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The exploration of epidemic dynamics on dynamically evolving (“adaptive”) networks poses nontrivial challenges to
the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is,
a few “good observables”) that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining
reduced, small size accurate models in terms of these few statistical observables – that is, trying to coarse-grain the full
network epidemic model to a small but useful macroscopic one – is even more daunting. Here we describe a data-
based approach to solving the first challenge: the detection of a few informative collective observables of the detailed
epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining
technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network:
a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as
possible shortcomings.

Introduction

Mathematical modeling of epidemic dynamics is an indis-
pensable tool in understanding and mitigating the spreading of
disease in the real world.1-4 As computational power, numerical
simulation techniques and, most recently, “big data” tools and
techniques progress, the degree of realism in these mathematical
models constantly improves. From simple nonlinear models of
Susceptible-Infected-Recovered (SIR) or Susceptible-Infected-
Susceptible (SIS) dynamics that are based on spatial averaging (so
called mean-field models, consisting of a few nonlinear Ordinary
Differential Equations (ODEs)) we have graduated to models
with detailed spatial information and structure, incorporating
not only geographical details of communities and cities but also
information about the social interactions between the individuals
involved.5-7 From mean field ODEs the models now become
large-scale, stochastic, individual-based simulations on networks
(geographical as well as social). While this framework is conve-
nient for investigating many different initial conditions com-
bined with many different network connectivities and many
different interaction/evolution rules, recording and rationalizing
a useful summary of the dynamics (the relevant macroscopic, sys-
tems-level statistics of these scenarios) is crucial for systems-level
understanding and control. Finding the right macroscopic
observables for such detailed simulations, “the right variables,” to
summarize the epidemic dynamics is still a daunting task.

Over the last decade our group has proposed and developed
the so-called Equation-Free computational framework for

complex/multiscale systems modeling: given a detailed (here,
individual/agent-based) simulation algorithm, this framework
enables the study of coarse-grained, systems level dynamics
through the design, execution and processing the brief bursts of
fine scale simulation data; Equation-Free algorithms like Coarse
Projective Integration (CPI) take the form of “wrappers” around
the fine scale code (say, an agent-based epidemic simulation code
on an adaptive network).8-11 Yet for this approach to be success-
ful, one needs to a priori know what the right macroscopic statistics
are (e.g., the right few leading moments of the distribution of
susceptible or of infected individuals in the population) in terms
of which the epidemic statistics can be informatively
summarized.

This paper considers the case where such informative and
parsimonious system-level statistics are not a priori known. In
this case the Equation-Free modeling approach can still be
carried through, as long as the right macroscopic variables
can be discovered through the mining of (big) computational
simulation data. This is a “doubly data-based” modeling strat-
egy: using data produced from detailed, individual level, fine
scale simulation bursts to detect the number and identity of the
macroscopic observables; and then, armed with this knowledge,
design and execute new, informative, microscale simulations
to systematically explore the evolution of the epidemic. This
jointly “equation-free, variable-free” approach holds great
promise for accurate, fast and informative systems-level simu-
lation of detailed, realistic epidemic models – the “right
observables” come from the (previously computed) data, as
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does the design of “the right simulations” to obtain useful
new information.

When the state of the fine-scale model at a given moment
in time can be mathematically described as a (long) vector in
Rn (e.g., the state of a large number N of agents), both linear
data-mining techniques, such as Principal Component Analysis
(PCA), as well as nonlinear data-mining techniques such as
ISOMAP or Diffusion Maps (DMAPS) can be applied to simu-
lation data ensembles to obtain “the right” macroscopic observ-
ables.12-14 But when the data involve evolving graphs (in our
case, we are interested in epidemic dynamics on adaptively
evolving networks), finding good macroscopic observables
based on simulation databases is a nontrivial task. We present a
simple modification/extension of the DMAPS procedure that
allows us to detect the small number of these observables for
epidemics on adaptive networks based on data mining only.
The “macro-variables” discovered by this process for the case of
a SIS epidemic on an adaptive network will be presented, dis-
cussed, and contrasted to traditionally used macro-variables for
the same problem.

Our approach is motivated by, and illustrated through,
SIS dynamics on adaptive networks.1,15,16 The computa-
tional methodology, however, is in principle applicable to
many problems that involve the dynamic evolution of net-
works with both labeled nodes (when we know the identity
of individuals) or unlabeled nodes (when we do not).17,18

We link the DMAPS procedure with quantities that allow
us to usefully compare different networks; we use this
approach to detect the number of macroscopic observables
involved in the dynamics of our SIS epidemic model, and
compare these data-based observables with typical network
statistics. The last few years have seen several innovative
approaches to finding accurate reduced models for dynamic,
network-evolution problems, extending and complementing
well-established techniques like those based on moment clo-
sures.16 Our approach should be considered as a data-min-
ing based alternative to these techniques with the
advantages of not requiring any knowledge about the
underlying model and automating the process of feature
extraction.

The rest of the paper is organized as follows: We will
first describe our implementation of a SIS epidemic model
on an adaptive network, from which the simulation data
will be obtained. We briefly discuss established linear
(PCA) and nonlinear (DMAPS) data mining techniques.
We then present an extension of DMAPS that expands
their applicability to data in the form of evolving networks
(where the connectivity of the network evolves in time
along with the state of the network nodes). We first vali-
date our network data mining approach on data obtained
from a simple Watts-Strogatz network model.19 We then
present our main results: the application of our data-min-
ing technique to data collected from dynamic SIS simula-
tions on an adaptive network, obtained over a range of
epidemic parameter values where it is known that complex,
oscillatory dynamics arise. We discuss the relation of the

variables detected through our approach to those of more
traditional, moment-based approaches, and conclude with a
brief perspective on potential shortcomings but also poten-
tial fruitful applications of the approach.

The Adaptive SIS Model

An implementation of the adaptive SIS model can be
constructed by considering a labeled graph G with N nodes
and L links, with each node representing an individual in a
social network; the state of each individual, either susceptible
(S) or infected (I), constitutes the node label. Edges between
individuals are defined as SS-links, II-links, or SI-links,
according to the label of the nodes they connect. Starting with
a given initial network connectivity pattern (a given network
topology), the evolution of the model can be characterized by
3 substeps, which together constitute a time step in the mod-
el’s (Fig. 2) evolution:

1. All infected nodes recover with probability r, becoming
susceptible.

2. For every SI-link, the susceptible individual becomes infected
with probability p.

3. Every SI-link is removed with probability wD w0r (see
below). In this case, a new edge between the corresponding
susceptible node and another susceptible node is formed. The
new link is made with a node chosen uniformly at random
from the set of all other susceptible individuals.

The probability of rewiring wD w0r is based on a constant
input parameter w0 and the infected fraction rD i/N , where i is
the number of infected nodes. These rules are motivated by the
assumption that humans are more likely to avoid infected indi-
viduals proportionally to their awareness of disease spread, which
here is assumed to be directly proportional to the infected frac-
tion of the population.1

Although the behavior of this model is inherently com-
plex (see the bifurcation diagram in Figure 1A, reproduced
by permission),16 it has been previously established that
the system-level dynamics of a sufficiently large network
can be captured by just 3 macroscopic observables: the
number of infected nodes i, the number of SS-links lSS and
the number of II-links lII . These variables suffice to describe
long-term aggregate dynamical behavior types exhibited by
the system, since the values of other variables (higher order
moments of the network state) quickly become slaved to
(functions of) these 3 and do not contribute extra degrees of
freedom over long timescales. As the infection parameter p

varies, one can observe stationary states as well as coarsely
oscillatory dynamics, and even coexistence between the 2
(associated with an apparent subcritical coarse Hopf bifurca-
tion).20 In this paper we will show how to extract the relevant
observables responsible for the dynamics of the system without
making use of any prior knowledge about their suitability.
This will be accomplished by first constructing a suitable simi-
larity measure for quantifying graph differences, and secondly,
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Figure 1. (Top left) Model bifurcation diagrams wrt. the infection rate parameter p (reprinted with permission).16 (A) The system evolves to a stable sta-
tionary state for p D 0.00073. (B) Oscillatory behavior indicating a (coarse) limit cycle at p D 0.0006. (C) Stable stationary state for p D 0.0003. Bottom
graphs indicate the relationship between i, lSS, and lII over the course of one complete oscillation for p D 0.0006. Model parameters: (r, w0, N, L) D
(0.0002, 0.03, 105, 106).
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by applying DMAPS on ensembles of graphs resulting from
the dynamic simulation of the model’s evolution.

A Brief Discussion of Dimensionality Reduction

Analysis of the dynamics of this epidemic model, especially as
the size of the network grows, is hindered by its size and complex-
ity. Not only are there many nodes to keep track of over thou-
sands of time steps, but each step is also comprised of a number
of different (stochastic) actions. These factors combine to make
systematic exploration of such a system computationally intracta-
ble; one may only execute and observe many different scenarios
computationally (different initial networks, node states, and
parameter values). Additionally, it is not clear which variables, or
indeed even how many, play a determining role in summarizing
long-term system behavior. This motivates the development of
an algorithmic approach to identifying the crucial features of the
system. Not only will these important features themselves aid in
better understanding the problem and in summarizing its behav-
ior, but they could also be used in an Equation-Free framework
to enable the sort of analysis typically reserved for simpler systems
(e.g. a few mean-field ODEs). Below, we present our first step
toward this goal: the use of the DMAPS data mining technique
to identify the important observables in the SIS model from sim-
ulation datasets.

Principal Component Analysis and Diffusion Maps

Given a data set x1; x2; . . . ; xNf g (with each xi 2 Rn), several
approaches exist to uncover a lower-dimensional description
y1; y2; . . . ; yNf g of the data, where yi 2 Rn and p<< n. Perhaps

the best-known method for achieving this is Principal Compo-
nent Analysis (PCA),12 illustrated in Figure 3. Unfortunately,
PCA assumes the data lies on, or around, a linear subspace,
whereas data points generally lie on nonlinear manifolds. To

circumvent this limitation we turn to the nonlinear dimensional-
ity reduction technique of Diffusion Maps (DMAPS).13 The
algorithm is outlined below.

Given N vectors x1; x2; . . . ; xNf g in Rn, we form an N £N

matrixW defined as:

Wij D exp ¡ d xi; xj
� �2
e2

 !
;

where d xi; xj
� �

is a measure of the distance (“dissimilarity”)
between points xi and xj, and e represents the neighborhood in
which we consider d xi; xj

� �
to “meaningfully” capture differences

between the data. By defining the diagonal matrix Dii D
X
j

Wij,

Figure 3. (1) PCA uncovers the linear relationship (2-dimensional blue
grid spanned by 2 black arrows) within a noisy data set of 3-dimensional
points lying approximately on a plane (red dots). (2a) Three-dimensional
data on a nonlinear, curved surface. Color denotes arclength. (2b) DMAPS
embedding uncovering a 2-dimensional parameterization of the dataset.
Color denotes arclength from (2a).

Figure 2. Schematic of the adaptive SIS model evolution: the 3 substeps constituting one SIS evolution timestep. (A) The initial graph at time t. (B) Each
infected node recovers with probability r, becoming susceptible. (C) The disease spreads along SI-links with probability p, infecting susceptible nodes.
(D) With probability w, each SI-link is broken and a new SS-link is created. (E) The final graph at tC1. Broken links and nodes that change status between
steps are colored in red, while rewired links are colored in green.

156 Volume 7 Issue 2Virulence



we can create a new row-stochastic matrix ADD¡ 1W : The
entries of A can be viewed as defining a random walk over the
dataset. The first few eigenvectors of this random walk process
represent an efficient parameterization of the original high-
dimensional data set. We denote the k-dimensional diffusion map
embedding at time t as the transformation:

F
kð Þ
t D λt2f2; λt3f3; . . . ; λtkC 1fkC 1

� �
;

where li and fi are the ith eigenvalue and eigenvector respec-
tively, ordered by decreasing magnitude; throughout this paper
we set tD 0.

By simulating a diffusion process over the dataset, DMAPS
will reveal the underlying low-dimensional nonlinear structure.
This is illustrated in Figure 3, where the algorithm is applied to
a collection of points x1; x2; . . . ; xNf g, xi 2 R3 that lie on a
curved surface (a “Swiss roll”). The result is a concise, 2-dimen-
sional embedding of the data into y1; y2; . . . ; yNf g, yi 2 Rn.

Similarities between Different Networks

In order to simulate diffusion over the data set, DMAPS
requires a scalar distance between 2 data points, d xi; xj

� �
. When

each point xi is a vector in Rn as in our examples in Figure 3, the
Euclidean distance between points is often sufficient. However,
in the dataset we investigate below, each point xi is not a vector,
but actually a graph (or network), which we represent as Gi.

The literature contains a number of ways of quantifying the
distance between 2 graphs, d Gi;Gj

� �
, for example by measuring

how easily Gi can be transformed into Gj (Graph Edit Distance),
or by comparing random walks on the graphs (spectral dis-
tance).21-24 Such distances, however, were found to be computa-
tionally intractable for all but very small graphs, which often
exhibit much simpler dynamics due to their size. It is therefore
important to construct (if possible) a dissimilarity measure that is
easily computable on large graphs and has the advantage of being
applicable to models with much more complex dynamics. For
this reason, we use a different approach for quantifying graph
similarity, which is seen here to still be informative while
markedly more computationally efficient. Extending previous
work on unlabeled graphs,25,26 we construct a motif-based dis-
tance measure for labeled graphs in the following way: we con-
sider 2 graphs to be similar if they share similar numbers of
certain features. More precisely, we define a list of k subgraphs
SD s1; s2; . . . ; skf g, such as the single edge, the 2 connected
edges, the triangle shown in Figure 4 etc. Then we record how
many times each subgraph appears in our input graph in a vector
vi D ci1; c

i
2; . . . ; c

i
k

� �
, where cij is the number of times subgraph

sj was found in input graph Gi. This process maps each graph to
a vector of subgraph densities, the counts
Gi ! vi; vi D ci1; c

i
2; . . . ; c

i
k

� �
in Rk , thus embedding the

graph as a point in Rk : We then use these k-long vectors (k-
dimensional points) as the input to DMAPS, and use the Euclid-
ean distance between them as our notion of graph similarity.

Thus d Gi;Gj

� �D vi ¡ vj. Figure 4 presents a schematic illustrat-
ing this subgraph-enumeration process.

In the SIS model, we are actually working with labeled graphs,
since each node has one of 2 labels – susceptible (S) or infected
(I). It is inappropriate to simply ignore network labels, since net-
works with the same connectivity, but with different node labels,
can behave in extremely different ways and should thus be con-
sidered dissimilar. To overcome this issue, for a given labeled
graph G we choose to consider 3 separate unlabeled subgraphs
G0; GS and GI . Here G0 is the initial graph G without node
labels and GS , GI the unlabeled subgraphs obtained (induced) by
only considering the S, or the I nodes respectively. We will repre-
sent each overall labeled graph by the concatenation of the 3
count vectors v0; vI ; vS into vD [v0 vI vS]

T , again using the
Euclidian norm to quantify (dis)similarity between them. Note
that we scale the subgraph counts so that we really measure a
“density” of s in G, given by:

r G; sð ÞD n

k

� �¡ 1 X
F:[k]! [n]

1[ 8 i; j 2 k : H i; jð ÞDG F ið Þ;F jð Þð Þ];

where n is the number of nodes in G, k is the number of nodes in
s, F is an injection from the first k integers to the first n, and 1 is
an indicator function which takes the value 1 when subgraph s

has been located in G. The subgraph enumeration procedure in
the case of labeled nodes is illustrated in Figure 5.

An Unlabeled Graph Example: The Watts-Strogatz
Model

To validate the applicability of the above approach/graph sim-
ilarity measure on graph objects, we used the Watts-Strogatz
(WS) network generation model to construct a graph object data
set on which to apply DMAPS. For a fixed graph size, the WS
model relies on 2 parameters to generate a so-called small-world
network output.19 The first parameter p is initially used to

Figure 4. Illustration of the subgraph-enumeration process with an unla-
beled input graph.
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generate a 2-dimensional lattice where each vertex is connected to
all of its neighbors situated a distance at most p away. For each
vertex in the graph, we choose the edge that connects it to its
nearest neighbor and, with probability r, rewire this edge to con-
nect with a vertex chosen uniformly at random from the graph.
This procedure is repeated, each time considering the edge that
connects the next closest neighbor to the vertex in question until
all edges have been considered once, with no duplicate edges
allowed. The resulting graph is considered the output of the
model. The networks produced by this model exhibit various
qualitatively different properties as its “generating parameters”
vary. For rD 1 the model reduces to generating an Erdo��s–R�enyi
random graph G n; pð Þ: a graph of size n for which the probability
that any 2 vertices are connected is p. On the other hand, for
rD 0 the graph remains a regular lattice, with no random
changes in its topology. Lastly, for intermediate values of r we
get many local connections between adjacent nodes and few
edges between far away nodes, which is a defining characteristic
of small-world networks.

The WS algorithm was used to generate nD 2000 different
small-world graphs, each with nD 100 vertices. For each such
graph Gi pi; rið Þ, we generated uniformly at random the 2 varia-
bles ri » unif [0; 1] and pi » unif [0; 1]. We thus are confident
that, by construction, this is a 2-parameter set of graph data,
parametrized by the generating parameters p and r. The diffusion
map embedding was then constructed by using the graph similar-
ity measure defined above. It was found (Fig. 6) that the first 2
principal DMAP eigenvectors f2 and f3 were sufficient to repre-
sent the data. This is confirmed by the 2 dimensional nature of
the f2 ¡f3ð Þ manifold. When considering the values of pi and
ri of the various data points (the various graphs) that lie on this
2-dimensional manifold, it can be observed that they vary in
directions visually independent of each other. This strongly sug-
gests that the transformation f : f2;f3ð Þ ! r; pð Þ has a nonsin-
gular Jacobian matrix, which in turn implies that the

transformation is bijective – the 2 variable pairs are one-to-one
with each other, and they each constitute useful coordinates
(Figure 6, below) for the network dataset. This means that
DMAPS discovered a reparameterization of the 2 parameters r
and p, which in this case were known in advance to be (by con-
struction) the parameters that define this data set. This serves as a
validation for the DMAPS approach and the chosen graph simi-
larity measure since, by only examining a dataset generated by
the WS model, the technique was able to “learn” that only 2 fea-
tures mattered, and that the 2 features were one-to-one with the
construction parameters r; pð Þ that here were a priori known.

SIS Model Results

In order to identify the coarse variables that parametrize the
dynamics of the adaptive SIS model, DMAPS were implemented
on a graph data set sampled from the SIS model evolution. This
dataset was generated by systematically sampling graph objects
from the SIS model simulation over time from various parame-
ters/initial conditions, with each simulation leading to different
long-term dynamical behavior. The principal directions, repre-
sented by the leading diffusion map coordinates, identify the
important variables that define the model’s evolution over time.
Since the set of coarse variables i; lII ; lSSð Þ are known to be cen-
tral to the model’s evolution, their relationship with the derived
principal directions was investigated.16

More specifically, the system is known to undergo a Hopf
bifurcation to periodic solutions as the parameter p varies around
p; r; w0ð Þ � 0:00071; 0:0002; 0:06ð Þ and graph objects at
parameter values around this bifurcation point were sampled to
create a data set of N D 6000 graphs fGigNiD 1. After the graphs
were sampled, the DMAPS procedure detailed above was
applied, with our labeled graph similarity measure (Fig. 7). An
analysis of the relationship between the diffusion map coordi-
nates indicates a 2-dimensional embedding in the first 2 principal
directions f2; f3. Furthermore, an investigation of the relation-
ship between f2 and f3 with other diffusion map coordinates
demonstrates that no new direction is captured by higher order
eigenvectors, something that strongly implies that the manifold
on which the dataset lies is indeed 2-dimensional. This is
achieved by performing linear regression, with a suitable kernel,
on the eigenvectors, and checking whether each fi can be accu-
rately reconstructed using the rest, quantified as cross-validation
error.27 This measure is high for eigenvectors characterized by
unique directions, and low for higher harmonics and noise. It has
the added benefit that it can be used to compare many eigenvec-
tors, not limiting it only to the first few.

Motivated by the evidence that the .f2;f3/ manifold fully
captures all independent directions in the data set, we look at the
relationship between these 2 principal directions and the coarse
variables i; lII ; lSSð Þ, known to encapsulate the long-term
dynamics of this system. This can be investigated by visually
studying the embedding of the coarse variables in diffusion map
space and by using the cross-validation algorithm defined above.
Looking at the relationship between these 3 variables in our

Figure 5. Illustration of the subgraph-enumeration process with a
labeled input graph. In this case, we must discriminate between differ-
ently labeled subgraphs.
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dataset, it can be noticed that they actually span 2 (and not 3 dif-
ferent) dimensions, which can be garnered by their 2 dimensional
embedding in R3. Thus, we are actually looking for 2 principal
directions, motivating the definition of lSI D L¡ lII C lSSð Þ;

the total number of SI-links, as a compound variable. This is
done without introducing or removing any information from the
system, as the total number of edges is constant throughout. We
consider log lSIð Þ as a candidate macro-variable, since we are

Figure 6. Above: The Watts-Strogatz Model and its construction parameters: The value of r denotes the probability of long-distance rewiring with r D 0
denoting a regular lattice, r < 1 a small-world graph, and r D 1 an Erdo��s–R�enyi random graph. The value of p quantifies how interconnected the initial
lattice is, being the number of neighboring nodes each node connects to. Below: Second versus third eigenvector (F2 – F3) colored by log(r) (left) and p
(right). The visual linear independence of the directions of change of log(r) and p indicate that the (F2, F3) coordinates form a bijection with (a repara-
metrization of) the construction parameters (r, p). An e of 0.1 was used in our DMAPS computations.
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interested in finding a bijective relationship between .f2;f3/ and
i; lSIð Þ.
By inspecting (see Figure 8) the relative directions of i and

log lSIð Þ in the 2 dimensional embedding of .f2;f3/, it becomes

apparent that they are transverse to each other, with the former
varying roughly from left to right and the latter from top to bot-
tom. Such an observation is strong evidence that the Jacobian of
the transformation f : f2;f3ð Þ ! i; lSIð Þ is nonsingular on

Figure 7. Coarse variable detection: Top Left: The leading eigenvalues of the random walk matrix are plotted. Top Right: Computational criterion sug-
gesting that the first 2 nontrivial eigendirections suffice (the one in red is the trivial one, and the fourth is much less important than the second and
third). The x and y coordinates of the middle and bottom row figures indicate the components of each datum, representing a graph, in the second and
third eigenvectors of the random walk matrix. Each point is also colored by the number of (a) infected nodes i, (b) log(SI-links), (c) SS-links, and (d) II-links
found in the corresponding graph. A comparison between (a) and (b) suggests linear independence between i and log(lSI). An e of 70 was used.
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this data set, much in the same manner as for the Watts-Strogatz
graph ensembles. Thus, we can conclude that the directions of
change on the f2 ¡f3 manifold represented by changing i and
lSI , respectively, are independent of each other, and that they are
reparametrizations of the principal eigenvectors. Similar results
are obtained if we consider lSI instead of log lSIð Þ. These observa-
tions imply that the diffusion map technique has been successful
in identifying, up to reparameterization, the variables found in
ref. 16 as responsible for the long term dynamics of the model.
Furthermore, we were able to confirm that the long-term dynam-
ics of this model really depend on only 2 macro-variables, the
total number of infected nodes i and the total number of SI-links
lSI .

In addition, there was no need to take any a priori knowledge
about the model’s specifics into account when isolating the
important variables. Instead, we required the development of a
suitable similarity measure between labeled graphs, which can be
generalized for use with other problems (models, datasets) that
exhibit completely different dynamic behavior. This generaliza-
tion of feature extraction for high-dimensional systems can assist
in developing a framework for isolating the coarse variables that
define graph-based data sets without resorting to approaches that
only rely on intuition about the specific model.

Conclusion

The use of networks in the modeling of real-world phe-
nomena is particularly suited to modeling the spread of an
epidemic through a population represented as a network of
geographic/social connections. In this paper, the suitability of
data mining techniques for extracting the important macro-
variables describing the evolution of network connectivity
from an adaptive SIS model were investigated, based on 2

concepts. Firstly, a (dis)similarity measure for graph objects
was constructed; secondly, it was used with the DMAPS non-
linear data-mining procedure. In particular, we needed to
define a (dis)similarity measure between different labeled
graphs, as they arise in the course of the epidemic model sim-
ulation. It should be noted that this method is generalizable
to any labeled graph with distinct labels, and can be utilized
regardless of the overarching process defining graph evolu-
tion. Future work in this area should investigate the suitabil-
ity of other graph similarity measures for use within the
DMAPS framework. Moreover, this approach is not
DMAPS-specific. Indeed, other non-linear data mining tech-
niques are expected to yield similar results, provided they use
the aforementioned dissimilarity measure.

In addition, the long-term dynamics of a particular adaptive
SIS model were explored, which allowed us to verify the suitabil-
ity of the constructed metric for use with graph object datasets.
This yields 2 interconnected results. Firstly, the DMAP proce-
dure was able to demonstrate that the system is inherently macro-
scopically two-dimensional, with the 2 independent directions in
the data set being represented by the first 2 nontrivial Diffusion
Map eigenvectors. This result is consistent with previous knowl-
edge about the dimensionality of the model’s dynamics, and is
strong evidence that the DMAP framework, using the similarity
measure we constructed, can be readily applied to graph object
data sets to extract meaningful reduced parametrizations of the
underlying behavior.

Furthermore, we were also able to link the principal diffusion
map coordinates with previously known coarse variables capable
of describing this system. By inspection of the embeddings in dif-
fusion space, it was verified that a bijection exists between 2 of
these coarse variables and the 2 leading diffusion map coordi-
nates. This means that the DMAP was not only able to learn the
inherent dimensionality of the dataset, but that it was also able to

Figure 8. Coarse Variable Dependencies: An illustration of the relationship between lSS, lSI, and i in the diffusion map data set. The two-dimensional
nature of the manifold indicates that the number of SS links can be thought of as a function, on the data, of i and lSI, and is thus not necessary as an inde-
pendent macro-variable.
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extract a reparameterization of variables known to fully specify
this model; what is unfortunate, is that the variables of this repar-
ametrization have no obvious unique, easily explainable physical
meaning.

This modeling exercise clearly shows that modern data mining
techniques for data in the form of high-dimensional evolving vec-
tors can be extended to data in the form of large evolving graphs
(labeled or unlabeled). This holds promise for the analysis of
data from epidemics on realistic adaptive networks, and for gen-
eral adaptive network evolution problems. What is more impor-
tant and more promising, however, is that these databased coarse
descriptors can be used, in an equation-free framework8,9, to
implement accurate reduced model computations for the epi-
demic dynamics, in which the variables used to describe the sys-
tems-level network behavior are the ones obtained from data
mining. This data-driven model reduction approach can be
introduced as a “wrapper algorithm” around brief bursts of

detailed, fine scale simulation; we believe that the approach holds
real promise in enabling systems level analysis, simulation and
control of detailed, realistic epidemic dynamics.
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