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Role of vocal tract characteristics
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Japanese macaques (Macaca
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The Japanese macaque (Macaca fuscata) exhibits a species-specific communication sound called

the “coo call” to locate group members and maintain within-group contact. Monkeys have been
demonstrated to be capable of discriminating between individuals based only on their voices, but there
is still debate regarding how the fundamental frequencies (F0) and filter properties of the vocal tract
characteristics (VTC) contribute to individual discrimination in nonhuman primates. This study was
performed to investigate the acoustic keys used by Japanese macaques in individual discrimination.
Two animals were trained with standard Go/NoGo operant conditioning to distinguish the coo calls of
two unfamiliar monkeys. The subjects were required to continue depressing a lever until the stimulus
changed from one monkey to the other. The test stimuli were synthesized by combining the FOs and
VTC from each individual. Both subjects released the lever when the VTC changed, whereas they did not
when the FO changed. The reaction times to the test stimuli were not significantly different from that
to the training stimuli that shared the same VTC. Our data suggest that vocal tract characteristics are
important for the identification of individuals by Japanese macaques.

Many studies have suggested that primates, including humans, can identify individuals by listening to their vocal-
izations. The pygmy marmoset (Cebuella pygmaea) recognizes other group members as individuals'. Rendall
and colleagues demonstrated that rhesus macaques (Macaca mulatta) can also distinguish the species-specific
communication “coo calls” of kin from those of non-kin and distinguish among the coo calls of close kin using a
habituation-dishabituation paradigm?®. Adult squirrel monkey (Saimiri sciureus) mothers are able to distinguish
the voices of their own infants from those of other juvenile individuals®. Several other species, including vervet
monkeys (Chlorocebus pygerythrus)*, Japanese macaques (Macaca fuscata)®, and rhesus macaques®, also exhibit
the ability to identify their infants based on voice alone. These studies indicate that the identification of individu-
als by their vocalizations is important for many primates.
: Despite the behavioural significance, there are still debates regarding how non-human primates identify indi-
* viduals from their vocalizations and about the neural mechanisms underlying individual vocal identification.
. Most monkey vocalizations are harmonically structured such as human vowels because the vocal mechanism
in monkeys are the same as those of humans’-!1. The periodic opening and closing of the vocal folds generates
pulses during vocalizations. The repetition rate of the pulses determines the fundamental frequency (F0) of the
vocalization and is perceived as pitch. As pulses created by the vocal folds pass through the vocal tract, the vocal
tract characteristics (VTC) produce resonances and enhance/dampen particular frequency bands; these are called
the formants. It has been well documented that both pitch and formant are highly important in primate commu-
nications, whereas how each acoustic characteristic contributes to vocal identification is not fully understood.
Several lines of evidence suggest that the formants created by the filter characteristics of the VTC play signif-
icant roles in the acoustic distinctiveness of individual primates, including humans. Bachorowski and Owren'?
analysed phonemes of speech in humans and showed that vocal tract filtering may contribute to individual iden-
tification. Owren et al.!® analysed the vocalizations of female chacma baboons (Papio ursinus) and suggested
that the acoustical features of vocal tract filtering may reflect individuality. The resonance of vocal tract filtering
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may affect individual identification in rhesus macaques'* and lemurs (Eulemur rubriventer)™. In addition to the
formants, statistical analyses of the acoustic features of the FO0, such as the beginning frequency and maximum
frequency, indicate that the FO can be a reliable cue for identifying callers in several monkey species'®!. In rela-
tively recent research by Ceugniet and Izumi, Japanese macaques were trained to discrimination the vocalizations
of different monkeys, and the subjects responded to the F0 as a discriminant stimulus for the task, which suggests
that the FO contributes to individual discrimination!.

In the present study, we used the contact calls of Japanese macaques to study individual vocal recognition.
Green’ acoustically analysed and classified the vocalizations of Japanese macaques in the field and reported that
Japanese macaques have several types of call. As a result of Green’s work, many other research groups have also
focused on studying vocalization behaviours, and the Japanese macaque has become one of the most valuable and
well-studied non-human primate models. These macaques exchange a coo call with one another when listening
to the calls of other troop members". The function of vocal exchange has been discussed in terms locating other
individuals and maintaining within-group communication’. This study was performed to investigate the relative
importance of acoustic cues (i.e., formant and pitch) in individual vocal recognition in Japanese macaques. We
used operant conditioning and speech-processing techniques to systematically compare and quantify the percep-
tual contribution of each acoustic parameter.

Results

Two Japanese macaques (subject 1 and subject 2) were trained to discriminate the coo calls of Monkey A (cooA,
supplemental audio 1) and Monkey B (cooB, supplemental audio 2) with standard Go/NoGo operant condition-
ing (Fig. 1). Both the cooAs and cooBs were recorded from unfamiliar monkeys, meaning that the subjects had
no prior experience with either cooA or cooB. The trial began when the monkey pushed a lever. The subjects were
required to continue to depress the lever while the calls from the same monkey were presented repeatedly (NoGo
trial). When the stimulus was changed from one monkey to another (Go trial), the subjects had to release the
lever within 800 ms from the offset of the stimulus (Fig. 2) to receive a reward. The test stimuli were synthesized
by combining the F0 of one individual and the vocal tract characteristics (VTC) of the other individual (Fig. 3,
supplemental audio 3 and 4, FO_,,-VTC,,.p Was synthesized from the F0 of cooA and the VTC of cooB, whereas
F0,o5-VTC,oa Was generated from the FO of cooB and the VTC of cooA). All of the test stimuli were presented
after cooB was repeated. Both the Go response rates and reaction times (RTs) were measured to quantify the
perceptions. In this procedure, a higher Go response rate and shorter RT to a test stimulus suggested that the
stimulus was perceptually more similar to cooA.

Subject 1 and 2 needed 20 and 25 days of trainings respectively to learn to distinguish between the sets of
cooAs and cooBs. Two days before the test day, the monkeys scored correct response rates of 82% (subject 1:
d’=1.85, Hit=_80%, FA =16%) and 76% (subject 2: d’ = 1.38, Hit=75%, FA = 24%). The day before the test day,
the correct response rates were 78% (subject 1: d’ = 1.54, Hit =75%, FA =19%) and 71% (subject 2: d’=1.13,
Hit="77%, FA =65%). The Go response rates to the training stimuli in the test day did not differ from those in
the training day. In the test day, the correct response rates of subject 1 and subject 2 to the training stimuli were
76% (d’'=1.49, Hit=72%, FA =20%) and 73% (d’=1.30, Hit = 81%, FA = 34%), respectively, suggesting that the
subjects maintained the same discriminatory performance with the training stimuli throughout the experiment.
The Go response rates to the test stimuli for the two monkeys are illustrated in Fig. 4. The Go response rates to
FO_y0a-VTC,,op (Fig. 4), which had the same FO as the Go stimulus (=cooA) and the same VTC as the NoGo
stimulus (=cooB), of subjects 1 and 2 were 16.7% and 33.3%, respectively. The Go response rates of subjects 1 and
210 FO,y03-VTCy0a (Fig. 4) were 83.3% and 83.3%, respectively. Our data revealed that FO,,,3-VTC,,,, triggered
more Go responses from both monkeys than F0_,,,-VTC,y0p.

The RTs to the test stimuli were examined to quantify the perceptual similarity of the stimuli**-?. The median
RTs of subjects 1 and 2 to FO,,5-VTC,,s Were 800 (interquartile range: 753-800) ms and 800 (391-800) ms,
respectively. In contrast, the median RTs of subjects 1 and 2 to F0,,,p-VTCo,4 Were 368 (276-592) ms and 230
(161-499) ms, respectively (Fig. 5). The median RTs to FO,,4-VTC,op and FO,,p-VTC,,,, Were compared with
those to the training stimuli. Because the test stimulus was 60 dB sound pressure level (SPL), the training stimulus
with same 60 dB level was treated as a comparison stimulus. The stimulus was presented 40 and 45 times to sub-
jects 1 and 2, respectively, in the test day. Of those repetitions, 3 (in subject 1) and 4 (in subject 2) presentations
were excluded from the analyses because the monkeys’” heads were not oriented towards the speaker during the
presentations. The RTs to FO_,,5-VTC,,,4 Were not significantly different from those to the Go stimulus (cooA)
in either subject 1 (FO_,o5-VTCo0a: 368 (276-592) ms, Go stimulus: 416 (351-558) ms; p=10.93) or subject 2
(FOp05-VTCpoa: 230 (161-499) ms, Go stimulus: 226 (108-321) ms; p =0.33). Additionally, the median RT of
subject 1 to the NoGo stimulus was 800 (800-800) ms and that of subject 2 was 800 (581-800) ms. There were no
significant differences between the RTs of either subject to FO_,,4-VTC,,p and the NoGo stimuli in the test day
(Fig. 5, subject 1:p=0.93; subject 2: p =0.88).

Discussion

We used acoustic synthesis and analysis software to systematically quantify the relative importance of acoustic
characteristics (i.e., the VTC and the temporal structure of the FO) when the monkeys identify callers. The behav-
ioural data suggest that the animals perceived the FO_,,,-VTC,,.p as the same as cooB, whereas they perceived
FO,o05- VT C04 as the same as cooA instead of recognizing them as intermediate between the two stimuli. When
only the VTC was switched from one type to the other, the subjects still responded as if the call type had tran-
sitioned, whereas the animals did not respond if only the temporal pattern of FO changed (Fig. 4). The subjects’
behavioural responses revealed that the VTC played a critical role in distinguishing the stimulus sets, suggesting
that monkeys relied more on the VTC than on the temporal pitch patterns in discriminating caller identity. The
difference in the temporal pattern of the FO may have been too small to enable the monkeys to differentiate the
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Figure 1. Acoustic characteristics of the stimulus coo calls. (a) Spectrograms of the coo calls from the two
monkeys. Top panel: the coo calls of Monkey A (cooA). Bottom panel: the coo calls of Monkey B (cooB).
These monkeys were unfamiliar to the subjects, and the recorded calls were modified such that they had the
same durations, amplitude envelopes, and average fundamental frequencies (FOs). The subjects were trained
to discriminate between the cooAs and cooBs. The right-most calls were used to synthesize the test stimuli. (b)
Temporal pitch patterns of the coo calls of the two monkeys. Closed circles: the mean temporal pitch pattern
of the coo calls of Monkey A; open circles: those of Monkey B. Error bars: standard deviations. Although the
FOs were normalized, the two stimulus sets varied in terms of both the end frequency and the time of the FO
peak. (c) Power spectra of the cooA (solid line) and cooB (dash line) stimuli. (d) Linear predictive coding
spectra of example cooA (solid line) and cooB (dash line). The data illustrate the differences in the vocal tract
characteristics (VTCs) of the two monkeys.

stimulus set, but we believe that this was not the case. Hopp et al.>* studied the sensitivity of Japanese macaques
to the peak position of FO in synthesized coo calls and demonstrated that trained animals were able to detect
changes in the peak position of as little as 20-50 ms in smooth early high coos. The FO of the cooA peak was ear-
lier than that of the cooB peak by approximately 60 ms (the peak position of the vocalizations of Monkey A was
195422 ms and that of Monkey B was 134 45 ms [average & standard deviation]). Thus, the subjects were able
to distinguish the stimulus sets using the peak position of the vocalizations in this experiment.

Monkeys are also able to discriminate vocalizations using the end frequencies of the stimuli. A previous study
using pure-tone bursts of 1000 Hz revealed that Japanese macaques are able to distinguish frequency differences
as small as 33 Hz (i.e., a difference of approximately 3%). In our stimulus set, the mean frequencies of the stimuli
were normalized, and the temporal patterns of FO were maintained (Fig. 1b). Therefore, the end frequencies of
cooA were lower than those of cooB by approximately 120 Hz (cooA: 578 = 57 Hz; cooB: 706 4= 26 Hz) or 15%.
Thus, it is reasonable to assume that the subjects were able to distinguish the stimulus sets according to the end
frequency in addition to the peak timing.

There are still several questions that remain to be answered. Whereas the past studies described above suggest
that the monkeys were able to discriminate our stimulus sets by the temporal patterns of F0. It is probable that
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Figure 2. Schematized trial event sequence. Upper trace: the timing of the stimulus. Middle trace: the
response of the animal. Lower trace: the timing of the reward. The subjects were required to depress a lever
switch for 200 ms to begin the trial. Then, cooA (open hexagon: NoGo stimulus) was presented 3-7 times with
an interstimulus interval (ISI) of 800 ms. During the repetitions, the type of cooA (out of the total of six, Fig. 1a)
and the intensity of the stimulus (57, 60, and 63 dB SPL) were randomly changed. The subjects were required

to continue depressing the lever while cooA was repeated. If cooB (Go stimulus) was presented, the subjects
were required to release the lever within 800 ms after the offset of the cooB to receive a reward. After a correct
response to a Go stimulus, the stimulus contingencies were reversed in the next trial. That is, cooA became the
Go stimulus, and cooB became the NoGo stimulus. In the test trials, cooA was replaced with a test stimulus, and
the stimulus was presented after cooBs were repeated as the NoGo stimuli. Neither a reward nor a punishment
followed the test trial.
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Figure 3. Methods for the synthesis of the stimuli. The test stimuli were synthesized by combining the F0s
and the VTCs from different animals. Orange line: the FO of Monkey A; light blue line: the FO of Monkey B. Red
line: the linear predictive coding spectrum of Monkey A; blue line: the linear predictive coding spectrum for
Monkey B. FO_,,-VTC,,p (bottom left) was synthesized from the FO of Monkey A (orange) and the VTC of
Monkey B (blue), whereas FO,,,5-VTC,,4 (bottom right) was created from the FO of Monkey B (light blue) and
the VTC of Monkey A (orange).
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Figure 4. Go response rates to the test stimuli. The Go response rates to FO_,,5-VTC.o,4 (subject 1: 83.3%,
subject 2: 83.3%) of each monkey were higher than the Go response rates to FO_,,,-VTC s (subject 1: 16.7%;
subject 2: 33.3%). Both monkeys responded to FO_,,,-VTC,,,g as they did to a coo call of Monkey B, whereas
they responded to FO_,,5-VTC,,,4 as they did to a coo call of Monkey A. The solid line and the dotted line
represent the Hit and FA rate of the test day, respectively.
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Figure 5. Comparisons of the reaction times (RTs) to the training and test stimuli for the two subjects.
There were no significant differences in the RTs to FO,,,5-VTC,0, (subject 1: 368 (276-592) ms, subject 2: 230
(161-499) ms, median (interquartile range)) and cooA (subject 1: 416 (351-558) ms, subject 2: 226 (108-321)
ms) in the training trials or in the RTs to FOy,4-VTC,,.p (subject 1: 800 (753-800) ms, subject 2: 800 (391-800)
ms) and cooB (subject 1: 800 (800-800) ms, subject 2: 800 (581-800) ms) in the training trials for the two
subjects. Box plots represent the median (horizontal line) and interquartile range (box) of the indicated
distribution. Each plot point represents the reaction time of each trial. N.S.: not significant.

the FO differences were sufficiently salient for use as discriminative cues compared with the VTCs. In contrast, the
significance of the VTCs in the monkeys’ discrimination does not necessarily mean that the VTC is only cue that
used for individual discrimination. To address these questions, we would need to quantify the contribution (if
any) of the FO to the discrimination using synthesized calls without differences in VTC (i.e., vocal signals with the
same VTC that differ only in the F0) and also measure the perceptual threshold of the FO components. In addition
to those studies, because our data demonstrated that the speech-processing techniques (STRAIGHT?®) provide
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reliable behavioural data, we can now create a stimulus continuum between different individuals and systemati-
cally investigate the relationships between the acoustic parameters and vocal identification.

As described in non-primate species?”-?%, the formants embedded in the acoustic structures of nonhuman pri-
mate calls provide cues about the physical characteristics of the caller®!>132728, A previous study using a preferen-
tial looking paradigm suggested that untrained rhesus monkeys use formants as indexical cues of age-related body
size?. Fitch and Fritz** also demonstrated that nonhuman primates can perceive formant shifts in species-specific
vocalizations. Owren®*? demonstrated that trained vervet monkeys can use formants to discriminate between
their alarm calls in a manner similar to that used by humans to distinguish speech sounds. Similar to humans,
with training, Japanese macaques exhibit exquisite sensitivity to different formant frequencies®. These results
indicate that formants are biologically significant in the vocal communication of many primate species.

In addition to formants, pitch has also been demonstrated to be important for communication. Japanese
macaques are regarded as sensitive to the temporal patterns of the F0, particularly in coo calls, because the peak
temporal position differentiates the call type; i.e., smooth early high and smooth late high®. The F0 has also been
reported to differ between individuals in several primate species, and the FO is a statistically significant determi-
nant of caller identity'®'”. To our knowledge, however, there have been only a few attempts to directly compare
the importance of the VTC and F0 in identification. Ceugniet and Izumi'® trained two Japanese macaques to dis-
criminate the vocalizations of different individuals using operant conditioning; these authors demonstrated that
macaques judge individuality via a combination of both the VTC and the frequency of the F0. Thus, the dominant
acoustic cues in the determination of individuality in non-human primates are still largely unknown. Our data
indicated that the formant frequencies generated by the VTC were preferentially used over the FO temporal struc-
tures to discriminate the stimulus sets, which strengthens the suggestion that the formant structure is significant
for the perception of conspecific sounds and also possibly for individual identification.

This experiment was performed to determine the primary cues that are used for the identification of individ-
uals. However, the monkeys may have only discriminated between the features of two sets of vocalizations rather
than identifying the individual the caller. Further studies are required to determine whether monkeys perceive the
stimulus sets as the vocalizations of two different monkeys.

Conclusions

Many primates, including humans, can discriminate individuality based only on listening to vocalizations. Our
experiments directly compared the relative importance of acoustic parameters in Japanese macaques, and the
results suggest that VTCs are more important for discriminating the caller than the temporal structure of the
fundamental frequency.

Materials and Methods

Subjects. Two male Japanese macaques (Macaca fuscata) were used in this experiment. At the time of testing,
subject 1 was 7 years old and subject 2 was 10 years old. Each animal was kept in an individual primate cage under
a constant 13-h/11-h light/dark cycle. Their access to liquids was limited because water served as the positive rein-
forcement in the experiments. All procedures were conducted in accordance with guidelines established by the
Ethics Review Committee of Doshisha University, and the experimental protocols were approved by the Animal
Experimental Committee of Doshisha University.

Experimental apparatus. The training and tests were conducted in a sound-attenuated room
(length x width x height of 1.70m x 1.85m x 2.65m). The monkey chair in which the subjects were seated dur-
ing the experiment was equipped with a drinking tube and a response lever. A loudspeaker (SX-WD1KT; Victor,
Tokyo, Japan) was positioned 58 cm in front of the subject’s head at the same height as the ears. All acoustic
stimuli were amplified (SRP-P2400; Sony, Tokyo, Japan), and the frequency response of the speaker was flattened
(£3dB) between 0.4kHz and 16 kHz with a graphic equalizer (GQ2015A; Yamaha, Hamamatsu, Japan). A white
light-emitting diode (LED) and a charge-coupled device (CCD) video camera were attached to the top of the
speaker. An LED was lit during training and test trials to provide lighting, and subjects were monitored using the
CCD camera.

Acoustic stimuli.  The sound stimuli were obtained from two adult male monkeys (Monkey A and Monkey B).
The coo calls of Monkey A (cooA) and Monkey B (cooB) were recorded using a condenser microphone (type
2142; Aco, Tokyo, Japan) and digital audio tape recorder (TCD-D8; Sony, Tokyo, Japan) with a resolution of 16
bits and a sampling rate of 44.1kHz. The monkeys (Monkey A and Monkey B) who provided the coo calls had
never encountered the subject monkeys (subjects 1 and 2), and this experiment was the first time that the subjects
heard the voices of the stimulus monkeys. Fourteen coo calls (seven from each monkey) with signal-to-noise
ratios > 40 dB were randomly selected from the recorded sounds.

The coo calls were analysed using STRAIGHT?® to measure three acoustic parameters of the coo calls: the fun-
damental frequencies (F0s), vocal tract characteristics (VTCs), and durations. Twelve coo calls (six coo calls per
individual) of the total of fourteen were used as training stimuli (cooAs and cooBs, Fig. 1). One coo call from each
monkey was not played during training, and these calls were used to synthesize the test stimuli. The test stimuli
coo calls were synthesized by combining the FOs and VTCs of the different individuals using STRAIGHT. Two
types of test stimulus were synthesized as probes. The FOy,,-VTC,,,p stimulus was synthesized from the FO of
cooA and the VTC of cooB, whereas the other test stimulus, FO_,,3-VTC,y,4, Was generated from the F0 of cooB
and the VTC of cooA (Fig. 3). The call durations were equalized to 517 ms (i.e., the average of all of the calls) via
linearly time-stretching or compressing with STRAIGHT. With this manipulation, the duration of the original
call was modified by 10% in the most extreme case. The root-mean-square (RMS) envelopes were calculated with
a 512-point (12 ms) window, and the amplitude envelopes of all calls were normalized to average shape (Fig. 1a).
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The overall amplitudes of stimuli were digitally modified and calibrated (with a microphone: type 7016; Aco) at
to yield three different sound pressure levels (SPL, re: 20 pPa), i.e., 57, 60, and 63 dB, at the position of the head.
That is, three different SPL stimuli were generated for each stimulus type. The fundamental frequencies of all of
the calls were also modified, and the temporal average of the FO was normalized to 733 Hz (i.e., the average of all
of the original calls, Fig. 1b), and the vocal tract characteristics remained unmodified (Fig. 1¢,d). In this study, we
only use the synthesized stimulus for a test. Untrained cooA and B were never presented to the subjects, and were
saved for a subsequent report.

Procedure. We employed standard Go/NoGo operant conditioning in this study. The event sequence of the
trials is schematically illustrated in Fig. 2. The subjects were required to depress the lever switch on the monkey
chair for 200 ms to begin the trial. Then, the calls from a single subject, either Monkey A or Monkey B, were
repeated 3-7 times. In each repetition, the call type was randomly selected from 18 different types of call (6
types of coo call x 3 intensities from the same monkey). The interstimulus interval between adjacent stimuli was
800 ms. While the calls from the same monkey were presented (NoGo trial), the subjects were required to con-
tinue depressing the lever (correct rejection: CR). In other words, after a CR response, the next stimulus automat-
ically began as long as an animal continued to hold the lever. After 3 to 7 repetitions, the stimulus was changed
from one monkey to the other (Go trial). The subjects were required to release the lever within 800 ms of the offset
of the stimulus (Hit). After a Hit response, the next trial did not begin until an animal depressed the lever again.

For example, a trial began with the repetitive playback of cooAs (NoGo stimulus). In the repetition, the indi-
vidual cooA (of the total of six) and the intensity of the stimulus (57, 60, and 63 dB SPL) were changed randomly.
The subjects were required to continue depressing the lever while cooA was repeated. When cooB (Go stimulus)
was presented, the subjects were required to release the lever within 800 ms after the offset of the cooB. Hits
were reinforced with 2 ml of fruit juice. When the subjects released the lever during the repetition period of
the NoGo stimulus (false alarm: FA) or failed to release the lever within 800 ms after the Go stimulus (miss),
a 15-20s timeout period accompanied by the turning off of the LED was provided as feedback. After an FA or
miss response, a trial with same stimulus contingencies was provided. When the timeout period was over, the
LED was lit to inform the animal of the initiation of a new trial. If the subject responded successfully to the Go
stimulus, the stimulus contingencies were reversed in the next trial. That is, the next trial began with the playback
of cooB instead of cooA, and the subject had to release the lever when cooA was played to receive the reward.
Performance was measured as the correct response percentage (CRP: the total percentage of the Hits and CRs).
One hundred thirty to 160 Go trials (i.e., trials in which the stimulus changed from one monkey to the other)
and 650 to 800 NoGo trials were presented per day to both subjects. After the subjects’ scores exceeded the CRP
threshold (70%) for two consecutive days, they proceeded to the test day. A test stimulus was presented, after cooB
was repeated 5 times, and each type of test stimulus was played 6 times. The test trials were interleaved with 10-20
training trials. Neither reward nor punishment followed the test trial.

Statistical analysis. We measured both the Go response rates and RTs (the time period between the end
of each stimulus and the release of the lever switch). If the subjects did not release the lever within the 800 ms
response period, the RT was regarded as 800 ms for the analysis. The CCD camera on the speaker allowed us
to monitor the behaviour of each subject, and if the subject did not look straight into the speaker during the
sound playback, the data in the trial were excluded from the analysis. The RTs to the test (FO,,,3-VTC.o04 and
FO,,oa-VTC,,0p) and training stimuli were analysed by Mann-Whitney U test using a commercial statistical soft-
ware package (SPSS 21; IBM Armonk, NY, US).
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