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Abstract

Automated phenotype identification plays a critical role in cohort selection and bioinformatics 

data mining. Natural Language Processing (NLP)-informed classification techniques can robustly 

identify phenotypes in unstructured medical notes. In this paper, we systematically assess the 

effect of naive, lexically normalized, and semantic feature spaces on classifier performance for 

obesity, atherosclerotic cardiovascular disease (CAD), hyperlipidemia, hypertension, and diabetes. 

We train support vector machines (SVMs) using individual feature spaces as well as combinations 

of these feature spaces on two small training corpora (730 and 790 documents) and a combined 

(1520 documents) training corpus. We assess the importance of feature spaces and training data 

size on SVM model performance. We show that inclusion of semantically-informed features does 

not statistically improve performance for these models. The addition of training data has weak 

effects of mixed statistical significance across disease classes suggesting larger corpora are not 

necessary to achieve relatively high performance with these models.
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Introduction

With the proliferation of electronic health records (EHR) in recent years, automated 

phenotyping for cohort selection has become an area of growing interest for the biomedical 

informatics community (Pathak, Kho, & Denny, 2013). Despite a wide array of focused 

work, many challenges still persist for delivering practical phenotyping technologies 

including high-throughput generalized algorithms that are applicable across different 

diseases without the need for local- or domain-specific rules (Hripcsak & Albers, 2013). 

Commonly structured EHR-related information such as ICD-9 codes have been shown to be 

insufficient for producing state-of-the-art performance (Liao et al., 2010) which is why 

many phenotyping systems employ semantically-informed Natural Language Processing 

(NLP) methodologies to unlock the unstructured data contained in clinical narratives 

(Denny, 2012). Currently, 34 out of 47 published phenotyping algorithms on the eMERGE 

(McCarty et al., 2011) Phenotype KnowledgBase include NLP components (https://

phekb.org/ Accessed: February 13th 2015) .

Problem Definition

In this paper, we systematically assess the effect of feature spaces, feature weights, and 

support vector machine (SVM) kernels on model performance on a phenotyping task as the 

training data is roughly doubled. To do this, we cast the document-level multi-label 

classification task set out in the 2014 i2b2/UTHealth shared task as a series of five 

document-level binary classification tasks (one per disease) consistent with the phenotype 

identification literature. Concretely, given a document from our test set, our goal is to 

identify the presence (or not) of five different diseases in each patient for each medical 

record. The five diseases we identify are: obesity, atherosclerotic cardiovascular disease 

(CAD), hypertension, hyperlipidemia, and diabetes. Using this task as our test bed, we 

assess the effect of minimally normalized, lexically normalized, and semantically-informed 

feature spaces on phenotype identification, with various weighting schemes, kernels, and as 

the training data is doubled. Our primary motivation is not to create the highest performing 

system possible but to implement reasonable systems and assess the impact of common 

feature spaces, feature weights, kernels and their combinations on overall system 

performance. Because of the high cost of annotating data for supervised NLP and machine 

learning tasks, we also investigate the effect of doubling training data on model 

performance. To do this, we exploit overlapping annotations from the 2008 i2b2 Obesity 

Challenge shared task (Uzuner, 2009) and the 2014 i2b2/UTHealth shared task. We evaluate 

a broad array of models on the 2014 test corpus using the 2008 and 2014 training corpora, 

and a combined 2008/2014 training corpus.

Related Work

NLP-informed machine learning algorithms have been shown to be successful in identifying 

patients with rheumatoid arthritis (Carroll, Eyler, & Denny, 2011; Chen et al., 2013), 

diabetes (Wright, McCoy, Henkin, Kale, & Sittig, 2013), colorectal cancer, and venous 

thromboembolism (Chen et al., 2013), in risk adjustment for ICU patients (Marafino, 

Davies, Bardach, Dean, & Dudley, 2014) and for smoking history detection (Khor et al., 

2013). In several instances, these methods have been successfully ported across institutions, 
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demonstrating the robustness of the NLP-informed machine learning approach to patient 

phenotyping (Carroll et al., 2012; Wright et al., 2013). A broad array of tools, techniques 

and ontologies have been developed for incorporating biomedically-relevant semantic 

information into machine learning techniques.

One approach for semantically-informed machine learning-based phenotype identification 

leverages the fixed vocabulary of the Unified Medical Language System's (Bodenreider, 

2004; Lindberg, Humphreys, & McCray, 1993) (UMLS) concept unique identifiers (CUIs). 

The UMLS is a metathesaurus that knits together a wide array of medical vocabularies and 

provides, among other things, lexical and conceptual crosswalks between constituent 

terminologies. Many machine-learning approaches to phenotype identification preprocess 

patient clinical narratives to extract CUIs for use as features. these CUIs are then used, either 

alone or in concert with other structured EHR information (e.g., ICD-9 codes), for predicting 

patient membership in a particular phenotype (Bejan, Xia, Vanderwende, Wurfel, & 

Yetisgen-Yildiz, 2012; Chen et al., 2013; Wei, Tao, Jiang, & Chute, 2010). The process of 

identifying medical concepts and resolving them to a fixed vocabulary from arbitrary text is 

not a trivial problem (Bodenreider, 2008). Luckily, several mature tools exist for expediting 

the process.

MetaMap (formerly MMtx) is a commonly used tool for extracting medical concepts from 

free-form text and mapping them to the controlled vocabulary of UMLS CUIs (Aronson, 

2001). It has a proven track record for high-throughput indexing of medical documents 

based on semantic content (Aronson & Lang, 2010).

Machine learning techniques to NLP often involve complex pipelines that include 

normalization, tokenization, sentence breaking, stopping, stemming, word sense 

disambiguation, part of speech tagging, and information extraction (Manning & Schütze, 

1999). Overall system performance can be attributed to many different steps in that pipeline 

and the effect of a particular implementation choice on system performance is often unclear. 

From an engineering perspective this can be critically important. Not all steps in the pipeline 

are equally easy to implement or maintain in a production environment (Sculley et al., 

2014). A systematic understanding of the tradeoffs in performance associated with 

individual implementation decisions can lead to better overall system design and user 

acceptance (Davis, 1989).

Feature extraction and selection is one area of pipeline design that is critically important to 

system success. For example, Bejan et al. (2012) used a binary classifier for identifying 

pneumonia; comparing word n-grams, UMLS concepts and assertion values associated with 

pneumonia expressions. Using clinical notes from 426 patients, they showed statistical 

feature selection had a substantial improvement over a baseline system that used the 

complete set of features. Carrol et al. (2011) saw significant improvement using a SVM over 

a rule-based system using an expert-defined feature set for phenotype identification of 

rheumatoid arthritis. Carrol et al. argued that with a curated feature set it should be possible 

to achieve state--of-theart performance using 50 to 100 annotated documents. Using simple 

bag-of-words features, Wright et al. (2013) employed SVMs to identify diabetes across 

different institutions using 2000 progress notes (1000 from each institution) achieving F1 
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measures of 0.934 and 0.935, respectively. They found that stop word filtering, feature 

selection, negation extraction, and named entity recognition did not substantially improve 

performance over a bag of words. Training data size continues to be a key motivating factor 

in system development (Khor et al., 2013). Annotation of medical data can be difficult and 

costly especially if private health care information must first be identified and removed. As a 

result, a wide and inconsistent array of training data sizes are reported in the literature and it 

is not always clear how increasing or decreasing training data size will affect reported model 

performance.

In general, literature has shown that machine learning algorithms with simple feature spaces 

and relatively straightforward applications of biomedical NLP tools for semantic feature 

extraction can perform well on particular phenotypes, and on records sourced from different 

hospitals. It is unclear how overall performance of these methods is affected by training 

corpus size, feature spaces, feature weighting schema, and SVM kernel choices. This paper 

addresses this gap by systematically comparing the effect of a number of well-established 

feature spaces and feature weighting schemes on classifier performance with various kernels 

as training data is roughly doubled.

Background

One of the purposes of the 2014 i2b2/UTHealth shared task was to create a NLP challenge 

that represented a culmination of the previous shared tasks (Stubbs, Kotfila, Hua, & Uzuner, 

2015). Like previous i2b2 shared tasks, the 2014 challenge includes smoking history, 

identification of obesity and a selection of its comorbidities, medication identification, and 

temporal classification of medical events. By design, certain aspects of the 2014 i2b2/

UTHealth shared task contain highly similar annotations with previous i2b2 shared tasks. 

For instance, the 2008 i2b2 Obesity Challenge includes annotations for diseases that overlap 

with the 2014 i2b2/UTHealth annotations.

In 2008, 30 teams participated in the Obesity Challenge which required teams to develop 

systems for identifying presence or absence in a patient of obesity and fifteen comorbidities 

based on information from unstructured narratives of medical discharge summaries. The 

Obesity Challenge task was defined by two experts who studied 50 pilot discharge 

summaries from the Partners HealthCare Research Patient Data Repository. The experts 

identified fifteen frequently-occurring comorbidities including CAD, diabetes mellitus, 

hypercholesterolemia, and hypertension. Obesity Challenge systems were required to make 

textual and intuitive judgments for each document and each disease. Textual judgements 

were based on direct references to the diseases in the discharge summary. Intuitive 

judgements were based on some amount of reasoning on the part of the expert annotators. 

Textual judgements for each disease fell into four classes: present, absent, questionable, or 

unmentioned. Intuitive judgements fell into three classes: present, absent, and questionable. 

For example, the statement “the patient weighs 230 lbs and is 5 ft 2 inches” would lead to a 

textual judgment of ‘unmentioned’ for obesity and an intuitive judgement of ‘present’ (i.e., 

obesity is not directly mentioned but can be inferred from the height and weight 

measurements). Intuitive judgements were primarily intended for the interpretation of textual 

judgements that fell into the unmentioned category.
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In 2014, 27 teams participated in the i2b2/UTHealth shared task which required teams to 

develop systems for identifying diseases, medications, family history of CAD, and smoking 

status across a temporally-ordered series of unstructured medical notes for individual 

patients. Unlike the 2008 Obesity Challenge, disease annotations in the 2014 shared task 

marked only positive (e.g., present) instances of each disease. Neither directly-negated 

textual evidence nor inferred absence of a disease was marked. In addition to the presence of 

a disease, a temporal and indicator component were included with all 2014 disease 

annotations. The time component had acceptable values of “before document creation time” 

(before DCT), “during document creation time” (during DCT) and “after document creation 

time” (after DCT). It was possible to have multiple disease tags with separate time 

components in each document. The indicator component included values such as ‘mention’ 

and ‘event’ as well as values that were specific to each disease (e.g., ‘high bp.’ for 

hypertension, or ‘high chol.’ for hyperlipidemia). For a detailed overview of the 2014 

challenge, its construction, and its participants see Stubbs et al. (2015).

The task tackled in this paper is a subset of the 2014 task that overlaps with the 2008 task. 

Namely, we focus on the component of the 2014 task that would be a key component of any 

phenotyping system: disease identification. Accordingly, we leverage the disease annotations 

in the 2014 shared task corpus but make no attempt to classify the time or indicator 

components. We utilize the 2008 data in support of our explorations of effects of data size in 

addressing this task on the 2014 data.

Data

The data used in this study originated from two separate i2b2 shared tasks: The 2008 

Obesity Challenge training data, and the 2014 i2b2/UTHealth shared task corpus. Models 

were trained on the 2008 training set, on the 2014 training set, and on a combined 

2008/2014 training set. Models were evaluated on the 2014 i2b2/UTHealth test set. The 

2014 training corpus contains 790 documents and the 2008 training corpus contains 730 

documents. Both 2014 and 2008 documents were drawn from Partners HealthCare Research 

Patient Data Repository. 2008 data consists solely of discharge summaries, whereas the 2014 

data is a diverse combination of discharge summaries, admission notes, and emergency 

department visit notes. Documents for the 2008 challenge were chosen for patients who 

were overweight or diabetic (Uzuner, 2009). For the 2008 challenge each discharge 

summary corresponded to a single patient. The 2014 challenge corpus was designed to track 

the progression of heart disease in diabetic patients, and it included three to five notes per 

patient representing the longitudinal medical record and the history of the patient. Roughly a 

third of the patients in this set had CAD as a precondition, a third of patients were diagnosed 

with CAD over the course of the patient history contained in this data set, and a third were 

not diagnosed with CAD by the final discharge summary available for that patient in this 

data. Documents for both the 2008 and 2014 training corpora contain unstructured and 

quasi-structured free form text. While the text includes sections, such as lists of medications 

and tables of lab results, none of these document characteristics are explicitly annotated or 

guaranteed to be present.
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The 2014 data includes five disease classes, all of which also appear in the 2008 data. Unlike 

the 2008 data, the 2014 annotation guidelines do not include an explicit notion of textual and 

intuitive document-level classification of diseases. In order to make the 2008 and 2014 data 

consistent in their treatment of textual and intuitive judgments, we adopted a naive approach 

to combining them. We mapped both sets of document-level classifications to binary 

outcome variables for the intersection of the diseases in both corpora. Conceptually, the 

outcome variable is 1 if a disease is present in the patient (based on the contents of the 

document) and zero otherwise. Mapping the 2008 data to a binary outcome variable meant 

considering both the textual and intuitive judgements of the 2008 annotators. We collapsed 

these judgements into our binary outcome variable by using the following rules: if a 

judgment is textually present and intuitively present, the outcome variable is 1. If a judgment 

is textually questionable and intuitively absent, the outcome is 0. If a judgment is textually 

questionable and intuitively present, the outcome variable is 1. Finally, if a judgment is 

textually absent and intuitively absent, the outcome variable is 0. Fourteen (14) annotations 

that included questionable textual or intuitive judgements were dropped. These rules are also 

outlined in Table 1.

In the 2014 corpus, it is possible to have multiple annotations with the same disease if there 

are either multiple indications for that disease or multiple time components. For the 2014 

corpus, our outcome variable took on the value of 1 for a disease if that disease classification 

was present regardless of the indicator or time components of the annotation. Multiple 

disease annotations were mapped to a 1 for that disease for that document. Absence of a 

disease tag for a document meant our outcome variable took the value of zero for that 

disease in that document. The indicator components in the 2014 annotations provide a 

potentially more sophisticated mapping between the 2008 and 2014 data. In certain cases, 

indicators in the 2014 annotations such as “waist circumference” for obesity or “A1C” for 

hyperlipidemia could be considered similar to positive ‘intuitive’ judgments in the 2008 

data. Empirical validation of the relationship between the two data sets at this level was 

beyond the resources of the authors (e.g., re-annotating 2008 data following the 2014 

guidelines). Because of this we did not explore the opportunities to map these datasets at 

that level; instead favoring a more simplified mapping between 2008 and 2014 annotations 

as described above.

Table 2 provides descriptive statistics comparing the 2008, 2014, and combined 2008/2014 

training data. It includes token counts for minimally normalized tokens, lexically normalized 

tokens, and UMLS CUI tokens (see Methods for definitions). The support section details the 

number of annotations of each disease in each of the three training corpora. The overall 

distribution of disease annotations is relatively consistent between the 2008 and 2014 

training corpora with the exception of the obese class which is present in 18.8% of the 2014 

corpus, 39% of the 2008 corpus, and 28.5% of the combined 2008/2014 corpus. This is 

consistent with the intentional bias of the 2008 i2b2 Obesity Challenge toward patients who 

have obesity.
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Methods

To address the five document-level binary disease classification tasks, we utilize 

SVMs.SVM classifiers have seen wide use in the phenotyping literature (Marafino et al., 

2014; Shivade et al., 2014; Wright et al., 2013).

We investigated three baseline feature spaces (1) minimally normalized token features 

(referred to as “Min”), (2) lexically normalized token features (referred to as “Lex”), and (3) 

UMLS CUI token features (referred to as “CUI”). Each of the three baseline feature spaces 

were then combined to create Min & Lex, Min & CUI, Lex & CUI, and Min, Lex & CUI 

combined feature spaces for a total of seven (7) feature spaces. Documents were represented 

as vectors in these feature spaces and individual document features were tested with two 

weighting schema, (1) documents of scaled count features (See: Weighting Schema section) 

and (2) documents with term-frequency inverse document frequency weighted (tf-idf) 

features. Each of the seven feature spaces (three baseline, four combined) were separately 

weighted with the two weighting schema (count, and tf-idf) producing 14 total feature-

space, weight combinations. These feature spaces and weighting schema were selected 

because of their wide representation in the literature on phenotyping algorithms and more 

generally in statistical modeling of language (Manning & Schütze, 1999).

Feature Spaces

Minimally normalized tokens were generated by processing the raw text of the documents to 

remove numbers and non-alphabetical characters. All text was converted to lowercase. A list 

of 127 common stop words were removed and tokens were split based on sequences of one 

or more contiguous white space characters. Lexically normalized tokens were generated by 

passing unformatted document text directly to the LuiNorm tool provided by the Lexical 

Systems Group of the UMLS (McCray, Srinivasan, & Browne, 1994). This mapped all 

Unicode symbols to ASCII, split ligatures, stripped diacritics, removed genitives and 

parenthetic plural forms, replaced punctuation with spaces, removed stop words, lowercased 

all words, uninflected each word, and mapped it to a randomly chosen canonical form.

Finally, each document in the corpus was converted to a set of UMLS CUIs using MetaMap 

(Aronson & Lang, 2010). MetaMap's performance is significantly reduced if it tries to parse 

entire unstructured documents and so the Stanford CoreNLP (Finkel, Grenager, & Manning, 

2005) sentence breaker was used to pre-process each document into sentences. Raw 

unnormalized sentences were then fed into MetaMap and candidate CUIs were collected. If 

a word or phrase in the text produced multiple candidate CUIs, each candidate was included 

in the final feature space. CUIs were then used as tokens in count and tf-idf weighted feature 

spaces. Current versions of MetaMap perform built-in negation extraction following 

Chapman's (2001) NegEx algorithm. Negated CUIs were treated as separate features from 

their nonnegated counterparts. CUIs were filtered to only include the “Sign or Symptom” 

(sosy) and “Disease or Syndrome” (dsyn) semantic types due to computing constraints and 

the large volume of CUIs that are created by MetaMap's default options. MetaMap was run 

using the 2013AB release of the UMLS USAbase strict and base data sets.
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Weighting Schema

Count vector representations of documents were created by converting the training and test 

document collections to token-document matrices. Tf-idf weighted vector representations of 

documents were generated by transforming count feature spaces following traditional 

information retrieval methods (Manning, Raghavan, & Schütze, 2008). Several tf-idf 

weighting variants were tested including natural and logarithmic term frequency weighting 

in combination with L1 and L2 term vector normalization. The best overall tf-idf weighting 

scheme was determined to be logarithmic term frequency weighting using L2 term vector 

normalization and was applied uniformly to each tf-idf weighted feature space. Count vector 

feature weights were centered by removing the mean of the features’ weights and scaling the 

weights to unit variances. This was done because SVMs are not scale invariant, and certain 

SVM kernels are sensitive to large variations in feature values (Joachims, 1998; Manning, 

Raghavan, & Schütze, 2008). This is not an issue for tf-idf weighted features because the 

weighting process accounts for issues like document length. Our count vectors however, are 

susceptible to variation in feature values and so as a matter of best practice we center and 

scale them to unit variance.

Feature Selection

The K best features were selected using a univariate parametric filter based on a one way 

ANOVA F-test (Heiman, 2001, p. 349; Saeys, Inza, & Larrañaga, 2007). One way ANOVA 

F-test was selected because after count scaling and tf-idf weighting our features become 

continuous variables. In this context Chi-squared tests are no longer meaningful. The 

parameter K (i.e., number of features) was chosen from a fixed set of values and jointly 

optimized along with classifier parameters (see next paragraph). Finally, during pre-

processing CUI were limited to “Sign or Symptom (sosy)” and “Disease or Syndrome 

(dsyn)” semantic types. While the primary motivation for doing this was practical (i.e., 

computing constraints and the volume of CUI produced from a clinical narrative), it also 

tacitly participates in the feature selection process.

Classifiers

Classification was performed with two different SVM kernels: a linear kernel and a 

Gaussian radial basis function (RBF) kernel. The linear kernel SVM was implemented using 

LibLinear (Fan, Chang, Hsieh, Wang, & Lin, 2008). The RBF kernel SVM was implemented 

using LibSVM (Chang & Lin, 2011). The penalty parameter of the SVM error term and, in 

the case of the RBF kernel SVM, the kernel coefficient, were optimized using a brute force 

grid search across an exponential parameter space. Parameters for models trained on the 

2008, 2014, and combined 2008/2014 corpora were validated and selected independently, 

based on the maximum average F1 measure in five-fold cross-validation. Final parameter 

values are reported in the supplemental materials.

Linear and RBF kernel SVMs were trained on each individual feature space using the 2008, 

2014 and the combined 2008/2014 training corpora. Taking the combination of three 

separate training datasets, two different SVM kernels and 14 weighted feature spaces gives 

us 84 total models for evaluation per disease or 420 models total across the five diseases. 

The final 420 models were evaluated using precision, recall and F1 measure, following the 
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same method outlined in Stubbs et al. (2015). These metrics were calculated against the gold 

standard i2b2/UTHealth 2014 test set which was transformed using the same process as the 

2014 training set to generate binary outcome variables for presence or absence of each 

disease in each document. F1 for each model is reported in the Results section. Values for 

precision and recall can be found in the supplemental materials.

Statistical Significance Testing

Statistical significance was determined between all pairs of classifiers, weighting schemes, 

and feature spaces within a particular disease. Significance was determined using 

approximate randomization following Chinchor (1992) and Noreen (1989). Approximate 

randomization involves generating N pseudo-systems and comparing the difference in 

performance between these pseudo-systems with the difference in performance of the actual 

systems. Given two systems for comparison such as system A and system B, pseudo-system 

A’ and pseudo-system B’ are generated by randomly swapping approximately 50% of 

system A's document level predictions with the corresponding predictions made by system 

B. The performance of A’ is then compared to B’. We keep track of the number of times (n) 

the difference in pseudo-system performance is greater than the difference in actual system 
performance. If (n + 1) / (N + 1) is greater than a cutoff alpha, then we can consider the 

difference in systems performance to be explained by chance. Intuitively, if system A and 

system B are not different, then swapping 50% of their system output should have little 

impact on system A or system B's performance. If system A's performance is significantly 

better than system B's performance then swapping 50% of their system output should, on 

average, make system A worse and system B better. By comparing the actual system 

difference, to the average pseudo-system difference we can get a sense of whether or not the 

difference in performance between the two systems is significant. For this study we used an 

N = 9,999 and report cut-off values of alpha at 0.1 and alpha at 0.05. These values are 

consistent with with both the current and previous i2b2 NLP challenges (Stubbs et al., 2015; 

Uzuner, Luo, & Szolovits, 2007).

Robustness Checks

Once the best performing models in each disease class were identified, robustness checks 

were run to ensure the task was sufficiently complex to warrant statistical classifiers of this 

nature. The top performing model for each disease was re-trained on the corpus that 

provided the best performance, using the same baseline or combined feature space, without 

weighting (i.e., binary presence or absence of minimally normalized, lexically normalized 

and/or CUI tokens) and then evaluated on the test set. To determine if rule-based approaches 

were sufficient to achieve comparable performance, decision tree classifiers with a 

maximum tree depth of three were evaluated on the corpus and binary feature space of the 

top performing model for each disease. In the case of both unweighted SVMs and decision 

tree classifiers, performance was statistically significantly worse than the weighted SVM for 

all diseases.

Results

The following tables contain F1 measure results for all models on the 2014 i2b2/UTHealth 

test set with document-level binary outcome variables for diseases. There is a separate table 
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for each of the five diseases: obesity, CAD, hypertension, hyperlipidemia, and diabetes. 

Each row represents the combination of an SVM classifier labeled by its kernel (RBF, 

Linear), the vector weighting scheme (tf-idf, count) and the feature space (Min, Lex, CUI, 

Min & Lex, Min & CUI, Lex & CUI, Min, Lex & CUI). F1 measures for models trained on 

the 2008, 2014, and combined 2008/2014 data are reported in the ‘2008’, ‘2014’ and 

‘Combined 2008/2014’ columns, respectively. The percentage change in F1 measure for 

each model, between each training data, is also reported in the “% Change 2008, 2014”, “% 

Change 2008, Comb.”, and “% Change 2014, Comb” columns, respectively. These should be 

read “Percentage change from A to B”. The statistical significance of these changes is 

marked with an asterisk (“*”) for differences at alpha = 0.1 and two asterisks (“**”) for 

differences at alpha = 0.05.

The highest performing model for each disease has been emphasized. The table is sorted on 

the column that contains the highest performing model in descending order. Models with F1 

measures that are statistically significantly different from the highest performing system at 

alpha = 0.1 are marked with a double dagger (“††”) and systems that are statistically 

significantly different from the highest performing system at alpha = 0.05 are marked with a 

single dagger (“†”). To ease visual identification of the group of models that are not 

statistically different from the highest performing model at alpha = 0.1, we have marked 

them with a dark grey background. We refer to this group as the top performing group. 

Models that are not statistically different at alpha 0.05 have been marked with a light grey 

background. Tables for models’ precision and recall can be found in the supplemental 

materials.

Obesity

The highest performing model for obesity was a SVM with an RBF kernel trained on a tfidf 

weighted feature space of combined minimally normalized, lexically normalized, and CUI 

tokens with an F1 measure of 0.945. Out of 84 total models for obesity, the highest 

performing model was statistically not different (alpha = 0.05) in F1 measure to 56 other 

models ranging in F1 measure from 0.945 to 0.898. 35.71% (20) models in this group were 

trained on the 2008 training corpus, 25.00% (14) were trained on the 2014 training corpus 

and %39.29 (22) were trained on the combined 2008/2014 training corpus. 48.21% (27) 

models were trained on tf-idf weighted vectors while 51.79% (29) of models used scaled 

count vectors. 39.29% (22) models used linear SVM while 60.71% (34) used RBF kernel 

SVM. 48.21% (27) models included a CUI feature space. A total of 50 features was selected 

by the top performing system. Several of the key features were: C0028754 (“Obesity”), 

obese, obesity, morbid, apnea, C0028756 (“Obesity, Morbid”), sleep, C0520679 (“Sleep 

Apnea, Obstructive”), and morbidly. A complete list of F1 measures broken down by SVM 

kernel, weighting scheme, and feature space, compared across training corpora, can be 

found in Table 3.

While 56 models were not statistically significantly different than the top performing model, 

12 models were statistically indistinguishable from the top performing model (i.e., these 12 

models had the same F1 measure of 0.945). These 12 models are primarily RBF kernel 

SVMs though one linear kernel is present; they are evenly split between count and tf-idf 
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weighting schemes. Feature spaces among these 12 models range from combined Min, Lex 

& CUI to simple minimally normalized (Min) suggesting that semantically-informed 

features are not necessary to identify the presence of obesity in the majority of cases for 

these medical records. An analysis of errors in model performance of these 12 models shows 

that 10 documents were consistently misclassified: nine false positives and one false 

negative. The nine false positives were due to either annotator error or use of modifying 

adjectives such as ‘minimally’ or ‘slightly.’ However, inclusion of phrase-based features 

may improve performance for obesity. For example, ‘sleep apnea’ which was encoded as 

‘sleep’ and ‘apnea’ lead to some obesity misclassifications for documents that included 

‘sleep’ but not in the context of ‘apnea.’

CAD

The highest performing model for CAD was an SVM with an RBF kernel trained on a tf-idf 

weighted feature space of Min. tokens with a F1 measure of 0.891. Out of 84 total models 

for CAD, the highest performing model was not statistically different (alpha = 0.05) in F1 

measure from 12 other models ranging in F1 measure from 0.883 to 0.868. 50.00% (6) were 

trained on the 2014 training data and 50.00% (6) were trained on the combined 2008/2014 

training data. 100.00% (12) models were trained on tf-idf weighted vectors. 25.00% (3) 

models used linear SVM while 75.00% (9) used RBF kernel SVM. 41.67% (5) models 

included a CUI feature space. A total of 50 features were selected by the top performing 

models. Several of the key features were: coronary, cad, artery, lad, disease, cabg, rca, 

cardiac, catheterization, aspirin, stent, plavix, circumflex, cath, and angina. A complete list 

of F1 measures broken down by SVM kernel, weighting scheme, and feature space, 

compared across training corpora, can be found in Table 4.

Out of the five disease classes CAD models had the worst overall performance. The top 13 

models failed to correctly predict the presence of CAD in 70 unique documents with an 

average of six false negatives per model. CAD is consistently misclassified by 10 or more of 

the top 13 models in 22 different documents. One trend emerges in these 22 documents 

which were frequently misclassified for CAD – CAD was not the primary complaint or 

reason for admission. These models consistently misclassify CAD as absent for tags in the 

2014 test set that are marked with a time component of before DCT and an indicator of 

‘event’ or ‘symptom.’ Among the 22 frequently misclassified documents, this usually takes 

place in the patient history and includes a single feature for the entire document (e.g., 

“Patient history: CAD” where CAD is the only mention in the document). In these cases, 

there appears to be insufficient evidence for the NLP system to identify the patient as 

positive for CAD. Among false positives for CAD, section location (e.g., presence of CAD 

in family history section) and negation issues play a role. Inclusion of negated CUI concepts 

does not appear to sufficiently outweigh the presence of minimally normalized or lexically 

normalized features.

Hypertension

The highest performing model for hypertension was an SVM with a linear kernel trained on 

a count vector feature space of combined Min, Lex & CUI tokens with a F1 measure of 

0.957. Out of 84 total models for hypertension, the highest performing model was not 
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statistically different (alpha = 0.05) in F1 measure from 36 other models ranging in F1 

measure from 0.956 to 0.944. 19.44% (7) models in this group were trained on the 2008 

training data, 30.56% (11) were trained on the 2014 training data and 50.00% (18) were 

trained on the combined 2008/2014 training data. 50.00% (18) models were trained on tf-idf 

weighted vectors while 50.00% (18) of models used scaled count vectors. 38.89% (14) 

models used linear SVM while 61.11% (22) used RBF kernel SVM. 47.22% (17) models 

included a CUI feature space. A total of 10 features were selected by the top performing 

models. Several of the key features were: hypertension, htn, bp, and hyperlipidemia. A 

complete list of F1 measures broken down by SVM kernel, weighting scheme, and feature 

space, compared across training corpora, can be found in Table 5.

False negative predictions of hypertension appear to be systematically due to failure to 

contextualize high blood pressure measurements. For hypertension, of the 16 documents that 

34 or more of the top performing group failed to positively classify, 15 had time components 

of ‘during DCT’ and indicators of ‘high bp.’ Manual review of these documents indicated 

that few, if any, features selected for hypertension were present in these documents. To 

accurately classify these documents, models would have to identify blood pressure 

measurements in the text. In some contexts this could be done using regular expressions 

(e.g., presence of the string “BP: 110/70”) but in other contexts, results such as blood 

pressure are presented inline in semi-structured tab delimited tables. In these situations text 

marking a test such as blood pressure may be quite far from the test value (i.e., a column 

value “BP” in such a table may be several lines away from its value “110/70”). Determining 

blood pressure (as well as other lab results) in these cases would be significantly more 

complex. Presence of hyperlipidemia without a mention of hypertension appears to be the 

leading reason for false positives among the top performing group.

Hyperlipidemia

The highest performing model for hyperlipidemia was an SVM with an RBF kernel trained 

on a tf-idf weighted feature space of combined minimally normalized and CUI tokens with a 

F1 measure of 0.914. Out of 84 total models for hyperlipidemia, the highest performing 

model was not statistically different (alpha = 0.05) in F1 measure from 16 other models 

ranging in F1 measure from 0.904 to 0.887. 31.25% (5) models in this group were trained on 

the 2008 training data, 37.50% (6) were trained on the 2014 training data, and 31.25% (5) 

were trained on the combined 2008/2014 training data. 56.25% (9) models were trained on 

tf-idf weighted vectors while 43.75% (7) of models used scaled count vectors. 37.50% (6) 

models used linear SVM while 62.50% (10) used RBF kernel SVM. 81.25% (13) models 

included a CUI feature space. A total of 50 features were selected by the top performing 

models. Several of the key features were: hyperlipidemia, C0020473 (“Hyperlipidemia”), 

hypercholesterolemia, C0020443 (“Hypercholesterolemia”), lipitor, cholesterol, C0020538 

(“Hypertensive disease”), lad, cad, asa, htn, rca, plavix, ldl, and atorvastatin. A complete list 

of F1 measures broken down by SVM kernel, weighting scheme, and feature space, 

compared across training corpora, can be found in Table 6.

Five documents were consistently marked with a false positive and 15 with a false negative 

by 13 or more models. This made systematic error detection for hyperlipidemia difficult. 
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Like blood pressure, failure to capture the values of cholesterol tests led to an increase in the 

number of false positives. Additionally, use of single statements like ‘elevated lipids’ appear 

to be the only supporting evidence in many of the false negatives. While use of bigram or 

phrase based extraction methods may be more successful at identifying these features, it will 

not resolve overall lack of supporting features within the document.

Diabetes

The highest performing model for diabetes was an SVM with an RBF kernel trained on a tf-

idf weighted feature space of combined minimally-normalized and CUI tokens with a F1 

measure of 0.964. Out of 84 total models for diabetes, the highest performing model was not 

statistically different (alpha = 0.05) in F1 measure from 18 other models ranging in F1 

measure from 0.963 to 0.953. 33.33% (6) were trained on the 2014 training data and 66.67 

(12) were trained on the combined 2008/2014 training data. No models in of this group were 

trained on the 2008 training data. 83.33% (15) models were trained on tf-idf weighted 

vectors while 16.67% (3) of models used scaled count vectors. 22.22% (4) models used 

linear SVM while 77.78% (14) used RBF kernel SVM. 55.56% (10) models included a CUI 

feature space. A total of 50 features was selected by the top performing model. Several of 

the key features were: diabetes, C0011849 (“Diabetes Mellitus”), insulin, mellitus, 

C0011847 (“Diabetes”), dm, units, C0011860 (“Diabetes Mellitus, Non-Insulin-

Dependent”), nph, type, metformin, diabetic, glyburide, dependent and scale. A complete list 

of F1 measures broken down by SVM kernel, weighting scheme, and feature space, 

compared across training corpora, can be found in Table 7.

Of the 18 top performing models for diabetes, eight documents were consistently falsely 

marked positive by 16 or more models. False positives were generally due to use of 

qualifying adjectives such as ‘borderline’ or inclusion in sections not related to the patient 

(e.g., family history). In several cases, uses of sentence constructions like “explained that 

obesity predisposes patients to develop diabetes” caused problems for these models. Among 

false negatives, seven were shared by 16 or more models which failed to parse glucose 

readings. At least two documents were misclassified because of the infrequently used token 

“DMII” for diabetes mellitus 2.

Discussion

Overall performance across each disease class is relatively good despite the lack of complex 

domain specific feature engineering. F1 measure of the top performing group for diabetes 

ranges between 0.963 and 0.953, for hypertension between 0.956 and 0.944, for obesity 

between 0.945 and 0.898, for hyperlipidemia between 0.904 and 0.887, and for CAD 

between 0.891 and 0.868. At least for diabetes these numbers are consistent with Wright et 

al. (2013).

In our experiments, doubling the size of the training data did not in general provide 

statistically significant results. In the models where it was found to provide a statistically 

significant improvement, the magnitude of that improvement was usually small. Each top 

performing group of classifiers for each disease included classifiers that were trained on 

only the 2014 training corpus suggesting that, for these models, addition of the 2008 data did 
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not provide a statistically significant improvement over training with just the 2014 corpus. 

This begs the question, for each disease, at what point is there sufficient training data to 

achieve comparable performance to the top performing models trained on an entire corpus? 

Preliminary analysis of the top performing models’ learning curves suggests that this 

threshold varies with each disease. The top performing classifiers for obesity, diabetes and 

CAD appear to level off in performance between 200 and 300 training examples. On the 

other hand, performance of top performing models for hypertension and hyperlipidemia 

appear to level off between 500 and 600 examples. It is tempting to infer from this 

preliminary finding that binary identification of hypertension and hyperlipidemia is a 

“harder” task than obesity, diabetes and CAD. There are however, confounding factors 

related to corpus construction that provide an alternate explanation. For example, compared 

to other diseases, a disproportionate number of the top performing models for obesity were 

trained exclusively on the 2008 Obesity Challenge data. For CAD and diabetes, which were 

the focus of the 2014 challenge, all models trained on the 2008 data performed statistically 

worse (alpha = 0.1) than the highest performing CAD and diabetes models. This suggests 

that the initial conditions under which a corpus is designed can affect model performance 

and should be considered when comparing techniques across different corpora. More 

systematic analysis of classifier learning curves across the 2008, 2014 and combined 2008 

and 2014 corpora is needed to better quantify the relationship between corpus construction 

and classifier performance. This is an area we intend to investigate in future work.

The highest performing models for obesity, hypertension, hyperlipidemia, and diabetes 

included combined feature spaces of either minimally normalized, lexically normalized, and 

CUI tokens or minimally normalized and CUI tokens. Despite this, none of these systems 

was statistically significantly different at alpha = 0.1 than models that included individual 

non-semantically-informed feature spaces. Often these single feature space models were 

minimally normalized or lexically normalized and did not rely on the added semantic 

information of UMLS CUIs. CUI only features spaces are not included in any of the top 

performing groups with the exception of obesity. This leads us to the conclusion that 

semantic features as operationalized by UMLS CUI are not a statistically significant 

determining factor in our models. The CUI only baseline feature space fails to produce top 

performing models in the context of our data and the common weighting schemes and 

classifiers investigated in this research.

In both false negative and false positive errors, understanding lab values played a consistent 

role. While some documents include unstructured lab results in the body of the text, 

validated, structured EHR components are not included with the i2b2 corpora. While 

identifying lab values in clinical narratives was not a primary concern of this research, we 

expect that the addition of structured lab records in conjunction with rule-based feature 

extraction would likely resolve such lab-related misclassifications and improve overall 

model performance.To assess this, we considered leveraging a priori knowledge of annotated 

lab value textual spans from the 2014 annotations. Unfortunately the 2014 annotations 

guidelines only require annotators to mark the first instance of a lab value and only if that 

lab value suggests a positive presence of a disease. For example, mention of “BP: 140/90” in 

a summary would lead to a positive annotation for hypertension – but only if no other 

mention of hypertension appeared earlier in the document. A mention of “BP: 110/70” 
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would not lead to any annotation. Using the 2014 annotations as a proxy for structured lab 

values ‘as-is’ would provide a biased perspective on the impact of structured electronic 

health care record information on modeling false negative errors related to understanding lab 

values. Without additional annotations including positive and negative indicating values of 

lab results, it will be difficult to empirically determine the effect of structured lab values on 

our models.

In certain cases we observed false negative and false positive errors due to lack of proper 

phrase identification. In the case of obesity for instance we observed several false positives 

that we attribute to the presence of the feature ‘sleep’ but absence of the feature ‘apnea.’ 

This suggests that perhaps bi-gram or other phrase based approaches could improve overall 

performance.

Systematic testing of bi-gram features across all 420 models in conjunction with parameter 

tuning was not computationally feasible because of time constraints. We did however assess 

the impact of bi-gram features on the top performing models. In no case did bi-grams 

produce better overall performance as measured by F1. In some cases (Obesity and CAD) 

models with bi-gram features were found to not be statistically significantly different (alpha 

= 0.1) than the top performing model in terms of F1. In general it appears addition of bi-

grams caused the feature space to become overly noisy. While features such as ‘diabetes 

mellitus’ are selected, other less meaningful bi-grams are included such as ‘dependent 

diabetes’, ‘history diabetes’ and ‘diabetes hypertension’ which appear to primarily rely on 

the presence of the unigram ‘diabetes’ for selection.

Despite inclusion of negated CUI features, negation was a consistent source of false positive 

errors. We believe this is related to unintended effects of combining feature spaces. As an 

example, in combined Min & CUI feature spaces phrases such as “negative for diabetes” 

included the negated CUI feature “nC0011847” but also the positive minimally normalized 

feature “diabetes.” In combined Min, Lex & CUI feature spaces this problem is intensified. 

Given the fragment “negative for premature coronary artery disease.” a combined Min, Lex 

& CUI feature space will include features ‘coronary’ and ‘artery’ from the Min feature 

space, as well as ‘coronary and ‘artery’ from the Lex feature space. Even if MetaMap 

correctly classifies this as a negated mention of CAD, the four features from the Min and 

Lex feature spaces outweigh the negated CUI feature and fragment would be misclassified 

as positive for CAD. Even in contexts where negation is not an issue, our feature selection 

strategy leads to undesirable repetition of features in combined feature spaces. This 

repetition can prevent important, but less common features such as abbreviations from 

appearing in our final feature space (e.g., ‘DMII’ for diabetes). As a result, while the top 

performing models frequently rely on combined feature spaces that include CUIs, the 

inclusion of semantically-informed features such as UMLS CUIs does not always improve 

overall performance. This research establishes the importance of minimally and lexically 

normalized features on model performance. However, to resolve the types of errors we 

observe in these models, the way in which semantic features are combined with minimally 

and lexically normalized feature spaces must be carefully considered. Univariate feature 

selection only considers individual features’ relationship to the outcome variable. Because 

each feature space is generated from the same underlying document, there are often several 
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identical features included in the combined feature spaces (e.g., ‘obese’ from the minimally 

normalized feature space and ‘obese’ from the lexically normalized feature space). Simple 

combinations of orthographically equal features across minimally normalized and lexically 

normalized feature spaces were investigated to determine the effect of this repetition on 

model performance. While this marginally changed the order of some models when ranked 

by F1, its effect on overall performance was negligible (i.e., top performing models 

remained the same and no model achieved a higher F1 measure). More sophisticated rule-

based strategies for collapsing these features could be employed as in Khor et al. (2013) but 

this begins to introduce domain specific knowledge that may or may not generalize well to 

different phenotypes or across documents from different institutions. An alternate approach 

would be collapsing highly co-linear features using dimensionality reduction techniques or 

pooling (Clemen & Winkler, 2007) using an aggregation function. Once collapsed, use of a 

more sophisticated feature selection method such as SVM L1 based recursive feature 

elimination (Guyon & Elisseeff, 2003; Guyon, Weston, Barnhill, & Vapnik, 2002) may 

improve overall performance.This is an area we intend to investigate in future work.

In general we found the counts of CUI features such as C0028754 (“Obesity”), and Min or 

Lex features such as “obesity” across documents to be highly similar. This leads us to 

believe there is a close relationship between the direct textual evidence for these diseases 

and the CUI that MetaMap generates. CUI features are particularly useful for 

disambiguating word meaning in the context of a sentence (e.g. “C0010453: 

Anthropological Culture”, and “C0430400: Laboratory Culture”). The highly co-linear 

nature of CUI features and their Min/Lex counterparts across our corpora suggests that 

identification of these phenotypes does not require significant semantic disambiguation. This 

provides some explanation for why we do not find CUI feature spaces to be statistically 

significant determining factor in our models. Importantly, a more systematic analysis of the 

textual spans of CUI tokens and Min & Lex features would be needed to empirically validate 

this claim..

Conclusion

In this paper, we systematically compared classifier performance on phenotype 

identification. Performance was compared across a wide array of weighted feature spaces 

including minimally normalized, lexically normalized, and UMLS CUI tokens. 

Combinations of these features were also evaluated and groups of top performing systems 

were identified. These groups ranged in performance and complexity. We found in many 

cases that simple feature spaces performed as well as combinations of feature spaces. 

Among the top performing groups in each disease, term frequency inverse document 

frequency weighting was found more often than count based weighting schemes, but was not 

found to be a statistically significant factor in determining model performance. SVM with 

RBF kernels generally outperformed linear kernels but all diseases included models with 

linear kernels that could not be found to be statistically significantly different than the top 

performing model for that disease. Finally, we tested classifier performance on the 

phenotype identification task using two small (730, & 790) training sets and a larger (1520) 

combined training set. In general, we found that doubling your data is not always necessary 

to get good performance with these feature spaces and models, for these phenotypes.
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Highlights

• Systematic assessment of common machine learning methods on 

document phenotype classification

• Five diseases studied: Obesity, CAD, Hyperlipidemia, Hypertension, 

and Diabetes

• Statistical testing of model performance using approximate 

randomization techniques

• As expected, semantic features (UMLS - CUI) present in most top 

performing models

• Unexpectedly, many models without semantic features not statistically 

significantly different from top performing model in each disease.
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Table 1

Mapping of textual & intuitive judgments to document-level binary outcome variable.

Textual Intuitive Outcome Support (# of annotations)

Present Present 1 1,897

Absent Absent 0 51

Unmentioned Present 1 73

Unmentioned Absent 0 1,208

Present Absent Removed 0

Absent Present Removed 0

Questionable Present Removed 1

Questionable Absent Removed 1

Questionable Questionable Removed 8

Unmentioned Questionable Removed 4
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Table 2

Descriptive parameters for the 2008 Obesity Challenge training corpus, the 2014 i2b2/UTHealth training and 

test corpora, and the combined 2008/2014 training corpus.

2008 Training Data 2014 Training Data Combined 2008/2014 Data 2014 Test Data

Number of Documents 730 790 1520 514

Unique:

    Minimally Normalized Tokens 45,213 46,461 77,037 34,946

    Lexically Normalized Tokens 23,502 18,880 33,417 15,119

    UMLS CUI Tokens
* 17,690 18,432 24,532 14,612

Support:

    Hyperlipidemia 314 (43.0%) 352 (44.6 %) 666 (43.8%) 249 (48.4%)

    Obese 285 (39.0%) 149 (18.8%) 434 (28.5%) 87 (16.9%)

    Diabetes 472 (64.7%) 536 (67.8%) 1008 (66.3%) 364 (70.8%)

    Hypertension 511 (70.0%) 602 (76.2%) 1113 (73.2%) 393 (76.4%)

    CAD 389 (53.3%) 344 (43.5 %) 733 (48.2%) 226 (43.9%)

*
Note: Only Sign or Symptom” (sosy) and “Disease or Syndrome” (dsyn) CUI were included due to the number of candidate CUIs produced. More 

details are available in the methods section.
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Table 3

Obesity: Comparison of F1 measure for obesity models between 2008, 2014 and combined 2008/2014 broken 

down by SVM kernel, weighting scheme, and feature space.

Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, Comb.

RBF tf-idf Min, Lex & CUI 0.930 0.945 0.945 1.65 1.65 0.00

RBF tf-idf Min 0.935 0.939 0.945 0.48 1.10 0.62

RBF tf-idf Lex 0.935 0.933 0.945 −0.16 1.10 1.26

RBF Count Lex 0.940 0.945 0.945 0.55 0.55 0.00

RBF tf-idf Min & Lex 0.940 0.945 0.940 0.55 0.00 −0.55

RBF Count Min, Lex & CUI 0.915†† 0.945 0.940
3.30

**
2.73

* −0.55

RBF Count Min & Lex 0.891†† 0.945 0.940
6.04

**
5.46

** −0.55

RBF Count Min & CUI 0.925 0.945 0.940 2.20 1.64 −0.55

RBF Count Min 0.940 0.921 0.940 −1.97 0.00 2.01

RBF Count Lex & CUI 0.935 0.940 0.940 0.55 0.55 0.00

Linear tf-idf Min & CUI 0.934 0.871†† 0.940
−6.73

** 0.62
7.89

**

RBF tf-idf Lex & CUI 0.940 0.945 0.939 0.55 −0.07 −0.62

RBF tf-idf Min & CUI 0.915†† 0.907†† 0.939 −0.87 2.66
3.56

*

Linear Count Min & CUI 0.923 0.892†† 0.933 −3.41 1.11 4.68

Linear Count Min 0.923 0.840†† 0.933
−9.05

** 1.11
11.18

**

Linear Count Lex 0.928 0.912† 0.933 −1.71 0.56 2.31

Linear Count Min, Lex & CUI 0.923 0.898† 0.928 −2.69 0.55 3.34

RBF tf-idf CUI 0.928 0.886†† 0.928
−4.49

** 0.00
4.70

**

Linear tf-idf Lex 0.929 0.913†† 0.926 −1.69 −0.35 1.36

Linear Count Min & Lex 0.909†† 0.940 0.922
3.39

** 1.44 −1.88

Linear tf-idf Min 0.940 0.906†† 0.921
−3.62

* −1.97 1.71

Linear tf-idf Min, Lex & CUI 0.899†† 0.906†† 0.920† 0.78 2.40 1.61

Linear tf-idf Min & Lex 0.940 0.913†† 0.905†† −2.83
−3.71

** −0.91

Linear Count Lex & CUI 0.945 0.892†† 0.903††
−5.66

**
−4.47

** 1.27

Linear tf-idf Lex & CUI 0.939 0.878†† 0.894††
−6.51

**
−4.80

** 1.83

Linear tf-idf CUI 0.867†† 0.846†† 0.821†† −2.42
−5.26

* ††2.92

RBF Count CUI 0.820†† 0.385†† 0.755††
−53.11

** −7.96
96.29

**

Linear Count CUI 0.693†† 0.316†† 0.370††
−54.44

**
−46.57

** 17.28

Note: For visual reference, models which are not statistically significantly different from the emphasized model at alpha = 0.1 are shaded in dark 
grey. Models which are not statistically significantly different from the emphasized model at alpha = 0.05 are shaded in light grey.

*
percent change significant at alpha = 0.05
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**
percent change significant at alpha = 0.1

†
statistically significantly different from highest performing model (emphasized above) at alpha = 0.05

††
statistically significantly different from highest performing model (emphasized above) at alpha =0.1
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Table 4

CAD: Comparison of F1 measure for CAD models between 2008, 2014 and combined 2008/2014 broken 

down by SVM kernel, weighting scheme, and feature space.

Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, Comb.

RBF tf-idf Min 0.841†† 0.896 0.878
6.54

**
4.37

** −2.03

RBF tf-idf Min, Lex & CUI 0.827†† 0.891 0.872
7.73

**
5.47

** −2.10

RBF tf-idf Min & Lex 0.829†† 0.883 0.871†
6.62

**
5.12

** −1.41

Linear tf-idf Min & Lex 0.805†† 0.882 0.843††
9.62

**
4.77

**
−4.42

**

Linear tf-idf Lex 0.815†† 0.881 0.844††
8.09

**
3.47

**
−4.28

**

RBF tf-idf Lex 0.748†† 0.875† 0.876
17.01

**
17.09

** 0.07

Linear tf-idf Min, Lex & CUI 0.793†† 0.875 0.846††
10.34

**
6.72

**
−3.28

*

Linear tf-idf Min 0.809†† 0.872†† 0.841††
7.87

**
3.96

**
−3.63

**

Linear tf-idf Min & CUI 0.788†† 0.868†† 0.861††
10.15

**
9.30

** −0.77

Linear tf-idf Lex & CUI 0.780†† 0.863†† 0.851††
10.60

**
9.06

** −1.39

RBF tf-idf Min & CUI 0.820†† 0.863†† 0.868†
5.16

**
5.77

** 0.58

RBF Count Min 0.727†† 0.861†† 0.830††
18.40

**
14.10

** −3.63

RBF Count Lex 0.792†† 0.858†† 0.833††
8.37

**
5.14

**
−2.97

*

RBF Count Lex & CUI 0.765†† 0.857†† 0.837††
12.00

**
9.41

** −2.31

RBF tf-idf Lex & CUI 0.782†† 0.855†† 0.881
9.29

**
12.68

** 3.10

Linear Count Lex & CUI 0.737†† 0.851†† 0.791††
15.51

**
7.33

**
−7.09

**

RBF Count Min & CUI 0.696†† 0.851†† 0.830††
22.23

**
19.16

** −2.51

RBF Count Min & Lex 0.670†† 0.844†† 0.843††
25.87

**
25.73

** −0.11

Linear Count Lex 0.698†† 0.841†† 0.814††
20.47

**
16.66

** −3.16

Linear Count Min, Lex & CUI 0.698†† 0.840†† 0.767††
20.32

**
9.86

**
−8.69

**

Linear Count Min & Lex 0.674†† 0.835†† 0.799††
23.89

**
18.51

**
−4.34

*

RBF Count Min, Lex & CUI 0.714†† 0.832†† 0.842††
16.57

**
17.89

** 1.13

Linear Count Min 0.682†† 0.825†† 0.795††
21.05

**
16.62

** −3.66

Linear Count Min & CUI 0.669†† 0.824†† 0.797††
23.30

**
19.20

** −3.32

RBF tf-idf CUI 0.608†† 0.689†† 0.732††
13.29

**
20.43

**
6.30

*

Linear tf-idf CUI 0.610†† 0.674†† 0.654††
10.65

**
7.31

* −3.01

RBF Count CUI 0.631†† 0.616†† 0.616†† −2.41 −2.46 −0.04
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Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, Comb.

Linear Count CUI 0.542†† 0.538†† 0.548†† −0.65 1.23 1.89

Note: For visual reference, models which are not statistically significantly different from the emphasized model at alpha = 0.1 are shaded in dark 
grey. Models which are not statistically significantly different from the emphasized model at alpha = 0.05 are shaded in light grey

*
percent change significant at alpha = 0.05

**
percent change significant at alpha = 0.1

†
statistically significantly different from highest performing model (emphasized above) at alpha = 0.05

††
statistically significantly different from highest performing model (emphasized above) at alpha =0.1
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Table 5

Hypertension: Comparison of F1 measure for hypertension models between 2008, 2014, and combined 

2008/2014 broken down by SVM kernel, weighting scheme, and feature space.

Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, Comb.

RBF Count Min, Lex & CUI 0.957 0.949 0.953 −0.84 −0.39 0.45

RBF Count Min & Lex 0.953 0.949 0.953 −0.45 0.00 0.45

RBF tf-idf Min & Lex 0.952 0.950 0.949 −0.18 −0.29 −0.11

RBF tf-idf Min, Lex & CUI 0.952 0.939†† 0.945††
−1.32

** −0.66 0.67

RBF tf-idf Min 0.951 0.944†† 0.952 −0.69 0.10 0.80

RBF tf-idf Min & CUI 0.949 0.941†† 0.939†† −0.84 −1.06 −0.22

RBF Count Lex & CUI 0.949†† 0.950† 0.953 0.04 0.42 0.38

Linear tf-idf Min, Lex & CUI 0.948† 0.930†† 0.956
−1.99

** 0.78
2.82

**

RBF Count Lex 0.948†† 0.950† 0.953 0.19 0.56 0.38

RBF Count Min 0.948†† 0.947†† 0.953 −0.04
0.59

* 0.64

RBF tf-idf Lex & CUI 0.947†† 0.946† 0.956 −0.08
0.96

** 1.04

Linear tf-idf Lex & CUI 0.946†† 0.942†† 0.955 −0.40 0.93
1.33

**

Linear tf-idf Min 0.944†† 0.941†† 0.952 −0.35 0.89
1.24

**

Linear Count Min & Lex 0.943†† 0.955 0.950†
1.23

** 0.66 −0.57

Linear Count Lex & CUI 0.941†† 0.944†† 0.948†† 0.30 0.78 0.47

RBF tf-idf CUI 0.938†† 0.905†† 0.933††
−3.51

** −0.53
3.08

**

Linear Count Lex 0.938†† 0.944†† 0.946†† 0.64 0.85 0.21

Linear Count Min, Lex & CUI 0.937†† 0.955 0.950†
1.87

**
1.29

* −0.57

Linear tf-idf Min & Lex 0.934†† 0.948 0.951
1.52

*
1.81

** 0.29

Linear Count Min 0.934†† 0.941†† 0.950† 0.83
1.70

** 0.86

Linear Count Min & CUI 0.931†† 0.941†† 0.950† 1.12
1.99

** 0.86

RBF tf-idf Lex 0.929†† 0.944† 0.937††
1.61

** 0.80 −0.80

RBF Count CUI 0.928†† 0.867†† 0.929††
−6.66

** 0.02
7.16

**

Linear tf-idf CUI 0.924†† 0.922†† 0.929†† −0.26 0.55 0.82

RBF Count Min & CUI 0.923†† 0.947†† 0.953
2.56

**
3.21

** 0.64

Linear tf-idf Lex 0.921†† 0.946† 0.941††
2.63

**
2.12

** −0.50

Linear tf-idf Min & CUI 0.906†† 0.941†† 0.952
3.77

**
5.01

**
1.20

*

Linear Count CUI 0.866†† 0.861†† 0.869†† −0.51 0.40
0.92

*
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Note: For visual reference, models which are not statistically significantly different from the emphasized model at alpha = 0.1 are shaded in dark 
grey. Models which are not statistically significantly different from the emphasized model at alpha = 0.05 are shaded in light grey

*
percent change significant at alpha = 0.05

**
percent change significant at alpha = 0.1

†
statistically significantly different from highest performing model (emphasized above) at alpha = 0.05

††
statistically significantly different from highest performing model (emphasized above) at alpha =0.1
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Table 6

Hyperlipidemia: Comparison of F1 measure for hyperlipidemia models between 2008, 2014 and combined 

2008/2014 broken down by SVM kernel, weighting scheme, and feature space.

Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, Comb.

RBF tf-idf Min & CUI 0.807†† 0.914 0.894
13.20

**
10.71

** −2.19

Linear tf-idf Min & CUI 0.879†† 0.900 0.887†† 2.36 0.91 −1.42

RBF Count Min & CUI 0.895 0.894 0.859†† −0.17
−4.02

**
−3.85

**

RBF tf-idf Min, Lex & CUI 0.859†† 0.892† 0.888†
3.82

**
3.39

** −0.42

RBF tf-idf Lex & CUI 0.879†† 0.892† 0.891† 1.47 1.42 −0.04

Linear tf-idf Min 0.781†† 0.889† 0.880††
13.90

**
12.68

** −1.07

Linear tf-idf Min, Lex & CUI 0.869†† 0.888 0.904 2.14
3.94

** 1.77

Linear tf-idf Lex & CUI 0.856†† 0.887 0.886††
3.58

*
3.46

** −0.12

RBF tf-idf CUI 0.855†† 0.884 0.874††
3.31

**
2.25

* −1.03

RBF tf-idf Min 0.795†† 0.883 0.874††
11.00

**
9.98

** −0.92

Linear tf-idf Lex 0.881†† 0.877 0.873†† −0.48 −0.85 −0.37

Linear tf-idf CUI 0.845†† 0.876 0.862††
3.62

** 2.04
−1.53

*

RBF tf-idf Min & Lex 0.866†† 0.874 0.876†† 0.95 1.16 0.21

RBF Count Lex & CUI 0.882†† 0.873 0.867†† −0.99 −1.64 −0.65

Linear Count Min & CUI 0.878†† 0.873 0.877†† −0.66 −0.14 0.52

RBF tf-idf Lex 0.843†† 0.873 0.880††
3.51

*
4.37

** 0.83

RBF Count Lex 0.848†† 0.872 0.859†† 2.83 1.26 −1.52

Linear tf-idf Min & Lex 0.848†† 0.870 0.884†† 2.58
4.26

** 1.64

RBF Count Min 0.890 0.869 0.856†† −2.34
−3.74

** −1.44

RBF Count Min, Lex & CUI 0.890 0.869 0.872†† −2.34 −1.95 0.40

RBF Count Min & Lex 0.874†† 0.868 0.860†† −0.69 −1.62 −0.93

Linear Count Lex & CUI 0.887† 0.868 0.892 −2.14 0.52 2.72

Linear Count Min & Lex 0.891 0.865 0.868†† −2.87 −2.51 0.37

Linear Count Min 0.868†† 0.865 0.868†† −0.45 −0.07 0.38

Linear Count Min, Lex & CUI 0.875†† 0.863 0.871†† −1.39 −0.38 1.03

Linear Count Lex 0.873†† 0.840 0.861††
−3.81

** −1.40
2.51

*

RBF Count CUI 0.843†† 0.639 0.642††
−24.26

**
−23.84

** 0.56

Linear Count CUI 0.840†† 0.559 0.609††
−33.53

**
−27.52

**
9.04

**
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Note: For visual reference, models which are not statistically significantly different from the emphasized model at alpha = 0.1 are shaded in dark 
grey. Models which are not statistically significantly different from the emphasized model at alpha = 0.05 are shaded in light grey

*
percent change significant at alpha = 0.05

**
percent change significant at alpha = 0.1

†
statistically significantly different from highest performing model (emphasized above) at alpha = 0.05

††
statistically significantly different from highest performing model (emphasized above) at alpha =0.1

J Biomed Inform. Author manuscript; available in PMC 2016 August 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kotfila and Uzuner Page 31

Table 7

Diabetes: Comparison of F1 measure for diabetes models between 2008, 2014 and combined 2008/2014 

broken down by SVM kernel, weighting scheme, and feature space.

Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, 
Comb.

RBF tf-idf Min & CUI 0.932†† 0.957 0.964
2.63

**
3.48

** 0.83

RBF tf-idf Min, Lex & CUI 0.946†† 0.959 0.963 1.30
1.78

** 0.47

RBF tf-idf Lex & CUI 0.926†† 0.958 0.959
3.46

**
3.56

** 0.10

RBF tf-idf Min & Lex 0.939†† 0.956 0.959
1.81

**
2.09

** 0.27

Linear tf-idf Min, Lex & CUI 0.939†† 0.941†† 0.958 0.19
2.08

**
1.88

**

Linear tf-idf Min & CUI 0.934†† 0.945†† 0.956† 1.22
2.41

** 1.18

Linear tf-idf Lex 0.907†† 0.946†† 0.956
4.23

**
5.32

** 1.05

Linear tf-idf Lex & CUI 0.910†† 0.942†† 0.955
3.46

**
4.95

** 1.44

RBF tf-idf Lex 0.927†† 0.958 0.954†
3.27

**
2.91

** −0.35

RBF Count Min 0.870†† 0.949†† 0.954
9.11

**
9.72

** 0.55

RBF tf-idf Min 0.909†† 0.956† 0.953††
5.15

**
4.86

** −0.27

RBF Count Min & Lex 0.880†† 0.946†† 0.953
7.43

**
8.25

** 0.77

RBF Count Min, Lex & CUI 0.880†† 0.942†† 0.953
7.08

**
8.37

** 1.20

Linear tf-idf Min 0.927†† 0.952†† 0.949††
2.63

**
2.33

** −0.29

Linear tf-idf Min & Lex 0.911†† 0.949†† 0.948††
4.13

**
4.08

** −0.05

RBF Count Lex & CUI 0.877†† 0.950†† 0.948††
8.39

**
8.12

** −0.24

RBF Count Lex 0.911†† 0.950†† 0.948††
4.27

**
4.02

** −0.24

Linear Count Min & CUI 0.842†† 0.943†† 0.946††
11.99

**
12.26

** 0.24

Linear Count Lex & CUI 0.916†† 0.946†† 0.945††
3.28

**
3.09

** −0.19

Linear Count Lex 0.830†† 0.946†† 0.943††
13.99

**
13.64

** −0.31

Linear Count Min 0.830†† 0.943†† 0.943††
13.72

**
13.68

** −0.03

RBF Count Min & CUI 0.870†† 0.949†† 0.943††
9.06

**
8.36

** −0.65

Linear Count Min, Lex & CUI 0.796†† 0.944†† 0.942††
18.53

**
18.27

** −0.22

Linear Count Min & Lex 0.850†† 0.944†† 0.942††
11.06

**
10.82

** −0.22

RBF tf-idf CUI 0.869†† 0.866†† 0.883†† −0.29 1.64 1.94

Linear tf-idf CUI 0.864†† 0.844†† 0.877†† −2.32 1.50
3.91

**

RBF Count CUI 0.882†† 0.789†† 0.812††
−10.52

**
−7.88

** 2.96
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Kernel Weight Feature Space 2008 2014 Combined 2008/2014 % Change 
2008, 2014

% Change 
2008, Comb.

% Change 
2014, 
Comb.

Linear Count CUI 0.811†† 0.799†† 0.804†† −1.47 −0.95 0.53

* percent change significant at alpha = 0.05

Note: For visual reference, models which are not statistically significantly different from the emphasized model at alpha = 0.1 are shaded in dark 
grey. Models which are not statistically significantly different from the emphasized model at alpha = 0.05 are shaded in light grey

**
percent change significant at alpha = 0.1

†
statistically significantly different from highest performing model (emphasized above) at alpha = 0.05

††
statistically significantly different from highest performing model (emphasized above) at alpha =0.1
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