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Despite recent advances in the field of Oncoimmunology, the success potential of immunomodulatory therapies
against cancer remains to be elucidated. One of the reasons is the lack of understanding on the complex interplay
between tumor growth dynamics and the associated immune system responses. Toward this goal, we consider a
mathematical model of vascularized tumor growth and the corresponding effector cell recruitment dynamics.
Bifurcation analysis allows for the exploration of model’s dynamic behavior and the determination of these parameter
regimes that result in immune-mediated tumor control. In this work, we focus on a particular tumor evasion regime that
involves tumor and effector cell concentration oscillations of slowly increasing and decreasing amplitude, respectively.
Considering a temporal multiscale analysis, we derive an analytically tractable mapping of model solutions onto a
weakly negatively damped harmonic oscillator. Based on our analysis, we propose a theory-driven intervention strategy
involving immunostimulating and immunosuppressive phases to induce long-term tumor control.

Introduction

The immune system is widely recognized for its capacity to
detect and destroy cancer cells, as well as to prevent tumor recur-
rence maintaining an immunological memory.1 Indeed, every
known innate and adaptive immune effector mechanism has
been reported that participates in tumor recognition and rejec-
tion.2 However, experimental observations support that tumori-
genic processes by themselves can promote immunosuppression
or immune tolerant states that facilitates neoplastic growth and
progression.3,4 Cancer cells employ diverse strategies to inhibit or
block immune responses, including tumor-induced impairment
of antigen presentation, secretion of immunosuppressive cyto-
kines or expression of surface molecules, as well as production of
diverse pro-apoptotic factors.5 Nevertheless, there are clinical and
preclinical evidences supporting that activation of the innate anti-
tumor immunity can result in tumor regression and provide ther-
apeutic benefits.6

The main goal of Oncoimmunology is to strengthen the
immune system’s innate ability to combat and kill cancer cells by
enhancing the effectiveness of the immune responses. Among the
different immunotherapeutic techniques are checkpoint inhibi-
tors, immune response modifiers (cytokines), monoclonal anti-
bodies and vaccines.7 Passive and active immunotherapy has
been successfully applied to the treatment of a wide variety of
human cancers and holds promise of a lifelong cure.8,9 However,
tumor-induced immunosuppression still represents a major

obstacle to effective cell-mediated immunity and immunother-
apy.3,5 Accordingly, more insights into the main mechanisms
associated with immune responses based on tumor specific fea-
tures are required to obtain successful therapeutic outcomes with
immunomodulatory strategies. Despite years of research devoted
to understand the underlying mechanisms of immune-tumor
interactions, there are still many unanswered questions. In partic-
ular, those related with the impact of tumor-associated vasculari-
zation on immune responses, as well as determination of optimal
and effective therapeutic protocols in cancer immunotherapy, are
far from being completely elucidated.

Mathematical oncology is a valuable descriptive and predic-
tive analytic framework to address such open questions. Contin-
uum Mechanics concepts have been widely considered to
investigate tumor growth and therapy implications.10-14 In addi-
tion, several mathematical models of tumor growth, where some
forms of the immune dynamics are often included, have been
also extensively studied in the last years.15-24 Clinical data evi-
dence that cancer cells can survive in a undetectable dormant
state for extended periods of time,25 which has been also pre-
dicted by several models of tumor-immune cell interac-
tions.19,20,22,26,27 However, the neoplasm develops diverse
strategies to circumvent the anti-tumor action of the immune
system.28,29 In particular, this equilibrium state can be disrupted
by different events affecting the immune system that could
result in tumor regrowth.29 Sustained oscillations by the
immune system have been observed both in its healthy state
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and pathological situations.27,30,31 Therefore, the presence of an
immune component in mathematical modeling has been
described crucial for reproducing clinically observed phenomena
such as tumor dormancy, oscillations in tumor size and sponta-
neous tumor regression.27,32-36 Among the several reviews on
the subject are those covering mathematical models of tumor
growth mainly focused on the cancer and immune system inter-
actions.37-45 The mathematical modeling of the entire immuno-
oncology dynamics is an enormously difficult and complex task.
In consequence, models describing interactions between growing
tumors and immune dynamics should focus on the crucial fac-
tors that are known to allow tumor escape from immuno-sur-
veillance. Tumor-induced angiogenesis is a crucial mechanism
for cancer survival and proliferation, allowing a continuous sup-
ply of oxygen and nutrients needed for tumor growth and pro-
gression.46-48 However, the effectiveness of antitumor immune
responses is associated with the functional levels of the tumor
blood vessels, which allow a wider range of effector cell types to
penetrate the tumor bulk and further exterminate cancer
cells.49,50 These opposing effects demand for a mathematical
model of vascularized tumor growth that allows exploring the
therapeutic potential of immunomodulatory interventions when
innate immune responses are insufficient for long-term tumor
control.

The work herein reported intends to yield new insights in
the potential of immunomodulatory interventions for cancer
therapy. To this end, we propose a tumor-effector cell model
based on well-known biological assumptions that combines a
model of radially symmetric tumor growth with an immune
cell recruitment model.20,32,51,52 The main feature of our
model is the modeling of the interplay between functional
tumor-associated vasculature and effector cell dynamics.53

Model results predict that, depending on the functional
tumor vascularization degree and effector cell recruitment
rate, long-term tumor control cannot be always reached. We
particularly focus in such situations where tumors escape
immuno-surveillance to suggest an optimized theory-driven
therapeutic strategy against tumor growth. A temporal multi-
scale approach is then implemented to describe the tumor-
immune system interactions, where an analytically tractable
approximation of the cancer-effector cell dynamics is derived.
We find that an efficient modulation of the immunostimulat-
ing and immunosuppressive phases could induce long-term
tumor control.

Mathematical Model Description

The present model describes the interactions between
growing tumors and induced immune system dynamics.
More precisely, the proposed tumor-effector cell model is a
combination of a radial tumor growth model and an effector
cell recruitment model originally proposed in refs.51,32 respec-
tively, see also refs.20,52,54,55 The main feature is the low
dimensional modeling of the complex interplay between
tumor-associated functional vasculature and immune

recruitment dynamics.53 This model can be interpreted as the
temporal evolution of the average tumor radius, since radially
symmetric growth is not a realistic behavior. The system vari-
ables are the average tumor radius R tð Þ and effector cell con-
centration E tð Þ in the tumor vicinity.

Radial Tumor Growth, R(t)

The temporal evolution of the average tumor radius is con-
sidered, where for simplicity invasive and diffusive tumor prop-
erties are not taken into account. The tumor is modeled as an
incompressible fluid flowing through a porous medium, where
tissue elasticity is simplified. The tumor-host interface is
assumed to be sharp and cell-to-cell adhesive forces are modeled
as a surface tension at that interface. The tumor expands as a
mass whose growth is governed by a balance between cell birth
(mitosis) and death (apoptosis and necrosis). The mitotic rate
within the tumor is assumed to be linearly dependent on the
nutrient concentration (oxygen, glucose, etc.) and is character-
ized by its maximal value lM at the tumor-host interface. The
death rate lA is uniform within the tumor and constant in time.
Moreover, we assume that the death rate lA reflects the lump
effect of apoptotic/necrotic processes and any other cell death-
inducing factor. The concentration of nutrients (e.g. oxygen or
glucose) obeys a reaction-diffusion equation in the tumor vol-
ume, where nutrients are supplied from the tumor-associated
functional vasculature and consumed by the tumor cells at a uni-
form consumption rate.

To gain insight on the impact of vascularization in tumor
growth and immune responses, we assume that the non-negative
and dimensionless parameter B, where 0�B� 1, represents the
net effect of functional tumor-associated vasculature on the
tumor radius evolution. In the limit of avascular tumor growth
BD 0, such tumor-effector interactions take place only at the
tumor surface. At the other extreme, for BD 1 effector cells can
potentially interact with any cancer cell within the tumor bulk.
Moreover, we consider an intrinsic length scale LD representing
the average length of nutrient gradient, i.e. supply, diffusion and
consumption.

The efficacy of immune killing depends on the ability of effec-
tor cells to penetrate the tumor bulk via the functional tumor-
associated blood vessels. With improved vascularization, the
effectors kill tumor cells not only on the surface of the tumor,
but also further inside.56 We consider this process through a phe-

nomenological scaling function f R;Bð ÞD RB¡ 1

RB¡ 1 C 1 2 [0; 1], for

B 2 [0; 1�, that models the penetration of effector cells in the
tumor parenchyma through the existing functional vasculature.
This function modulates the term related to tumor-effector cell
interactions, such as killing of tumor cells due to effectors repre-
sented by a rate c. Such scaling functions have been also consid-
ered in the classical von Bertalanffy approach, and more recently
in allometric models.57

Taking these factors into account, we deduce the tumor radius
R tð Þ dynamic under the assumption of radial symmetry
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according to the following ODE equation:

dR

dt
D 1

3
λMB¡ λAð ÞR

C λM 1¡Bð ÞLD 1

tanh R=LDð Þ ¡
LD

R

� �
¡ cER f R;Bð Þ;

(1)

where the time coordinate t has been omitted for notational sim-
plicity, and lM ; λA; LD and c are non-negative constants.

Effector Cell Concentration, E(t)

We assume that effectors are recruited at a rate r depending on
tumor cells following the Michaelis-Menten kinetics, where K is
a positive constant denoting the concentration at which the
immune recruitment is half-maximal. Effector cells die at a rate
d0 and become inactivated at a rate d1 due to their antitumor
activity. In particular, the inactivation of effectors by tumor cells
is modeled through the function f R;Bð Þ described above. As
functional vascularization increases, effectors can kill cancer cells
throughout the tumor bulk and tumor-immune cell interactions
increase resulting in more inactivated immune cells. Moreover,
innate immunity or base immuno-surveillance is represented as a
minimum presence of active effector cells at any time given by a
background rate of immune effector recruitment s, even in the
absence of tumor cells.

The resulting ODE equation for the effector cell concentra-
tion E tð Þ dynamic is given by:

dE

dt
D r

R3

K CR3
E¡ d1ER

3 f R;Bð Þ¡ d0EC s; (2)

where the time coordinate t has been omitted for sake of simplic-
ity in the notation, and r; K; d0; d1 and s are non-negative
constants.

Model Parameterization

Under the small tumor radius assumption, the very early
tumor growth is always of exponential nature and does not
depend on the vascularization effects, i.e., parameter B.52,54,58,59

Accordingly, we assume that this initial growth depends exclusively
on the net proliferation rate lp D λM ¡ λAð Þ in the absence of
adaptive antitumor immune responses at those stages of growth,
see the first term of Eq. (1). Thus, considering experimental esti-
mates of the growth rate at early phases of spheroids tumor growth
for the mouse colon carcinoma cell line CT26 as
lp � 1:20 days¡ 1,53,60 and the physiological plausible value
lM D 1=18 hD 1:34 days¡ 1 for CT26 murine cells,53,60,61 we
have that lA � 0:14 days¡ 1. The characteristic nutrient diffusion
length has been experimentally estimated that ranges between 0.2
and 0.3 mm.53,62-64 The effector cell characteristic concentration
is at the order of magnitude 105 cells. The latter estimate is justi-
fied since the characteristic length scale of the system is at the order
of 1:0 mm, and given that cells are commonly assumed with a
diameter between 10 mm and 20 mm,61 then for a volume of
1 mm3 the concentration is at the order of magnitude 105 cells.
Moreover, we consider cD 0:03 cells¡ 1 days¡ 1 as measured
from murine CT26 tumor growth experiments,53 see also
refs.20,32,55 The remaining parameter values d0 D 0:37 days¡ 1,
d1 D 0:01 mm¡ 3 days¡ 1, K D 2:72 mm3 and
sD 0:13 £ 105 cells days¡ 1 are considered from previously
reported experimental data,20,32,55,65,66 and properly rescaled to
the magnitudes and units considered in our mathematical model.
Through a parameter sensitivity analysis, we explore the effects on
tumor growth of the effector cell recruitment rate r and functional
vascularization degree B for different choices of the initial tumor
radius R0 and concentration of effector cells E0.

For convenience of the reader, we summarize in Table 1 the
parameter values used in numerical simulations of the tumor-
immune dynamics considering the effect of tumor-associated
vasculature.

Dynamical Analysis of the Model

In this section, we analyze the model’s behavior with respect
to 2 parameters, namely the effector cell recruitment rate r and
functional tumor-associated vasculature B.

Fixed Point Analysis

The first step toward analyzing the model dynamics is the
identification of the fixed points along with their stability

Table 1. Model parameters. The effects of model parameters B and r, i.e. functional tumor-associated vasculature and effector cell recruitment rate
respectively, are investigated by a model sensitivity analysis.

Description Parameter Value Units Sources

Mitotic rate of tumor cells lM 1.34 days¡ 1 53,60,61
Death rate of tumor cells lA 0.14 days¡ 1 53,60,61
Characteristic nutrient diffusion length LD [0.2 – 0.3] mm 53,62-64
Killing rate of tumor cells by effectors c 0.03 cells¡ 1 days¡ 1 20,32,53,55
Tumor volume where effector recruitment rate is half-maximal K 2.72 mm3 20,32,55,66
Inactivation rate of effectors by tumor cells d1 0.01 mm¡ 3 days¡ 1 20,32,55,66
Death rate of effectors d0 0.37 days¡ 1 20,32,65,66
Background rate of effector recruitment s 0.13 £ 105 cells days¡ 1 20,32,55,66
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classification. Figure 1A–D depict the phase portraits of the sys-
tem of equations (1)–(2) for different values of the model param-
eter B, while keeping r constant and equal to 0:57 days¡ 1. The
black curves represent the nullclines, i.e. curves along which
dR=dt D 0 and dE=dt D 0, and the colored curves the system
trajectories for different initial conditions. The fixed points of
the system are located at the intersection of the nullclines. In
each case, we identify the existence of 2 fixed points correspond-
ing to a low tumor radius LD RL;ELð Þð Þ and a high tumor
radius H D RH ;EHð Þð Þ.

Figure 1E–L show the evolution of the tumor radius and
effector cells of the corresponding trajectories on the phase plain
presented in Figure 1A–D. A quick glance at Figure 1 reveals
that the system trajectories initiated near the L fixed point follow
an oscillatory behavior with a slowly varying amplitude that can be
either increasing Figure 1F, G or decreasing Figure 1E, H. This
behavior indicates that, depending on the model parameter values,
the L fixed point can be an attractor or a repellor. On the other

hand, the trajectories initiated away from this point follow an
exponential behavior which results in a boundless tumor growth
while the amount of the effector cells fades out (see Fig. 1I–L).

To gain insight in the system behavior near the fixed points we
construct the bifurcation diagrams with respect to the immune
recruitment rate r for different functional levels of vascularization
B (see Fig. 2A–C). The bifurcation diagrams were calculated by
performing an arc-length continuation method. This method is a
special case of numerical fixed-point continuation methods that
ensures the continuation of solution branches at turning
points.67,68

For sufficiently small values of model parameter r, we obtain
that there are no fixed points, which consequently implies that
the tumor grows indefinitely. However, for a critical tumor
radius rcr, a homoclinic bifurcation occurs giving rise to 2 states:
a lower branch that corresponds to the L fixed point, and an
upper branch that corresponds to the H fixed point.69,70 The
local stability analysis shows that the H fixed point is a saddle

Figure 1. Phase portraits and long-term characteristic dynamics. (A–D) Phase portraits of the tumor radius R versus the concentration of effector cells E
for different functional levels of the tumor-associated vasculature B. Trajectories starting with the initial conditions IC1 D (R0, E0) D (2.0 mm, 20£105 cells)
and IC2 D (R0, E0) D (2.0 mm, 10£105 cells) are resented. The nullclines (zero-growth isoclines) of the dynamical system are also plotted. (E–H) Temporal
evolution of R and E, that corresponds to the trajectories in panels (A–D) starting at the initial condition IC1. (I–L) Temporal evolution of R and E, that cor-
respond to the trajectories in panels (A–D), starting at the initial condition IC2. The immune recruitment rate is rD 0.57 days-1 and the remaining parame-
ters are as in Table 1.
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point, and therefore unstable. On the other hand, the L fixed
point is a spiral point that, depending on the value of the parame-
ter B, can be unstable (spiral source) or stable (spiral sink).71,72

Figure 2D, E show the local stability analysis of L and H for
BD 0:60, which corresponds to the bifurcation diagram in
Figure 2B.

In the case of L being a spiral sink, a
system trajectory initiated inside the
homoclinic orbit, i.e., the closed orbit
that starts and returns to the saddle point
in Figure 3A, will follow regular oscilla-
tions with a slowly decreasing amplitude
until it reaches the fixed point. This
implies that the tumor radius will stay in
a control-bounded state. The homo-
clinic orbit defines the basin of attraction
for the spiral sink.69,70 Thus, any trajec-
tory initiated outside the homoclinic
orbit will result in an uncontrollable
tumor growth while the concentration
of effector cells fades out. On the other
hand, if L is a spiral source, any initiali-
zation of the system close to L will

produce regular oscillations with a slowly increasing amplitude.
This behavior persists until the trajectory of the system reaches
the unstable manifold of the saddle point H , which drives the sys-
tem toward an exponentially uncontrollable tumor evolution (see
Fig. 3B).

Figure 2. Bifurcation diagrams with respect to the immune recruitment rate r and local stability analysis. (A–C) One-parameter bifurcation diagrams with
respect to the effector cell recruitment rate r for different values of the functional tumor-associated vasculature B (0.40, 0.60 and 0.95, respectively). The
upper branches correspond to the saddle point H, whereas the lower branches to the spiral point L. Solid lines depict stable fixed points and dotted lines
the unstable fixed points. (D) Eigenvalues of the Jacobian estimated at the saddle point H with respect to the parameter r for vascularization B D 0.60.
(E) Real part of the eigenvalues of the Jacobian estimated at the spiral point L with respect to the parameter r for vascularization B D 0.60.

Figure 3. Classification of the system trajectories. (A) Homoclinic orbit of the saddle point H (star)
when the spiral point L (dot) is stable. (B) The unstable manifold of the saddle point H (star) when the
spiral point L (dot) is unstable.

178 Volume 7 Issue 2Virulence



Interestingly, the time required for reaching the unstable
manifold is significantly large. This system’s behavior can be
explained by performing a local stability analysis at the spiral
point L. Figure 4A, B illustrate the stability of L when the parame-
ter r is kept fixed and vasculature B is allowed to vary. The eigenval-
ues of the Jacobian estimated at L are lDm § ib. When m< 0, L
is a spiral sink, while for m> 0, L is a spiral source. Figure 4C, D
show how m changes with respect to vasculature B. For all values of
the parameters considered, we find that when L is a spiral source
the real part of the eigenvalues is m<< 1 with a maximum value of
mmax ffi 5:5 £ 10¡ 3. Therefore, by setting mD e<< 1, we can
identify 2 different time-scales describing the system’s behavior: a
fast time scale t where the regular oscillations occur and a slow time
scale T D et which describes the slowly varying amplitude. Fig-
ure 5A depicts the variation of b, which determines the oscillations
frequency, with respect to the model parameters r and B. Notice
that b 2 0; 1ð Þ, i.e. b/O 1ð Þ.

A plausible question relates to the possibility of controlling
tumor growth and with the conditions under which this control
can be achieved. The local stability analysis reveals that, when L

is a spiral sink, the homoclinic orbit creates a trapping region
where the tumor remains controlled. However, when L is a spiral
source, the tumor will finally escape innate immune control,
albeit the fact that it will stay to a certain region for a long period

of time. Therefore, a potential strategy
aiming at controlling the tumor growth
would be to keep the tumor near the L
fixed point. In the next sections, we
show how an external modulation of
the immune system dynamics could be
designed to limit the uncontrolled
tumor growth in the case that L is a spi-
ral source.

Mapping to a Negatively
Damped Harmonic Oscillator

via Multiscale Analysis

The original model given by
Eqs. (1)–(2) cannot be solved analyti-
cally and no control strategy can be eas-
ily designed. For this reason, we employ
a multiscale approach to analyze the sys-
tem’s behavior near the spiral point L.
This approach, that efficiently describes
the dynamics near a Hopf bifurcation
point, reveals the inherent multiscale
structure of the problem by capturing
the regular oscillations and constructing
an envelope of the slowly varying ampli-
tude in deterministic or stochastic non-
linear systems.7-76 Thus, adopting such
an approach we are able to map the ini-
tial system to a simplified negatively
damped harmonic oscillator which

allows to describe the self-sustained oscillations and the system’s
energy gain.77

The system’s behavior near the spiral source L can be
described by linearizing the Eqs. (1)–(2) around RDRL and
EDEL. Then, we obtain a new system of equations approximat-
ing the evolution of the perturbations u and v given by:

uDR¡RL; vDE¡EL; (3)

for juj<< 1 and jvj<< 1. Then, the linearized system takes the
following form:

d

dt

u

v

� �
� J jL

u

v

� �
D

@F

@R
jL

@F

@E
jL

@G

@R
jL

@G

@E
jL

2
64

3
75 u

v

� �

D a1 a2

a3 a4

� �
u

v

� �
; (4)

where J j L represents the Jacobian at the fixed point L and F;G
correspond to the right-hand side of Eqs. (1)–(2) respectively.

The eigenvalues of the Jacobian are lD Tr J j Lð Þ
2 §

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr J j Lð Þ¡ 4D

p
2 D

m§ ib. Moreover, Tr J j Lð ÞD a1 C a4 and DD a1a4 ¡ a2a3 are
the trace and determinant of the Jacobian matrix, respectively.

Figure 4. Stability analysis of the spiral point L with respect to vascularization B. (A, B) Stability analysis
of L with respect to the functional tumor-associated vasculature B for the immune recruitment rate r

equal to 0.54 and 0.06 days¡1, respectively. The labels S1 and S2 represent the bifurcation points, while
the solid and dashed lines depict the stable and unstable solution branches, respectively. (C) Real part
of the eigenvalues of the Jacobian estimated at the spiral point L with respect to B for r D 0.54 days¡1.
(D) Real part of the eigenvalues of the Jacobian estimated at the spiral point L with respect to B for
r D 0.60 days¡1.
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Since eDm and b/O 1ð Þ, it follows that a1 /O eð Þ, a4 /O eð Þ,
whereas a2 /O 1ð Þ and a3 /O 1ð Þ. Moreover, we observe

that a1a4 /O e2
� �

which, consequently, results in bDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 C a4ð Þ2 ¡ 4 a1a4 ¡ a2a3ð Þ

q
=2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡ a2a3

p
. Thus, the eigenvalues

can be approximated by lD λ̂D e§ iv, where vD ffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡ a2a3
p

.
The condition e<< 1 holds for each case where L is a spiral
source and a2 is always negative since it represents the death rate
of tumor cells. Therefore, we can approximate the linearized sys-
tem (4) by the following one that incorporates the different
order-terms:

dû

dt
D eûCa2v̂;

dv̂

dt
Da3ûC ev̂;

(5)

where û � u and v̂ � v. The approximate linearized system (5)
explicitly captures the different-order terms and allows to draw
analogies with the field of Mechanics. More precisely, the system
of equations (5) represents a perturbed harmonic oscillator. The
unperturbed problem (i.e., when eD 0) is a linear harmonic
oscillator with frequency v. The higher-order terms (or correc-
tion terms) insert small perturbations which result in a weakly
negatively damped harmonic oscillator.

The solution of the approximate system of equations (5) can
be expressed as:

û

v̂

� �
DA.T/

a2

v
sin.vt/

cos.vt/

 !
CB.T/

a2

v
cos.vt/

¡ sin.vt/

 !
; (6)

where A Tð Þ and B Tð Þ contain the information regarding the
slowly varying amplitude depending on T , where T D et for

e<< 1. The multiscale assumption is that the functions A Tð Þ and
B Tð Þ evolve at the slow time scale T and are considered to be
constant with respect to the oscillations with frequency v, evolv-
ing on the fast time scale t. Notice that the variables
T D et/O eð Þ and t/O 1ð Þ are considered to be independent.
The constant term a2=v in the expression of û has been used to
simplify the upcoming calculations.

In order to estimate the functions A Tð Þ and B Tð Þ, we assume
that they follow evolution equations of the form:

dAD f1dT ; dBD f2dT : (7)

Then, by taking the differentials of the system of equations
(6), we have that:

dû D @û

@t
dtC @û

@A
dAC @û

@B
dB

D a2v̂dtC f1
a2

v
sin vtð ÞC f2

a2

v
cos vtð Þ

	 

dT ;

dv̂ D @v̂

@t
dtC @v̂

@A
dAC @v̂

@B
dB

D a3ûdtC f1cos vtð Þ¡ f2sin vtð Þð ÞdT :

(8)

Notice that the system of equations (5) and (8) are equivalent.
Therefore, by equating the terms of the same order, we obtain
that:

f1
a2

v
sin vtð ÞC f2

a2

v
cos vtð Þ

DA Tð Þ a2
v
sin vtð ÞCB Tð Þ a2

v
cos vtð Þ;

(9)

f1cos vtð Þ¡ f2sin vtð ÞDA Tð Þcos vtð Þ¡B Tð Þsin vtð Þ: (10)

To estimate the functions f1 and f2, we project the Eqs. (9)–
(10) onto the fast dynamics. This is an important step of the
calculations in order to isolate the amplitude of functions f1 and
f2.

75,76 For instance, multiplying Eq. (9) by sin vtð Þ and
integrating over a period of time [0; 2p=v], we have that:

Z2p=v
0

f1
a2

v
sin vtð ÞC f2

a2

v
cos vtð Þ

	 

sin vtð Þdt

D
Z2p=v
0

A Tð Þ a2
v
sin vtð ÞCB Tð Þ a2

v
cos vtð Þ

	 

sin vtð Þdt;

which results in f1 DA. In a similar way, multiplying Eq. (9) by
cos vtð Þ and following the same procedure, we find that f2 DB.
Consequently, the solution of the approximate linearized system
of equations (5) is given by:

û

v̂

� �
DA0e

T

a2

v
sin.vt/

cos.vt/

 !
CB0e

T

a2

v
cos.vt/

¡ sin.vt/

 !
; (11)

Figure 5. Frequency dependence on the immune recruitment rate r and
vascularization B. Imaginary part of the eigenvalues of the Jacobian esti-
mated at the spiral point L with respect to the immune recruitment rate
r and the functional tumor-associated vasculature B. The labels S and U
represent the regimes where the spiral point L is stable and unstable,
respectively.
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where the positive parameters A0 and B0 are defined by the initial
conditions of the original model (1)–(2). In addition, Eq. (11)
can be further simplified to take the following form:

û

v̂

� �
D MeTsin.vtC ’/

NeTsin.vtC d/

� �
; (12)

whereM cos fð ÞDA0a2=v,M sin fð ÞDB0a2=v, N sin dð ÞDA0

and N cos dð ÞD ¡B0. We show that the functions û and v̂ are
orthogonal since:

cos d¡fð ÞD cos dð Þcos fð ÞC sin dð Þsin fð Þ
D ¡B0

N

A0

M

a2

v
C A0

N

B0

M

a2

v
D 0

, dDfC p

2
:

Then, the system of the approximate solutions becomes:

û

v̂

� �
D MeTsin.vtC ’/

NeTcos.vtC ’/

� �
; (13)

The advantage of using the proposed approach is that the sol-
utions of the approximate model (13) depend directly on experi-
mentally accessible parameters and the initial conditions. We
focus now on the stability properties of the system (5) with
respect to the time evolution of the variables û and v̂. To that
end, we construct a Lyapounov functional as:

V û; v̂ð ÞD 1

2
a3û

2 ¡ a2v̂
2

� �
; (14)

where V is always positive definite since a2 < 0, and the time-
derivative of V is given by:

dV

dt
D a3û

dû

dt
¡ a2v̂

dv̂

dt

D e a3û
2 ¡ a2v̂

2
� �C a3a2ûv̂¡ a3a2ûv̂ð Þ

D e a3û
2 ¡ a2v̂

2
� �

> 0:

(15)

Since dV=dt> 0 the system gains energy. The average energy
hV i over a period is estimated by using the form of the approxi-
mate solutions (12) and considering the multiscale assumption:

hV i D v

2p

Z 2p=v

0

VdtD v

2p

Z 2p=v

0

1

2
a3û

2 ¡ a2v̂
2

� �

£ dt � e2T
1

4
a3M

2 ¡ a2N
2

� �
:

(16)

The term 1
4 a3M

2 ¡ a2N
2ð Þ is constant and depends on time-

invariant parameter values and the initial model conditions.

Consequently, the average energy gain rate over a period is equal
to:

d hV i
dt

D 2e hV i : (17)

The previous results suggest that a therapeutic strategy, which
influences the effector cell dynamics, should be designed in a way
to “pump out energy” with an average rate which is greater than the
system’s gain energy. In particular, the per period gain rate is equal
to 2e according to relation (16). Thus, if we introduce an external
immune-modulatory term h v̂ð Þ to intervene in the tumor-effector
cell interactions, the system of equations (5) becomes:

dû

dt
D eûCa2v̂;

dv̂

dt
D a3ûC ev̂C h v̂ð Þ:

(18)

According to Eq. (15), the rate dV=dt is at most of the order of
O eð Þ. Therefore, the function h v̂ð Þ should be of the order of O eð Þ,
for instance:

h v̂ð ÞD eẑ tð Þ: (19)

In order to calculate the function ẑ tð Þ, we require that the energy
Vh of the system (18) should have a negative rate, that is:

dVh

dt
D a3û

dû

dt
¡ a2v̂

dv̂

dt

D e a3û
2 ¡ a2v̂

2 ¡ a2v̂ẑ tð Þ� �C a3a2ûv̂¡ a3a2ûv̂ð Þ
D e a3û

2 ¡ a2v̂
2 ¡ a2v̂ẑ tð Þ� ��0:

(20)

The negative energy rate means that a trajectory progresses
toward a stable fixed point. In the limit dVh=dtD 0, we find an
expression for the zero-rate energy function ẑ tð Þ in terms of the sol-
utions û and v̂, given by:

ẑ tð ÞD a3û
2 ¡ a2v̂

2

a2v̂
(21)

Substituting the solutions of û and v̂ from Eq. (13), we have an
analytical expression of the zero-rate energy function ẑ tð Þ, that is:

ẑ tð ÞD a3

a2

M2

N
eT tan vtCfð Þsin vtCfð Þ¡MeTcos vtCfð Þ: (22)

The function ẑ.t/ has singularities at the points where the
function cos.vtCf/ is equal to zero, i.e. tsing D
.kpC p

2¡f/

v
; kD 0; 1; 2; . . . . However, the effect of ẑ tð Þ, i.e., the

integral of the function within a small time interval [t1; t2], is
finite.

Figure 6 illustrates the effect of ẑ tð Þ by integrating between
tD 0 and tDp=v, for values of the model parameters r and B
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where L is unstable. In each case, the system was initialized near
the spiral point L.

Using the function ẑ tð Þ is not feasible for practical purposes.
However, we can design meaningful therapy functions ẑext tð Þ
that induce the same or greater effects in a certain time interval
[t1; t2] as the function ẑ tð Þ, that is:

Zt2
t1

ẑ tð Þ dt�
Zt2
t1

ẑext tð Þ dt: (23)

This will result in “pumping out energy” at a rate greater than
the system’s energy gain. In the next section, we estimate the
function ẑ tð Þ which represents the zero-rate energy scenario, as
well as we present numerical simulation results for specific values
of the model parameters. Furthermore, based on the behavior of
the function ẑ tð Þ, we suggest an efficient external immune-modu-
latory term ẑext tð Þ to fulfill the relation (23) that results in long-
term tumor control.

Results: Theory-Driven Therapeutic Design

In this section, we design an immuno-therapeutic proposal
derived from our model analysis. We first compare the approxi-
mate solutions with those obtained from the original model
(1)–(2). Then, we show how the defined energy function in
Eq. (14) for the approximate linearized system can be used to
describe the system’s energy gain. Finally, we design an external
immuno-modulatory strategy following the behavior of the zero-
rate energy function given in Eq. (22).

To illustrate the simulation results and without loss of gener-
ality, we select the following parameter values: rD 0:6 days¡ 1

and BD 0:8; which results in eD 5:85 ¢10¡ 4 and vDffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡ a2a3
p D 0:336 rad=days. Notice that similar results can be

obtained for each parameter set where L is a spiral source, since
e<< 1 always holds. For numerical integration, we consider a 4th

order Runge-Kutta method. The time step was set equal to
dtD 0:001 days, which is sufficiently small.

Validity of Approximate Solutions

At this point, we need to validate the performance of the approx-
imate solutions. Figure 7A depicts the evolution of the approxi-
mate perturbation û compared to the perturbation uDR¡RL of
the initial model given by Eqs. (1)–(2), referred in what follows as
original model perturbation. The approximate solution û was esti-
mated by performing a numerical integration of the system (5),
while uDR¡RL by numerically integrating the original model
(1)–(2). Both systems of equations were initialized close to the spi-
ral point L and the simulation time was set tsim D 1000 days

(about 3 years). A quick glance at Figure 7A reveals that the solu-
tion derived by the approximate model (5) is very close to the orig-
inal one, which demonstrates the validity of the approach.
Moreover, Figure 7A shows a comparison of the original and
approximate model solutions by zooming in the time interval
between days 400 and 425. In this interval, the maximum error
between such solutions was found to be of the order of 10¡ 3.

Figure 7B compares the evolution of the approximate energy
function defined in Eq. (14) against the energy of the original
model (1)–(2). As in the previous case, the energy function of the
approximation is in a good agreement with that obtained from
the original model. Therefore, we expect that an external
immune-modulatory strategy, which results in a negative energy
rate, can be used with the same efficacy to the original model.

Proposal of a Therapeutic Term

Figure 7C depicts the zero-rate energy function in Eq. (21)
estimated by using the approximate solutions û and v̂ from the
system (18). As we observe, this function diverges at the singular-
ity points, which means that it cannot be used directly to induce
tumor control.

It should be noted that, the zero-rate energy function changes
sign according to the evolution of the variable uDR¡RL, i.e. the
function follows the monotonicity of tumor evolution. Hence, an
external immuno-modulatory therapy ẑext tð Þ that satisfies the con-
dition (23) should follow the evolution of the tumor by increasing
the recruitment rate of effector cells when the tumor radius
increases and decreasing the immune recruitment rate when the
tumor radius decreases. A simple approximation of the therapy
function would be a step function having a constant value and the
same sign to the zero-rate energy function at the same time interval:

ẑext tð ÞDatanh gv̂ð Þ; (24)

Figure 6. Dependence of the zero-rate energy function ẑ tð Þ effect on the
functional tumor-associated vasculature B and immune recruitment rate
r. Dependence of the effect of ẑ tð Þ on the model parameters r and B in
the unstable regime of L denoted by U. The label (S)stands for the
regime where the spiral point is stable and tumor control is reached.
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where g>> 1 expresses the sigmoidal steepness, and the selection of
a should fulfill the relation (23). Figure 7D depicts the immuno-
modulatory function ẑext tð Þ for aD ¡ 0:6 and gD 100, compared
with the estimated zero-rate energy function ẑ tð Þ.

Performance of the Proposed Therapeutic Strategy

The application of the external therapy in Eq. (24) implies the
addition of a new term in Eqs. (1)–(2), that is:

dR

dt
D 1

3
λMB¡ λAð ÞRC λM 1¡Bð ÞLD 1

tanh R=LDð Þ ¡
LD

R

� �
¡ cER f R;Bð Þ;

(25)

dE

dt
D r

R3

K CR3
E¡ d1ER

3 f R;Bð Þ¡ d0EC sC e atanh gvð Þ;
(26)

where vDE¡EL.
Figure 8A,B respectively show the evolution of the tumor

radius and effector cells by numerically integrating Eqs. (25)–
(26) that include the proposed external immuno-modulatory

function (24). The system is initialized
near the spiral point L and parameter
values of the external function were
selected equal to aD ¡ 0:6 and
gD 100. In doing so, we obtain that
the system reaches a stable steady state,
i.e., the tumor remains controlled.
Figure 8C illustrates how the energy of
the system of Eqs. (25)–(26) evolves.
The energy decreases with time and
becomes zero as the system reaches the
steady-state. It is worth pointing out that
a was selected not only to satisfy the
relation (23), but also to result in the sys-
tem’s fast convergence to a steady state.

Figure 8D, E respectively show the
evolution of the tumor radius and con-
centration of effector cells by numeri-
cally integrating Eqs. (25)–(26) when
the system is initialized away from the
spiral point L. In this case, the approxi-
mate solution is expected to deviate
from the solutions of the original model.
Figure 8F presents the temporal evolu-
tion of the corresponding energy. The
parameter a was selected to be equal to
¡25 to fulfill the relation (23), as well as
to provide a fast convergence to a steady-
state. Interestingly enough, in this case
the system also reaches a steady state,
even though the approximate system is
not accurate enough. Consequently, the

proposed external immuno-modulatory function is shown to be
adequate in controlling tumor growth, even when the system is
initialized far to the spiral point L.

Discussion

In this article, we investigate the therapeutic potential of
immunomodulatory interventions against tumor growth. To that
end, we consider a model that describes the dynamic interplay
between vascularized tumor growth and effector cell responses.53

Our goal is to identify an external modification of effector cell
dynamics that allows for controlling tumor growth. With the
help of bifurcation analysis, we identified a unstable oscillatory
regime that induces tumor evasion from immuno-surveillance.
The characteristic feature of this regime is the oscillations occur
at a faster time scale than the amplitude dynamics. Exploiting
this time scale separation and via temporal multiscale analysis, we
map our model onto a weakly negatively damped harmonic oscil-
lator. This approximation allowed us to identify an analytical
expression for the additive control term to the effector cell
dynamics. This term acts as an external immunomodulatory ther-
apy where the numerical simulations evidence its efficacy in
controlling tumor growth.

Figure 7. Validation of approximate solutions. (A) Evolution of the approximate perturbation û com-
pared to the original model perturbation uDR¡RL . (B) Evolution of the energy function of the
approximate linearized model defined in Eq. (14) against the energy estimated by using the original
model (1)–(2). (C) The zero-rate energy function in Eq. (21) estimated by using the approximate solu-
tion of the system (13). (D) The immuno-modulatory function ẑext tð Þ for aD ¡ 0:6 and gD 100 com-
pared with the zero-rate energy function ẑ tð Þ.
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The crucial question concerns the translational potential of
our theory-driven therapeutic proposal into clinical practice. Our
suggested immunomodulatory strategy is relevant to small
enough, non-invasive tumors that are initially controlled by the
immune system but eventually evade immuno-surveillance. The
latter occurs when tumors exceed a critical size where immune
responses are unable to confer any control. As stated above, our
model suggests that such tumor evasion may take place in the
form of oscillations of slowly increasing amplitude. The proposed
therapeutic strategy is based on the synchronization of immuno-
stimulating and -suppressive phases with tumor growth dynam-
ics. Although immuno-stimulating therapies seem to be expected
and plausible,6,8 immuno-suppression sounds counter-intuitive
and dangerous. However, the latter occurs in clinical practice
during chemotherapeutic interventions.78 Therefore, a potential
realization of our proposed strategy could be mediated by a com-
bination of state-of-the-art immunotherapies and chemothera-
peutic modules.1,4,8,49 The latter not only will play the role of
immuno-suppressor, but also will slow down tumor growth
dynamics. Needless to state that such a therapeutic suggestion
requires experimental validation and further investigation.

Finally, we conclude by pointing out the limitations of the
present work. Here, we assumed that tumor-associated vasculari-
zation is considered time invariant. Therefore, dynamic modeling
of vascularization dynamics is required to capture, for instance,
potential hypoxic effects due to vasculature perturbations.

Moreover, the immune system is much more complicated than
the current model description, since it involves more cell types
and their corresponding interactions. In particular, immune sys-
tem is usually regarded as acting against tumor growth. However,
recently became clear that it can be both stimulatory and inhibi-
tory, as in the case of tumor-associated macrophages.79,80 Fur-
thermore, our model cannot be applied to invasive/diffusive
tumors, since it requires further modifications. Nevertheless, sim-
ple mathematical models allow for a profound understanding of
the crucial dynamic phenomena involved in immune-tumor
interactions that are essential for generating novel therapeutic
ideas.
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Figure 8. Performance of the proposed therapy term. Evolution of the tumor radius (A) and concentration of effector cells (B) by considering the external
immuno-modulatory function (24) with parameters aD ¡ 0:6 and gD 100 (C) Energy of the system of equations (25)–(26) with aD ¡ 0:6 and gD 100.
Evolution of the tumor radius (D) and concentration of effector cells (E) by initializing the system away from the spiral point L and considering the exter-
nal immuno-modulatory function with aD ¡ 25 and gD 100. (F) Energy of the system of equations (25)–(26), with aD ¡ 25 and gD 100, initialized
away from the spiral point L.
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