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Modeling contagious diseases needs to incorporate information about social networks through which the disease
spreads as well as data about demographic and genetic changes in the susceptible population. In this paper, we
propose a theoretical framework (conceptualization and formalization) which seeks to model obesity as a process of
transformation of one’s own body determined by individual (physical and psychological), inter-individual (relational, i.e.,
relative to the relationship between the individual and others) and socio-cultural (environmental, i.e., relative to the
relationship between the individual and his milieu) factors. Individual and inter-individual factors are tied to each other
in a socio-cultural context whose impact is notably related to the visibility of anybody being exposed on the public
stage in a non-contingent way. The question we are dealing with in this article is whether such kind of social diseases,
i.e., depending upon socio-environmental exposure, can be considered as “contagious”. In other words, can obesity be
propagated from individual to individual or from environmental sources throughout an entire population?

Introduction

Social diseases are numerous and obesity can be considered as
one of the most characteristic of what could be identified as a
social “contagious” disease. Both stigmatization and mimicking1

constitute the method of dissemination of obesity into a family
or a social network. Obesity is defined as an abnormal or exces-
sive accumulation of fat in adipose tissue, more or less leading to
important health problems at the individual level. Currently,
obesity would be reaching an epidemic development worldwide:
according to the latest world estimates of WHO (World Health
Organization), obesity rate has tripled between 1980 and
2005.2,3 This rate of development suggests that this pathology
involves a socio-cultural problem grafted into a predisposition at
the individual level.

All specialists agree that, for decades, we have been witnessing
an increase in worldwide obesity prevalence. This is true in devel-
oped as well as in developing countries. No society seems to be
immunized against this epidemic. Classic data from MONICA
WHO project2 shows that obesity prevalence in the majority of
European countries increased in 10 y (1992–2002), going from
10% to 20% in men and from 10% to 25% among women. In
France, between 1980 and 2006, obesity prevalence went from
6.4% to 14.3% in men and from 6.3% to 15.7% among women
(International Association for the Study of Obesity 2000; Mail-
lard et al. 19993,4). Based on these facts, several studies have
been performed to identify risk factors associated with this condi-
tion as well as to contain the epidemic, because obesity became a

real public health problem.5 It is well known that obesity has a
genetic component as a familiar predisposition toward this con-
dition. However, the genetic component does not explain the
increasing (spectacular) progression of the disease prevalence.
Additional behavioral, social, and economic factors must be con-
sidered.6-8 In this context, Christakis and Fowler recently showed
the possibility of person to person obesity contagion in a social
network.9 Moreover, Cohen-Cole and Fletcher suggested that
obesity diffusion could occur via a common exogenous source
applied to a set of individuals.10

Realistic models of contagious diseases now incorporate infor-
mation about the social networks through which the disease
spreads, as well as data about demographic and genetic changes
in the susceptible population. They also include all the possible
knowledge about the contacts between susceptible and sick indi-
viduals. In “Section Methods”, we will present the mathematical
framework necessary to take into account, at a microscopic level,
the dynamics of contacts between susceptible and obese individu-
als. Then we will introduce the description of the dynamics of
obesity in the Results section, taking into account collective
behaviors mimicking some dominant habits of nutrition trans-
mitted through social networks. Obesity spread modeling will
use the notion of homophilic graphs.

To investigate obesity in a multi-factorial manner, we have
taken into account the impact through time that obese individual
transformation may have on the social structure, by developing a
network model in which individual interactions are in part due
to homophilic selection/de-selection, i.e., a process of preferential
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attachment and detachment of inter-individual links according to
characteristics of the individuals involved. Homophily is here
defined as the tendency of an individual to create links with other
individuals sharing similar attributes and to sever links with other
dissimilar individuals. Homophily suggests that individuals tend
to interact with those who resemble them. Second, and recipro-
cally, we study if obesity can be considered as a “contagious”
social disease. So we can study the role which could be played by

the structure of the social fabric in the increase and current devel-
opment of obesity.

We evaluate the impact of relations between individuals
(micro-level) as well as the impact of relations between districts
(meso-level) and between countries (macro-level). This approach
highlights the need to integrate the dynamics of each scale to bet-
ter understand the evolution of the pathology. Two stochastic
models are proposed: i) an epidemiological compartmental

model and ii) an individual centered
network model, considering 3 influen-
ces: exogenous heterogeneous (individ-
ual-cultural), exogenous homogeneous
(individual-social) and endogenous
(individual-individual). All together,
this study of obesity will allow investi-
gating the social and cultural dimension
involved in being and transforming
one’s body.

In the Discussion section, we present
elements of demographic dynamics to
add to the social contagion dynamics as
an obesity preventive policy, and even-
tually some perspectives about a new
more realistic modeling of the contact
dynamics.

Methods

General graph framework
Given that each individual is

immersed in a social system, linked
together with other individuals through
diverse and complex interactions, each
individual “i” can then be characterized,
in a first approach, by its number of
neighbors ki, whereas the overall system
is characterized by the connection struc-
ture between individuals. To study the
role played by social interactions in
obesity spreading, 5 simple network
topologies are considered to describe
inter-individual connections: random
(Erd€os-Renyi), scale-free, small-world
and 2 empirical networks.

The empirical networks are built
from degree distributions found by
Christakis and Fowler8 in real networks.
In Figure 1, we can find examples of
simulated architecture following the
above topologies. We will use these
architectures to start from initial config-
urations of the initial network, before
applying the homophilic rule and con-
verging to an “attractor” of its dynamics,
i.e., a stable configuration of links and

Figure 1. Simulation of various initial architectures: random, scale-free, small world, empirical (1 and
2). (A) Radom; (B) scale-free; (C) small-world; (D) empirical-1; (E) empirical-2.
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node states of the interaction graph related to the social network
involved in the social contagion of the obesity.

Social contagion
In Figure 2, each individual is represented in their social

neighborhood: he/she can influence the narrow contexts to which
he belongs, e.g, by transmitting a good
opinion about his/her obese state (red
arrow) or about his normal state (blue
or brown arrows). Hence, each individ-
ual in a given social sub-network will
receive indirect influence linked to his/
her context. Under theses influences,
some individual (in blue in Fig. 2) can
become obese and others may not (in
green in Fig. 2).

We are interested in modeling the
social contagion mechanisms through
which the disease can propagate from
individual to individual or from envi-
ronmental sources through populations,
individuals changing states like in bio-
logical regulatory networks for which
many theoretical and numerical tools
have been recently developed.11-14

In Figure 3, we have fixed the corporal state (obese, over-
weight and normal) following the distribution of the BMI (Body
Mass Index) in Chilean children (population between the ages of
5 and 17)15 in 2011: obese (9.6%), overweight (23.2%) and nor-
mal (67.2%). The tolerance has been taken at the 0.25 level and
the connection probability has been chosen following the Version

Figure 2. Inter-individual relationships between obese and non-obese individuals in a social context.

Figure 3. Dynamics with a progressive clusterization (from left to right) inside a small-world directed
network with initial proportion of obese individuals in red (14,5%), overweight in pink (31.9%) and nor-
mal in white (53,6%), 0.25 tolerance and connection probability of the Version 1.
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1. Directed (not directed) networks with 1000 nodes each have
been simulated, with a probability of having forward directional
(resp. bidirectional) links equal to a D 0.6 (resp b D 0.2). The
node positioning has been done following the attraction-repul-
sion by the Fruchterman and Reingold algorithm.16

Homophilic Hebb graphs
The function homophily will be defined as the tendency of an

individual to create links with other individuals sharing similar
attributes and to sever links with other dissimilar individuals, by
playing with the probability of having an infectious contact
between agents having the same given state (e.g., normoweight
susceptible S, overweightW and obese O). The tendency an agent
or node i has to create or cut a link with another agent j in a
social interaction graph G having N agents, depends on similarity
distance d(i,j) in the graph, like the Hebbian rule of pruning/
strengthening in neural networks, which is based on state correla-
tions, destroying (resp. reinforcing) links between nodes weakly
(resp highly) correlated.

For example, if the state x(t,i) of the ith node at time t equals 1
(S), 2 (W) or 3 (O), are considered as well as some biological
characteristics like age A(t,i) and Body Adiposity Index B(t,i),
social variables like sizes of the family F(t,i) and of the circle of
friends C(t,i), environmental parameters like the numbers of
accessible green areas G(t,i) and supermarkets M(t,i), behavioral
variables like sedentary lifestyle index L(t,i) (resp. sport index
S(t,i)), that is the number of hours at home (resp on a sports
area) during the last 24h, they are all the components of a large
state vector V(t,i), we can correlate with the vector V(t,j), e.g., by
calculating the average cross-correlation between the V compo-
nents during a defined timelapse.

Then, the Hebbian rule eliminates links between uncorrelated
nodes and builds a positive (resp. negative) link between posi-
tively (resp negatively) sufficiently correlated nodes. The dynam-
ics of creation/cancellation of links can be separated from the
state dynamics, if it is slower : then we can first study, with a fixed
architecture, the fast state dynamics, considered as autonomous
and then study the bifurcations (in number and nature) of its
attractors due to the slow link dynamics. Let us suppose that
there are states x and y in the social graph and denote at time t by
Lx,y(t) (resp. Lx,x(t), Lx(t) and L(t)) the number of heterophilic
links (resp homophilic links of type x, links coming from type x
nodes and total links) and by t the relaxation time. We suppose
in each time lapse of duration t, a certain proportion of nodes
(agents) create (resp. cancel) links toward nodes being in same
(resp different) state, with a certain tolerance threshold, supposed
to be the same in each state group. The simulation follows the
successive steps:

1) At t D t0, generate the random value t from an exponential
distribution of parameter 1/b.

2) At t D t0 C t, do the following operations:
� choose a fraction F of nodes in G. LetM D FN.
� for each node i of these M nodes (i D 1,..,M), define
its state x(k) (known initial conditions), its out-degree
ki 2 IN (equal to the number of links exiting from i),

generate its tolerance to the difference, a real 0 � hi �
1, from a probability distribution g(h) and do the fol-
lowing operations:

� for ki D 0, connection from i to j:
� choose a node j by chance among N-1 other nodes.
� create a link from i to j with probability hi

d(i,j), where d(i,j)
is the direct distance between i and j, with 3 levels: 0, 1
and 2, as follows:

d i; jð ÞD 0; if x ið ÞD x jð Þ
D 1; if x ið ÞD S; x jð ÞDW

and vice versa

D 1; if x ið ÞDW; x jð Þ D O

and vice versa

D 2; if x ið Þ D S; x jð Þ D O

and vice versa

� for ki � 1, connection or disconnection from i to j:
� if V(i) denotes the set of neighbors of i, let choose a node j
among the jV(i)j neighbors of i with the probability 1/ki.
We will denote by V(j)ni the set of the neighbors of j,
minus i.

� let r(i,j) be the total similarity distance between nodes i and
j. The link between i and j will be cut with the probability
1-hi

r(i,j) where the total distance r is defined by:

r i; jð ÞD d i; jð Þ; if c i; jð ÞD 0;

Dad i; jð ÞC 1¡að Þc i; jð Þ; if c i; jð Þ 6¼ 0

where the indirect distance c is given by:

c i; jð Þ D Ss2V jð Þ n id i; sð Þ/ kj ¡ 1
� �

D 0; if kj D 1:

� if the link between i and j has been cut, we choose by
chance a new node k in G n V(i) n (V(j)ni) and we cre-
ate a link from i to k with the probability:

Prob i! kð ÞD f d i; kð Þð Þ

£ nk £ h
d i;kð Þ
i

ns £ h
d i;kð Þ
i C nw £ h

d i;kð Þ
i C no £ h

d i;kð Þ
i

where nk is the number of nodes in G n V (i)n (V(j)ni)
having the same state as k, i.e., nk is the number of
nodes with state S (resp. W and O) if k is susceptible
(resp overweight and obese). We will consider in the
simulations 3 versions for the function f:

� Version 1: f(d(i,k)) D 1,
if d(i,k) D 0;
D 0 elsewhere.
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� Version 2: f(d(i,k)) D 1,
if d(i,k) D 0 or 1;
D 0 elsewhere

� Version 3: f(d(i,k)) D 1,
if d(i,k) D 0, 1or 2,

these versions being used in the individual centered network for
representing 3 types of progressively increasing influence: exoge-
nous heterogeneous (individual-cultural, Version 1), exogenous
homogeneous (individual-social, Version 2), endogenous (indi-
vidual-individual, Version 3).

1) Change the states x(j), for all j at the end of links created, by
increasing their obesity weight of one level (S to W, W to O,
O to O).

2) Generate a new t and go to 2.
3) Stop when graph is no longer changing.

Results

Equilibrium configurations
Under the homophilic rule, the network converges until an

attractor configuration of both links of the undirected graph
architecture and node states, regardless of the initial architecture
and initial state distribution (Fig. 3). By using a simulation
engine of the social network, we can study the speed of conver-
gence to this equilibrium for all the topologies proposed in the
Methods section.

Figure 4 shows that the relaxation time to steady state (in con-
nection with the speed of convergence to homophilic equilib-
rium) depends on the network topology. The shape of the initial
and final “in-degree” (numbering of edges entering a node) distri-
butions are about the same after applying the homophilic dynam-
ics (Fig. 5). However, we can show that, paradoxically (with
respect to the random topology) in the small-word initial topol-
ogy, the mean clustering coefficient of a node i is the number of
edges in V(i) divided by the maximum possible number of edges
|V(i)|(1-|V(i)|)/2) calculated by state decreases (this phenomenon
due to the modification of the state distribution).

In order to improve this study, a theoretical estimation of the
speed of convergence to the equilibrium configuration could be
made, as well as the consideration of the robustness of the pro-
cess: Do more than one equilibrium state exist, and if so, are
there other attractors, e.g., only fixed states or possibly periodic
configurations? Which network parameters are critical or sensi-
tive to the dynamics, i.e., which parameter perturbation provokes
a change in number or nature of attractors? Which perturbation
of the initial configuration of the social network leads to a change
of attraction (or stability) basin? All these questions will be
addressed in a future work.

Examples of dynamics of obesity
Homophily defined as above suggests that individuals tend to

interact with those who resemble them in terms of alimentary
behavior. The structure of social fabric is involved in the increase

and current development of obesity.17-29 By using the proposed
simulation rules, we compare the simulated graphs with real data
in case of obesity. Four situations have been tested: the pure ran-
dom graph (links chosen by chance), the free scale graph (the dis-
tribution of out-degrees follows a power law), the small world
graph (links around hub nodes are reinforced) and homophilic
graphs, with different versions of probability of linking. The
approach described above has highlighted the need to integrate a
random dynamics at each scale to better understand the evolution
of the obesity pathology, e.g., in Figure 5, the connectivity of the
real social network representing obesity spread is better taken
into account in the homophilic network Version 1 (the qualita-
tive differences between homophilic versions being small) than in
the other versions: random, scale-free or small world. Figure 6
shows the variation of the average homophily (left), based on the
average level of tolerance for each studied network topology and
the relaxation time (right) depending on the average tolerance to
reach the steady-state (Fig. 7).

Demographic dynamics
For evaluating the number of susceptibles and defining them

by age and sex (which are important factors in the occurrence of
obesity), we need to develop a dynamic projection model by
using key socio-demographic indicators of the studied popula-
tion. The lack of comprehensive and documented data often not
allow the use of international performance tools like Individual
Based Model (IBM) demographic simulation such as FELICIE,
DESTINIE, OMPHALE, MOGDEN, LIFEPATH,. . ..17-19 So
we proposed the DOPAMID model, which requires less raw data
for its dynamic projection method.

DOPAMID model overview
The objective of the model is to make a population evolve

according to statistics based on its composition of age classes.
This evolution allows expressing patterns in the composition of
the population. Statistics used are: the distribution of the popula-
tion according to the age and sex of the individuals, mortality,
fertility, and composition of families as well as the dependency of
individuals. Based on a population and respecting these statistics,
the model advances in time over a period of up to 90 y. The
members of this population will therefore age, reproduce,
become dependent, die. . . Every year, the values of the popula-
tion statistics are recalculated, they are saved on an Excel or
Open Office-readable text format file and given in the classical
pyramid format (Fig. 8).

Model
A study of an important pathology associated to obesity, like

type 2 diabetes,21 shows that the proportion of diabetics is equal
to 3.5% in the normal weight Iranian population, and 6.4% and
14.3% respectively in overweight and obese population, repre-
senting an odd ratio of respectively 1.7 (the 95%-confidence
interval being equal to [1.1–2.5]) and 4 (the 95%-confidence
interval being equal to [2.7–5.8]). The demographic modeling
allows calculating, for each age class, the proportion of obese and
the risk of type 2 diabetes: in21 for example, the odd ratio per 10
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y is equal to 1.2 (the 95%-confidence interval being equal to
[1.1–1.4]). A precise distribution with respect to gender and age
class can be found in.22

Discussion

Toward the proposal of an obesity preventive policy
The BMI was defined about 2 centuries ago by a Belgian

physician (A. Qu�etelet) and it represents the basic tool for
diagnosing obesity and for therapeutic surveillance. New poli-
cies are now needed to contain the world pandemic and we
suggest the following methods in order to watch and cure
obesity:

1) Defining new optimal threshold for defining obesity states
and associated risks from the classical BMI.23

2) Using a new index called the Body Adiposity Index (BAI)
allowing differentiating muscular, skeletal and adipose
masses.24

3) Elucidating all genetic factors involved in the obesity genesis
(endogenous individual factors).25

4) Searching for all metabolic factors implied in the develop-
ment of the disease: nutrition, as well as predisposition to
use glycolytic pathway more than oxidative phosphorylation
in order to produce energy, like in the Warburg effect.26,27

5) Identifying all social factors favoring the present epidemic,
particularly exogenous environmental factors, in social

Figure 4. Evolution of the mean clustering coefficient for each state and for the architectures and initial distribution of states (normal in blue, overweight
in green and obese in red) of Section 2, with tolerance equal to 0.25 and connection probability of the Version 3. (A) Radom; (B) scale-free; (C) small-
world; (D) empirical-1; (E) empirical-2.
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Figure 5. Initial (top) and final (bottom) distributions of the “in-degree” for the architectures and initial distributions of states of Section Methods, with
tolerance equal to 0.25 and connection probability of Version 3. (A) Radom; (B) scale-free; (C) small-world; (D) empirical-1; (E) empirical-2.
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networks involving young individuals (educative, sportive,
familial, social,. . .) in order to actively prevent the disease
before adult age (for example, cf. www.repop.fr) at school or
during hospital stays.28

6) Studying all psycho-social factors leading to obesity stigmati-
zation in relation to mental body image and self-esteem.29

7) Modeling carefully the connection between the demographic
dynamics and the social networks. In the future, it needs
deep knowledge (presently absent) regarding the structure
by age class into the social networks, as well as on the rules
of transmission and intergenerational inheritance of the ali-
mentation and adapted physical activity habits. Nevertheless,
the evolution of the size of the whole population has to be
already introduced in order to fix the number of nodes and
interaction links for calibrating our social networks models.

The Dynamics of Contacts

Influence of the contact duration
Let us now introduce contact duration t and a contagion coef-

ficient b possibly depending on t.30 It is possible to retrieve the
quadratic term of interaction already present in all the classical
models of contagion30-40 by using a stochastic approach coming
from the random chemistry of contacts41-57 for interpreting the
proposed rules, more developed in.58

We have the demographic dynamics voiding the overweight
transition:

P fS t C dtð Þ k;O t C dtð ÞDN ¡ kgð Þ
¡ P fS tð ÞD k; O tð ÞDN ¡ kð Þ
D ¡b N ¡ kð Þdt

Z T

0

P.fS.t¡ t/D k;O

.t¡ t/DN ¡ kg/dt C b kC 1ð Þ N ¡ k¡ 1ð Þdt
Z T

0

P.fS.t¡ t//

D kC 1;O.t¡ t/DN ¡ k¡ 1g/dt;

where S(t) (resp. O(t)) is the size of the susceptible (resp obese)
population at time t. The microscopic equation above leads to
the mean differential equation ruling the expectations of the ran-
dom variable S:

dE S tð Þð Þ
dt

D ¡ b

ZT

0

E S t¡ tð Þð ÞE I t¡ tð Þð Þdt

and to the macroscopic equation:

dS.t/

dt
D ¡

ZT

0

S t¡ tð ÞI t¡ tð Þdt,

in which we found the quadratic term of the classical models of
contagion.

This quadratic term is also present in the interaction potential
of Hopfield like networks in which the study of the robustness
with respect to the contagion parameter changes has been per-
formed59-69 as well as in recent studies taking into account the
spatial character of the disease spread.70-78

Confinement and Saturation
The localization of contamination has been treated by differ-

ent authors.79,80 When contagion occurs in confined locations
(like professional, educational or residence buildings), we can use
saturation dynamics terms coming from the enzymatic kinetics
(cf. for example81,82) for expressing all the possibilities of meeting
together k individuals from the S susceptible population and i
from the O obese population in n contagion sites located in B
buildings.

We call this quantity the partition function P(S,O) and

B
@2LogP

@LogS@LogO

� �
n

is the total mean number of occupied sites, consid-

ered as proportional to the infection rate. Then, we have:

dS tð Þ=dtD ¡ bB

@2LogP

@LogS@LogO

� �

n
C fS¡mSC rO

dO tð Þ=dtD bB

@2LogP

@LogS@LogO

� �

n
C f ’O¡m’O¡ rO;

where the demographic parameters f
(fecundity) and m (mortality) are taken
into account for the susceptible as well
as for the obese population (f’ and m’)
and where r denotes the recovering
rate at which an obese recovers to
healthy weight.

An example of such a dynamics is
the saturation Micha€elian one, if there

Figure 6. Left: with connection probability of the Version 3, evolution of the homophily coefficient at
equilibrium as function of the mean tolerance. Right: Evolution of the relaxation time to equilibrium
as function of the mean tolerance. (A) Connection version 3; (B) connection version 3.
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is only one contagion site:

P S;Oð ÞD 1C vC;SS
� �

1C vC;OO
� �

where vC;S (resp. vC;O) is the probability for a susceptible (resp
obese) to access a contagion site. If vC;S D 1 and vC;O << 1, then
the infection rate equals about bSO/ 1C Sð Þ and the equations of
the dynamics are:

dS tð ÞD ¡ bS tð ÞO tð Þ
1C S tð Þ C f ¡mð ÞS tð ÞC rO.t/

dO tð ÞD b
S tð ÞO tð Þ
1C S tð Þð Þ C f ’¡m’¡ rð ÞO tð Þ

Complex threshold dynamics used in classical Hopfield like
models59,69 are non-linear, but take into account only pair con-
tacts, neglecting possible additional effects due to the presence
and mutual interaction of more than 2 individuals in the conta-
gion process.

It is now possible to introduce a synergy model, i.e., a formal-
ism to be able of define non-linear n-uples interactions83 and
simulate the model in a spatial Markovian context like in this
study or in certain cases of remote spatial influence (due to new
social networking on the web) in a renewal context,84 as well
with different time scales modeling complex dynamics, for sepa-
rating the local dynamics from the global trend of the obesity
epidemic.85

Confrontation with data
Results shown in this paper about social networks involved in

obesity have been obtained by modeling and simulating networks
with various initial architectures (random, scale-free, small-
world, empirical) evolving under the so-called social homophilic
constraint. The computed evolution of these networks seems to
be similar to the real one observed in developed countries for a
socially “contagious disease:” obesity.

Complementary studies are now required based on large sam-
ples estimating the unobservable parameters linked both to initial
network architecture (taking into account the specificity of the
sub-populations of susceptibles, e.g., the differences between the
schoolchildren, professional and elderly people networks) and to
its interaction weights evolution, as well as incorporating the
demographic dynamics and a more accurate model of social con-
tacts through which the disease can spread. The choice of the
homophilic rule is in agreement with the final proportions of
each state group in Chilean population. Moreover, if we want to
confront the residual number of the intergroup interactions (e.g.,
the number of links between overweight and obese), we have to

look at inquiries in the field like those performed in Chile in
2011.86 In addition, data from such surveys should, in the future,
document a differential tolerance, specific for each group in order

Figure 7. Homophilic dynamics representing obesity network for the
architectures and initial distribution of states of Figure 5, with tolerance
equal to 0.25 and connection probability of Version 3. Initial conditions
(A), (D) and (G); middle configurations (B), (E) and (H) and final configura-
tions (C), (F) and (I).
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to relax the constraint of the conservation of the total number of
links. Eventually, we could introduce a new state, the obese with
type II diabetes: indeed one-third of the population of obese suf-
fer from type II diabetes,86,87 hence we would have the possibility
of monitoring the effectiveness of prevention policies (e.g., using
therapeutic education serious games88) for diabetes in the elderly.
Additionally, 66% of cases of type II diabetes, 52% of cases of
cholelithiasis, 29% of cases of hypertension and 22% of cases
associated with cardiovascular disease can be attributed to obe-
sity,89 while about 20% of all cancers in Chile could be avoided
with strategies for the control and prevention of obesity, espe-
cially in children.90
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