Score is superior
to any single risk factor. However its predictive power leaves
room for improvement because the sensitivity and specificity
are not very high [11–14]. It has been observed that the
overall absolute coronary risk assigned to individuals in the
United Kingdom has been significantly overestimated [11].
This highlights the necessity to refine the prediction models.

There can be a number of reasons underpinning the low
prediction of CVD risk when using Framingham equation.
This research has studied two of the possible causes for poor
sensitivity and specificity of the equation, difference in demo-
graphics, and the linearity assumptions of the model. One
cause for poor sensitivity and specificity could be due to the
difference in the demographics of the population being stud-
ied compared with the Framingham population [4] which
was used to develop the Framingham equation. The issue of
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demographics was showcased in a 2015 study which reported
that the magnitude of the effect of different cardiovascular
risk factors upon a patient is highly dependent on their
ethnicity [15]. If this is the reason, it would require that the
equation parameters (model) would have to be redefined
for different demographics. Redefining the parameters may
not always be possible because the modelling requires large
amount of longitudinal data, which may not be available out-
side major hospital centres. However, identifying the cause of
differences between groups can lead to better understanding
and also provide the reason for developing new databases.

Another reason for poor performance can be attributed to
the type of model. Framingham equation and other similar
techniques are generalized linear equations. However, the
relationship between the multiple factors associated with the
health of large number of people may require more complex
representation and is not suitable for linear approximation.
To overcome this problem, the redevelopment of the model
is required without the constraints of linearity.

This work has tested whether population difference or
model type is the cause of poor outcomes for Framingham
model. This has been done by developing risk assessment
models using a longitudinal population database that com-
pares the specific linear equation andmachine learningmeth-
ods. The commonly accepted health parameters that have
been described by Framingham model were used and the
scope of this study was to compare machine learning tech-
nique, linear regression, and direct use of Framinghammodel
for identification of these parameters with disease. The linear
equation was used to test the effect of customisation by
using coefficients obtained using local database which would
improve the results. To determine if the parameters used by
Framingham model are relevant to a different database, this
study measured the sensitivity and specificity obtained using
support vector machine (SVM). While machine learning is
generally expected to provide improved results, this study
tested the effect of parameters used in the Framinghammodel
which are relevant to a different database.

2. Materials and Methods

2.1. Database. To ensure that the study had adequate power,
a large longitudinal database is required. Such population
databases provide the natural numbers of cases and controls
that are matched as in the real world. The longitudinal
database ensures the population baseline for demographics
and ethnicity.

In this study, the Blue Mountain Eye Study (BMES)
[16] database was used. This database was created from
a population based cohort study which recorded eye and
other health outcomes in an urban Australian population
greater than 49 years of age. The majority of this population
(∼99%) was of European descent. Baseline participants (𝑛 =
3654) represented 82.4% of those eligible in the selected
postcode areas. The population group had a 5-year follow-
up protocol with the last examination conducted 15 years
after baseline examination. Participants of the study provided
written informed consent prior to their involvement and any
data collection.

The study population was followed up at 5-year intervals
and the latest follow-up examination was conducted 15 years
since the baseline examination. The study was approved by
the Western Sydney Area Health Service Human Research
Ethics Committee. Written informed consent was obtained
from all participants prior to recording their data.

The 5- and 10-year follow-up data was used in this study.
The database consisted of health and other parameters that
have been identified by Framingham study [1] and consisted
of gender, smoking status, cholesterol (combined and high-
density), systolic and diastolic blood pressure, body mass
index, diabetes, and hypertension.These have been described
in detail in Table 1.

People who had CVD episodes before the baseline exami-
nation or who died during the follow-up period due to a non-
cardiovascular aetiology were excluded from the study. The
size of the study became 2770 subjects after the above
exclusions. After a further 364 patients were excluded due to
missing data, the remaining database of 2406 people had
1450 females and 956 males. The CVD cases were divided in
two: hard and soft. Incident “hardCVD” includedmyocardial
infarction, stroke, bypass surgery for coronary artery disease
(CAD), or death from CAD. Self-reported angina was cat-
egorized as a “soft CVD” incident outcome. The mortality
data were obtained by linkage with the Australian National
death Index (NDI) and all nonexact matches were manually
analyzed and accepted only if the mismatch was a single non-
critical characteristic. In this set, there were 535 (267 women
and 268 men) who had incident CVD (hard and soft) events
in a period greater than 5 years but less than 10 years and this
is shown in Table 1.

2.2. Data Management. The data was randomly divided into
two subsets corresponding to training data and test data using
Scikit [21].The training data consisted of 1896 (approximately
80%) and the balance of 510 samples (approximately 20%) of
the total data was for testing. Thus, 80% of the data was used
for training and the balance of 20% for testing purposes, with
no overlap. This data is available online and in accordance
with privacy regulations.

Pattern recognition and risk prediction techniques
applied to population health data may suffer when these
datasets are highly imbalanced. To overcome this imbalance,
Synthetic Minority Oversampling Technique (SMOTE) [22]
was used to boost the minority class (CVD case) numbers by
400% in the training data by artificially generating samples
using a nearest neighbour approach [23].

2.3. Framingham Risk Equation. The Framingham model
provides a gender-specific model for various cardiovascular
outcomes and is the basis for estimating cardiovascular risk
profile and number of major public health policies [24]. We
used a 10-year general cardiovascular risk prediction Fram-
inghamequation (FEq) for our analysis [1]with the regression
coefficients and hazard ratios shown in Table 2.

The outcome of the equation is a risk of CVD over the
following 10 years. It was applied to data on each subject in
the test database (described in Data Management) and a risk
percentage obtained. These predictions were compared with
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Table 1: 10-year risk of CVD in the Blue Mountains Eye Study (BMES) for the 10 parameters.

Factor Persons developed CVD in
10-year follow-up

Persons without CVD
in 10-year follow-up

Gender M (F) 268 (267) 688 (1183)
Current smoker (past smoker or nonsmoker) 87 (448) 241 (1630)
Total cholesterol (high > 13.2/borderline (11–13.2)/normal < 11)
(mmol/L) [17] 218/197/120 752/775/344

High-density lipoprotein cholesterol level (high > 3.3/borderline
2.2–3.3/low < 2.2) (mmol/L) [17] 154/170/211 659/665/547

Systolic blood pressure (high > 120/normal 90–120/low < 90)
(mmHg) [18] 345/190/0 941/930/0

Diastolic blood pressure (high > 80/normal 60–80/low < 60)
(mmHg) [18] 97/435/3 316/1554/1

Body mass index (low < 18.5/normal 18.5–24.9/high > 25) (kg/m2)
[19] 10/222/303 33/766/1072

Diabetes (yes/no) 51/484 113/1758
Medication for hypertension (yes/no) 196/339 526/1345

Table 2: Coefficients in the Framingham risk estimation for 10-year general cardiovascular disease risk [1].

Men∗
(10-year baseline survival: So(10) = 0.88431)

Women∗
(10-year baseline survival: So(10) = 0.94833)

Beta∗∗ 𝑃 value Hazard ratio 95% CI Beta∗∗ 𝑃 value Hazard ratio 95% CI
Log of age 3.11296 <0.0001 22.49 (14.80, 34.16) 2.72107 <0.0001 15.20 (8.59, 26.87)
Log of body mass index 0.79277 <0.0066 2.21 (1.25, 3.91) 0.51125 <0.0609 1.67 (0.98, 2.85)
Log of SBP if not treated 1.85508 <0.0001 6.39 (3.61, 11.33) 2.81291 <0.0001 16.66 (8.27, 33.54)
Log of SBP if treated 1.92672 <0.0001 6.87 (3.90, 12.08) 2.88267 <0.0001 17.86 (8.97, 35.57)
Smoking 0.70953 <0.0001 2.03 (1.75, 2.37) 0.61868 <0.0001 1.86 (1.53, 2.25)
Diabetes 0.53160 <0.0001 1.70 (1.37, 2.11) 0.77763 <0.0001 2.18 (1.63, 2.91)
∗The 10-year risk for women can be calculated as 1 − 0.94833exp(Σ𝛽𝑋−26.0145), where 𝛽 is the regression coefficient and 𝑋 is the level for each risk factor; the
risk for men is given as 1 − 0.88431exp(Σ𝛽𝑋−23.9388).
∗∗Estimated regression coefficient.

the known CVD episodes from the records. To interpret
the risk percentage obtained with the information of the
CVD episodes, weighted statistical analysis was performed
to optimally classify the cases and controls using the training
data.

For the training data, this threshold was found to be
22.3%, and this was used on the test data to separate the case
and control. According to the parameters in FEq, the samples
that were above the age of 79 were “not classifiable.”

2.4. Logistic RegressionAnalysis (LRA). LRAdevelops a linear
equation to best model a database with multiple features and
two outcomes. Linear regression is performed to maximize
the separation between the two outcomes. Consider that
there are 𝑝 samples in the database that belong to two classes,
and there are 𝑛 features (predictors). With the two classes,
(i) CVD and (ii) no-CVD, logistic regression using the
probability function was used to determine the relationship
between the predictors. This was based on the conditional
probability and described in the equation below:

𝑃 (CVD | 𝑋) = 𝑒
𝛽0+𝛽1𝑥1+⋅⋅⋅+𝛽𝑝𝑥𝑝𝑛

1 + 𝑒

𝛽0+𝛽1𝑥1+⋅⋅⋅+𝛽𝑝𝑥𝑛

.
(1)

In this equation, the probability of CVD based on the predic-
tor vector𝑋 is obtained by considering each predictor, 𝑥, and
𝛽 is the regression coefficient which indicates the relevance
of the predictor or the contribution of the predictor on the
outcome class. LRA was trained to obtain the parameters
of each feature using the training section and tested using
the test section of data (as described in Data Management).
The default value 𝑃(CVD | 𝑋) > 0.5 was used for
classification. The prediction was performed on the test data
(𝑛 = 510 subjects) and compared with prior knowledge of
the CVD episodes. The weaknesses of Framingham equation
with 79 years being the limit of the age and having predefined
coefficients have been overcome by LRA.

2.5. Support Vector Machine (SVM). SVM is a set of related
supervised learning methods that are used for prediction
and regression analysis with applications in fields such as
clinical and population based data [25], text classification,
bioinformatics, handwriting recognition, and image analysis.
These have to be trained using examples and do not require
the user to define the relationship between the various
factors. They are suitable for situations where appropriate
and representative examples of all the different categories
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Table 3: Potential risk features ranked by weights obtained using support vector machine (SVM) feature selection [20], Blue Mountains Eye
Study 10-year follow-up data.

Rank Attribute SVM weight
1 Age (per 1 year) 3.21660913
2 Body mass index (per 1 kg/m2) 0.15610062
3 Current smoker (past/never smoked) 0.06839195
4 Gender (male/female) 0.05784681
5 Total cholesterol (per 1mmol/L) 0.04203396
6 Systolic blood pressure (per 1mmHg) 0.01872727
7 High-density lipoprotein cholesterol (per 1mmol/L) 0.01231242
8 Diabetes (versus no diabetes) 0.00610169
9 Medication for hypertension (versus no medication for hypertension) 0.00104436
10 Retinopathy (yes/no) 0.00064500
11 Diastolic blood pressure (per 1mmHg) 0.00023068

(classes) are available. SVM have the advantage that these
do not require linear relationships or independence between
the input features and thus are more suitable for clinical data
classification.

As a first step, the SVM was trained using the training
subset (refer to Data Management) which was used as the
input to the SVM and the target output was the known
history of CVD episodes (as defined earlier) during the 5 to 10
years after time zero. The parameters for the SVM, Kernel, 𝐶,
and 𝛾 were identified using grid search method reported by
Bergstra and Bengio [26].Thismethod [26] exhaustively gen-
erates possible values from a grid of the following specified
two parameter values:

(i) first with linear kernel and 𝐶 values in (1, 10,
100, 1000),

(ii) the second one with an RBF kernel and the cross
product of 𝐶 values ranging in (1, 10, 100, 1000) and
gamma values in (0.001, 0.0001).

All possible combinations of parameter values were fitted
on the dataset and evaluated with an output score. Based on
the score the following parameter values were used in this
study:

(i) Radial Basis Function (RBF) Kernel,
(ii) 𝐶 = 100,
(iii) 𝛾 = 0.01.

This SVM model was used to rank the parameters in
terms of their relevance based on theweights obtained during
the training (Table 3) [20].The trained SVMwas tested using
the subsample of the test dataset (510 samples). This strategy
ensured that the test data was independent of the training
data. Diagnostic odds ratios were calculated [17] to compare
its performance with the Framingham model and logistic
regression analysis.

3. Results

Table 3 shows the relevance of the features as obtained from
the ranking of logistic regression coefficients obtained for

BMES dataset, while Table 4 reports the ranking of these
features based on SVM weights. Comparing the results from
Tables 2–5, it is observed that the highest three relevant
factors (features) are the same for the three methods [1]: age,
BMI, and current smoker.

A confusion matrix shows the extent of the mislabelling
performed by the prediction algorithm. Tables 5–7 show the
confusion matrices for FEq, LRA, and SVM, respectively.
Each row represents the instances in a predicted class, while
each column represents the instances in an actual class. From
these results, it is observed that the correct prediction using
FEq was 40, using LRA was 50, and using SVM was 71 from
a total of 104 CVD cases.

The confusion matrices also show that the number of
false positives when the prediction was performed using
Framingham was 108, using SVMwas 57, and using LRA was
68. The results also show that the number of cases that were
falsely identified to be controls by FEq were 37, 54 by LRA,
and 33 by SVM. However, while SVM and LRA classified all
the test samples (104 cases and 406 controls), there were 27
cases and 46 controls that were unclassifiable by FEq because
of the age of these people being above 79 years. This is a
major limitation for FEq, especially when we have an ageing
population with significant population being older than 79
years.

The sensitivity and specificity obtained from SVM anal-
ysis, logistic regression, and FEq are shown in Table 8. This
table also lists the range for 95% confidence interval (CI) of
the data. Sensitivity obtained from the FEq was 0.52 (95% CI:
0.4096 to 0.6275), from the LRA was 0.48 (95% CI: 0.3817
to 0.5809), and from the SVM was 0.682 (95% CI: 0.589
to 0.764). This shows that the sensitivity of the FEq and
logistic analysis is comparable, while that of SVM is better and
thus provides better risk assessment. This is also confirmed
with the ROC analysis curve as shown in Figure 1 and it
is also observed from the area under ROC curve (AUC)
corresponding to SVM which has the highest coverage
(Table 8).

From Table 8, it is observed that specificity of the SVM
classifier (0.859) was the highest when compared with FEq
(0.70) and LRA (0.832). It is also observed that the diagnostic
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Table 4: Regression coefficients and associated statistics obtained from BMES dataset for male and female subjects.

Feature

Male Female

Coefficient 𝜌 Odds ratio
95%

confidence
interval

Coefficient 𝜌 Odds ratio
95%

confidence
interval

Age (per 1 year) 0.0144 <0.00001 1.015 (1.012, 1.017) 0.0110 <0.00001 1.011 (1.009, 1.012)
Body mass index (per 1 kg/m2) 0.0084 0.0024 1.008 (1.002, 1.013) 0.0018 0.2317 1.002 (0.998, 1.004)
Current smoker (versus past or
never smoker) 0.0911 0.0005 1.095 (1.042, 1.153) 0.0749 0.0003 1.078 (1.034, 1.122)

Systolic blood pressure (per
1mmHg) 0.0003 0.5700 1.000 (0.999, 1.001) 0.0003 0.3416 1.000 (0.999, 1.0009)

Medication for hypertension
(versus no medication for
hypertension)

−0.0042 0.8589 0.995 (0.953, 1.039) 0.0218 0.1521 1.022 (0.992, 1.0219)

Diabetes (versus no diabetes) 0.0460 0.1834 1.047 (0.979, 1.119) 0.0080 0.7852 1.008 (0.951, 1.067)
Total cholesterol (per 1mmol/L) 0.0131 0.1615 1.013 (0.995, 1.032) 0.0016 0.8052 1.002 (0.989, 1.014)
High-density lipoprotein
cholesterol (per 1mmol/L) 0.0202 0.4524 1.020 (0.969, 1.074) 0.0046 0.7828 1.005 (0.972, 1.037)

Logistic regression constant 𝛽0 for male = −5.70203; logistic regression constant 𝛽0 for female = −5.30218.

Table 5: Confusion matrix using Framingham equation (FEq).

Test negative Test positive Not classifiable Total
No cardiovascular disease 252 108 46 406
Cardiovascular disease 37 40 27 104
Total 289 148 73 510

Table 6: Confusion matrix using logistic regression analysis (LRA).

Test negative Test positive Not classifiable Total
No cardiovascular disease 338 68 0 406
Cardiovascular disease 54 50 0 104
Total 392 118 0 510

Table 7: Confusion matrix using support vector machine (SVM).

Test negative Test positive Not classifiable Total
No cardiovascular disease 349 57 0 382
Cardiovascular disease 33 71 0 128
Total 382 128 0 510

Table 8: Sensitivity and specificity for SVM, Framingham model, and logistic regression model with diagnostic odds ratio.

Parameter Model based on SVM classifiers Framingham risk model LRA model
Value 95% CI Value 95% CI Value 95% CI

Sensitivity 0.682 0.589 to 0.764 0.52 0.4096 to 0.6275 0.48 0.3817 to 0.5809
Specificity 0.859 0.8224 to 0.89 0.70 0.6508 to 0.745 0.83 0.7926 to 0.8675
Positive
likelihood ratio 4.863 3.697 to 6.396 1.73 1.326 to 2.261 2.87 2.14 to 3.85

Negative
likelihood ratio 0.369 0.278 to 0.491 0.69 0.539 to 0.871 0.62 0.52 to 0.75

Diagnostic odds
ratio 13.173 7.999 to 21.696 2.523 1.529 to 4.162 4.602 2.892 to 7.324

AUC 0.71 0.57 0.63
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Figure 1: ROC graph for SVM, LRA, and FEq.

odds ratio was significantly higher for SVM (13.17) when
compared with FEq (2.52) and LRA (4.602) and indicates
that SVM is more effective in the diagnostic test. The AUC
test shows that the SVM results were greatly improved (0.71)
compared with Framingham (0.57) or LRA (0.63).

The statistical significance test between the sensitivity and
specificity of prediction was performed by comparing the
AUCmeasured from theROC curves for SVM, LRA, and FEq
[18, 19]. When comparing the SVM technique with LRA and
FEq, there were significant differences between SVMand FEq
(𝑃 < 0.0002) and also LRA (𝑃 < 0.02).

4. Discussion

These findings show that there are a large number of unclas-
sifiable cases and controls when using Framingham equation
(FEq) due to the age constraints of the equation and in this
database, 27 cases corresponding to∼26%of all caseswere not
classifiable.This is a major weakness because with our ageing
society significant amount of the population is older than 79
years. The results show that only 40 out of total 104 cases
were identified correctly. LRA classified all samples and 50
of the 104 cases were identified correctly and SVM identified
71 cases correctly. This shows that while LRA overcame some
of the limitations, it was not sufficient and the labelling of the
outcome lacked sensitivity and specificity.

The results also showed that that there were a large
number of false positives by FEq and 108 out of total of 406,
or approximately 27% of the controls were misclassified to be
case. This number reduced to 68 (∼17%) when the LRA was
used and 57 (∼14%) when the SVM was used. The diagnostic
odds ratio for FEq is 2.52, LRA is 3.05, and SVM is 13.17. SVM
gave the highest correct predictions, lowest false positives,
and false negatives and classified all the samples.

This study has shown that machine learning approach
gave significantly better AUC. The study also demonstrated
that the health parameters identified using Framingham
model are relevant for other populations such as Blue Moun-
tains in Australia, but when the weaknesses of the earlier
model are overcome using machine learning approach, it
should be noted that in this study SVM is an example of
machine learning classifiers and was selected as an example
to demonstrate the effectiveness of using machine learning
based health parameter classification.

5. Conclusions

This study has compared the linear model and SVM
approaches to classify the health features that are used by
Framingham equation. To ensure that there is no bias due to
differences in the database, all the analyses were performed
on one database, BMES, which is a population based database
that is well regarded for quality, duration, and size [14].

LRA and FEq are based on linearity assumption.However
the FEq parameters were determined historically using Fram-
inghamdatabase while LRAwas trained on the local database
to classify all subjects irrespective of the age. This would
explain why LRA had improved true positive prediction of
CVD (50 comparedwith 40), but there was also an increase in
the false negatives (54 comparedwith 37 for FEq).Overall, the
SVM performed significantly better. This may be attributed
to SVM not being restricted by linearity which allows for
nonlinear separation between the case and control class. It
may also be based on the database being local. In conclusion,
we propose that using an SVM with a local database may
provide improved risk assessment. However, this needs to be
tested on more databases and with more health parameters.
It is also important to note that this work has only used the
health parameters that were identified in Framingham study.
However, it is now established that there are a number of
other relevant parameters that need to be considered.Thus, it
is essential that new databases with all the health parameters
be developed and classified using SVM.

Support vectormachine and other similarmachine learn-
ing approaches are very useful in providing the flexibility
that is lacking in linear models. However, there is the
shortcoming that such an approach is a black-box approach
and it is essential that training data should be balanced and
representative of the complete database. There are also the
difficulties for data points that may appear as outliers. This
is often difficult to control and erroneous training can lead
to incorrect outcomes. Thus, it is essential for the test results
to be monitored by the experts. It is also important for the
software to automatically identify the outliers which would
trigger supervised assessment.
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