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Abstract

Information from various public and private data sources of extremely large sample sizes are now 

increasingly available for research purposes. Statistical methods are needed for utilizing 

information from such big data sources while analyzing data from individual studies that may 

collect more detailed information required for addressing specific hypotheses of interest. In this 

article, we consider the problem of building regression models based on individual-level data from 

an “internal” study while utilizing summary-level information, such as information on parameters 

for reduced models, from an “external” big data source. We identify a set of very general 

constraints that link internal and external models. These constraints are used to develop a 

framework for semiparametric maximum likelihood inference that allows the distribution of 

covariates to be estimated using either the internal sample or an external reference sample. We 

develop extensions for handling complex stratified sampling designs, such as case-control 

sampling, for the internal study. Asymptotic theory and variance estimators are developed for each 

case. We use simulation studies and a real data application to assess the performance of the 

proposed methods in contrast to the generalized regression (GR) calibration methodology that is 

popular in the sample survey literature.
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1 INTRODUCTION

Population based biomedical science is now going through a paradigm shift as extremely 

large data sets are becoming increasingly available for research purposes. Sources of such 

big data include, but are not limited to, population based census data, disease registries, 

health care databases and various consortia of individual studies. The power of such large 

data sets lies in their sample size. They, however, often do not contain detailed information 

at the level of individual analytic studies, which may be much smaller in size, but have been 

designed to answer specific hypotheses of interest. There is a growing need for a statistical 

framework for combining information from data sets that are large but have relatively crude 

information with that available from studies that are small but contain more detailed 

information on each subject. Methods that can work with summary level information, as 

opposed to individual level data, are particularly appealing due to practical reasons such as 

data sharing, storage and computing, as well as for ethical reasons, such as maintenance of 

the privacy of the study subjects and protection of the future research interests of data 

generating institutions and investigators.

In this article, we consider the problem of building regression models using individual level 

information from an analytic study while incorporating summary level information from an 

external large data source. Our goal is to work within a semiparametric framework that 

allows the distribution of all covariates to remain completely unspecified, so that analysis 

results are not sensitive to modeling assumptions. One class of methods that could 

potentially be used for this purpose is to use calibration techniques that are popular in 

sample-survey theory. Chen and Chen (2000), for example, studied the extension of the 

generalized regression (GR) method for developing regression models using data from 

double sampling or two-phase designs in cases where the internal study is a sub-sample of 

the external one. There exists a rich literature on how to form optimal calibration equations 

for improving efficiency of parameter estimates within various classes of unbiased 

estimators (Deville and Sarndal 1992; Robins, Rotnitzki and Zhao 1994; Wu and Sitter 

2001; Wu 2003; Lumley, Shaw and Dai, 2011). Unlike GR, however, the application of 

many of these more optimal methods in the current setting requires access to individual level 

data from the external study.

The methodology for “model-based” maximum likelihood estimation has also been studied 

previously in some special cases of this problem, where it can be assumed that the covariate 

information available in the external data source can be summarized into discrete strata. In 

particular, in the setting of two-phase studies where it can be assumed that the internal study 

is a sub-sample of the external study, a number of researchers have proposed semiparametric 

maximum likelihood (SPML) methods for various types of regression models, while 

accounting for complex sampling designs (Scott and Wild 1997; Breslow and Holubkov 

1997; Lawless, Wild and Kalbflesich 1999). Most recently, Qin et al. (2015) studied the 

problem of fitting a logistic regression model to case-control data utilizing information on 

stratum-specific disease probability rates from external sources. The assumption that only 

discretized information is available from the external source is a major limitation of these 

methods. In practice, the external data set may often include combinations of many variables 

and summarizing this information into strata can be subjective and inefficient.
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In this article, we develop a general SPML estimation methodology, where we assume that 

the external information is summarized, not by a discrete set of strata defined by the study 

variables, but by a finite set of parameters obtained from fitting a model to the external data. 

We identify very general equations imposed by the external model, regard-less of whether 

the model is correctly specified or not, and use these equations to develop constrained 

maximum-likelihood estimation methodology. The broad framework allows arbitrary types 

of covariates and arbitrary types of regression models, including non-nested models for the 

internal and external data and complex sampling designs. For inference, we consider an 

empirical likelihood estimation technique, as well as a synthetic maximum likelihood 

approach that allows incorporating externally available estimates of the covariate 

distribution. We evaluate the performance of these maximum likelihood methods together 

with the GR-type calibration estimator in a wide variety of settings of practical interest. 

Finally, we illustrate an application of the method for developing an updated model for 

predicting risk of breast cancer using multiple data sources.

2 METHODS

2.1 Models and Notation

Let Y be an outcome of interest and X be a set of covariates. We assume a model for the 

predictive distribution gθ(y|x) has been built based on an external big data set. In general, we 

will assume that we only have access to the model parameters, θ, but not necessarily to the 

individual level data from the “external” study based on which the original model was built. 

We assume that data on Y, X and a new set of covariates Z are available to us from an 

“internal” study for building a model of the form fβ(y|x, z). Throughout, we will refer to 

fβ(y|x, z) and gθ(y|x) as the “full” and “reduced” models, respectively. We assume fβ(y|x, z) 

is correctly specified, but the external model gθ(Y|X) need not be. In practice, although all 

models are going to be wrong to some extent, investigators will control the specification 

fβ(Y|X, Z) and can carry out suitable model diagnostics. Let F(X, Z) denote the distribution 

function of all risk factors for the underlying population, which, for the time being is 

assumed to be the same for the “external” and “internal” studies. This assumption, however, 

will be inspected more closely later.

2.2 The Key Constraints Relating Model Parameters of Full and Reduced Models

Let U(Y|X; θ) = ∂log{gθ(Y|X)}/∂θ be the score function associated with the reduced model, 

and θ the parameter in the reduced model. The population parameter value θ* of θ 
underlying the external reduced model satisfies the equation

(1)

where pr(y, x) = pr(y|x)pr(x) is the true underlying joint distribution of (Y, X). When the 

model gθ(y|x) is misspecified, gθ(y|x) ≠ pr(y|x), but (1) still holds true under mild conditions 

(e.g. White 1882). Under the assumption that fβ(Y|X, Z) is correctly specified, we can write
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with β0 the true value of β. Thus the constraint imposed by equation (1) can be re-written, 

after changing some ordering of integrals, as

(2)

The equation essentially converts the external information to a set of constraints, which we 

utilize in our analysis of internal data to improve efficiency of parameter estimates and 

generalizability of models. The dimension of the constraints is the same as the number of 

parameters by which the external model has been summarized.

Figure 1 provides a geometric perspective for how the external reduced model provides 

information for building the full model based on the internal study. The true probability 

distribution for P0(Y|X, Z) (shown in the left panel), which is assumed to belong to the class 

generated by a parametric family fβ(Y|X, Z), induces a true value for P0(Y|X) = ∫ fβ0(Y|X, 
z)dF(z|X)dz (shown in the right panel). The reduced model space under consideration, gθ(Y|

X), may not contain P0(Y|X). Nevertheless, a value of θ = θ* that solves the score equation 

E{U(Y|X, θ)} = 0 has a valid interpretation in that it minimizes the Kullback-Leibler 

distance (Huber 1967; White 1982) between the fixed P0(Y|X) and the model space of gθ(Y|

X). Thus, from a reverse perspective, it is intuitive that if the value of θ* is given, then the 

search for β0 could be constrained to a space so that Pθ*(Y|X) remains the minimizer 

between the model space of gθ(Y|X) and any fixed point in the induced model space of 

Pβ(Y|X) = ∫ fβ(Y|X, z)dF(z|X)dz. In the figure, the constrained space for the induced model 

is represented by the chord .

2.3 Semiparametric Maximum Likelihood

One class of methodology we consider is SPML methodology that allows the distribution 

F(X, Z) to be completely unspecified. Importantly, two-phase design maximum likelihood 

methodology requires X to be discrete as the number of constraints increases with the 

number of distinct levels of (Y, X). In contrast, here Y and X can be arbitrary in nature and 

yet the number of constraints, defined by the dimension of the reduced model parameter θ, 

remains finite.

2.3.1 Maximum-Likelihood Under Simple Random Sampling for the Internal 
Studies—Suppose we have data on (Yi, Xi, Zi) for i = 1, …, N randomly selected subjects 

in the internal study. The likelihood is given by
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Our goal is to maximize log{Lβ,F} with respect to β and F(·) while maintaining the 

constraint given by (2). We assume that θ* is given to us externally, that is, θ is fixed at θ*. 

Thus, from now on, for simplicity we use θ to denote θ*.

Define

(3)

We propose to maximize lλ = log(Lβ,F) + λT ∫ uβ(X, Z; θ)dF(X, Z), where λ is a vector of 

Lagrange multipliers with the same dimension as θ. Assuming that nonparametric maximum 

likelihood estimation (NPMLE) of F(X, Z) has masses only at the unique observed data 

points in the internal study, F(·, ·) can be characterized by the corresponding masses (δ1, …, 

δm), where m denotes the number of unique values of (Xi, Zi), i = 1 …, N. Using standard 

empirical likelihood (or profile likelihood) computation steps (see e.g. Qin and Lawless 

1994; Scott and Wild 1997), we can show that the values of β and λ that satisfy the 

constrained maximum likelihood equations also satisfy the score-equations associated with a 

“pseudo-loglikelihood” given by

(4)

The derivation of (4) is given in Appendix.

2.3.2 Maximum Likelihood Under a Case-Control Sampling Design for the 
Internal Study—Even if we only have a case-control or retrospective sample from the 

internal study, as long as we have the external reduced model for the underlying population, 

we can estimate all of the parameters of the full model fβ(Y|X, Z) using this constrained 

maximum-likelihood approach. A special case is when the external information is simply the 

disease prevalence in the underlying population; it is well know that such information can be 

used to augment the case-control sample to estimate all of the parameters of a logistic or 

other binary disease risk models (see e.g., Scott and Wild 1992).

Suppose Y is binary and let p1 = pr(Y = 1) = 1 − p0 = ∫ fβ(Y = 1|x, z)dF(x, z) denote the 

underlying marginal disease probability in the population, for arbitrary values of β. The 

likelihood for the internal case-control study is given by

(5)

where N1 and N0 denote the numbers of cases and controls sampled. The goal is to 

maximize . Again, assuming that the NPMLE of 

F(X, Z) has masses only within the unique observed data points of (Xi, Zi), i = 1, …, N1 + 
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N0, in Appendix we show that the constrained maximum likelihood estimation problem is 

equivalent to solving the score equation associated with the pseudo-loglikelihood

(6)

The pseudo-loglikelihood in the case-control sampling setting requires introduction of one 

additional nuisance parameter μ1 = N1/p1, with μ0 = N0/p0 defined by μ1. In principle, this 

theory could be generalized to account for more complex stratified sampling designs for the 

internal study, assuming the external model is rich enough that it allows identification of all 

the parameters of the full logistic model even if certain parameters are not identifiable from 

the internal study.

The problem stated above has a strong connection with methodology in two-phase design 

semiparametric maximum likelihood estimation as developed by Scott and Wild (1997) and 

Breslow and Holubkov (1997). In fact, if the data (Y, X) from the external study can be 

summarized into a frequency table defined by fixed sets of strata, this problem essentially 

can be studied using previous theory with some modification for the fact that the internal 

study may not be a subset of the external study. The categorization of phase-I covariate data 

(X) is needed in these and other previously developed semiparametric methods, as all of 

them intrinsically rely on functionals that are smoothed over Z but not X. In contrast, in our 

maximum likelihood theory, the constraints are represented by functionals that are smoothed 

with respect to both X and Z. As a result, we avoid the “curse of dimensionality” problem 

that is typically faced in semiparametric estimation theory for covariate missing data and 

measurement error problems; see Roeder, Carroll, and Lindsay (1996) for a discussion on 

the latter topic.

2.3.3 Numerical Computation and Asymptotic Theory—For ease of exposition, 

when discussing computation and asymptotic theory, we transform the parameter μ1 to α 
defined in Appendix S.2 of the Supplementary Material for the case-control design. Further, 

we absorb the parameter α into β in the case-control design, so that the notation for certain 

functions such as uβ(X, Z; θ) can be unified under both the simple random and case-control 

sampling designs.

As mentioned above and detailed in Appendix, the pseudo-loglikelihood given in (4) or (6) 

is in fact the Lagrange function for the constrained loglikelihood obtained by Lagrange 

multipliers and profiling out the infinite dimensional parameter F(·, ·). By the theory of 

Lagrange multipliers (Chiang and Wainwright, 1984), the proposed semiparametric 

constrained maximum likelihood estimator for β0, denoted by β̂, is then obtained by directly 

solving for the stationary point, indeed the saddle point, over the expanded parameter space 

η = (βT, λT)T for the pseudo-loglikelihood function. We solve the resulting stationary 

equation to obtain β̂ by the usual Newton-Raphson method, which is quite stable and 

performs efficiently in our numerical studies when the initial value of λ is set to 0. In the 

simulations and data analysis performed in this work, all results converged within 10 

iterations of the Newton-Raphson algorithm employed. Numerical optimizations were 
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performed using PROC IML of SAS (version 9.3). Formulae for the score and Hessian for 

both simple random sampling and for case-control studies are given in Appendix S.2 of the 

Supplementary Material.

Let η̂ = (β̂T, λ̂T)T be the stationary point of the pseudo-loglikelihood function given in (4) or 

(6); namely, η̂ is the solution to the score equation  or  when the 

internal study is under simple random or case-control sampling. Explicit expressions for the 

score function, the first derivative of the pseudo-loglikelihood with respect to η = (βT, λT)T, 

are given in Appendix S.2 in the Supplementary Material. The following result confirms that 

the constrained maximum likelihood estimator for β can be obtained by solving the score 

equation. The proof is detailed in Appendix S.5 of the Supplementary Material.

Lemma 1: Under regularity conditions for model fβ(y|x, z) and conditions (i)–(iv) given in 

Appendix S.4 of the Supplementary Material, the pseudo-loglikelihood function  or 

is maximized at β = β̂ with probability one, and η̂ = (β̂, λ̂) is the solution to  or 

.

The following proposition establishes the asymptotic normality of the constrained maximum 

likelihood estimator proposed.

Proposition 1: Let η̂ = (β̂T, λ̂T)T be the solution to  or , and 

 with β0 the true value of β, 0 denoting a ℓ-vector of zeros and ℓ the dimension 
of λ. Under regularity conditions for fβ(y|x, z) and conditions (i)–(v) in Appendix S.4 of the 

Supplementary Material, as N → ∞, N1/2(η̂ − η0) converges in distribution to a zero-mean 
normal distribution with covariance matrix given by

(7)

where B = E{iββ(Y, X, Z)}, C = E{cβ(X, Z; θ)}, and , and where 
iββ(Y, X, Z) and cβ(X, Z; θ) are defined in (S.4) and (S.2), respectively, in Appendix S.2 in 

the Supplementary Material.

The proof is in Appendix S.5 of the Supplementary Material. A simple consistent estimator 

for the covariance matrix (7) is obtained by using the corresponding sample means for the 

expected quantities in the expression. In Section S.5 of the Supplementary Material, we 

show how to modify Proposition 1 when there is uncertainty about θ when it is estimated 

from a finite external study.

From Proposition 1 we see two interesting facts. First, the asymptotic variance of β̂ is (B + 

CL−1CT)−1 = B−1 − B−1C(L + CTB−1C)−1CTB−1, and hence the constrained maximum 

likelihood estimator is asymptotically more efficient than the estimator based only on 

internal sample data, whose asymptotic variance is B−1. Second, β̂ and λ̂ are asymptotically 
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uncorrelated, a phenomenon also shared by other empirical likelihood methods such as that 

of Qin and Lawless (1994).

2.4 Synthetic Maximum Likelihood

So far we have assumed that the underlying populations for the internal and external studies 

are identical, which may be violated in practice. In particular, as we will demonstrate 

through simulation studies, various types of calibrations methods, either maximum 

likelihood or not, can lead to substantial bias in parameter estimates if the distributions of 

the underlying risk factors are different between the internal and external populations. In this 

section, we consider the situation when an external reference sample may be available for 

unbiased estimation of the covariate distribution for the external population.

Let F†(X, Z) denote the underlying distribution for the external population, and consider the 

setting where it differs from the distribution F(X, Z) in the internal population. We continue 

to assume that the regression model fβ(Y|X, Z) correctly holds for both of the populations 

and that the underlying true parameters β0 are the same. We assume data are available from 

the external reference sample in the form , j = 1, …, Nr, where Nr is the size of the 

external reference sample. When the internal study sample is obtained under the simple 

random sampling design, the synthetic constrained loglikelihood is defined as 

, with F̃† the empirical distribution of (X†, Z†) in 

the external reference sample, and the synthetic constrained maximum likelihood (SCML) 

estimator (β̃, λ̃) for (β, λ) can be obtained by solving the estimating equations 

and , completely ignoring F(·, ·) because it factors out from the likelihood of the 

internal study.

When the internal sample represents a case-control study, however, the synthetic constrained 

loglikelihood is defined as

from which F(·, ·) cannot be factored out. As before, we consider NPMLE estimation of 

F(X, Z) allowing it to have masses at each of the unique observed data points of (Xi, Zi) (i = 

1 …, N1 + N0) in the internal study. In this setting, following Prentice and Pyke (1979) we 

can show that the SCML estimate of β can be obtained by maximization of a pseudo-

loglikelihood of the form

where
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with

(8)

and α = log (μ1/μ0). Here,  corresponds to the standard “prospective likelihood” for 

case-control data that is known to produce equivalent inference for β as the retrospective 

likelihood (Prentice and Pyke 1979; Scott and Wild 1997). In general, a likelihood of the 

form (8) may not be able to identify all of the parameters of the original model without 

additional information. In particular, for the logistic model, the intercept parameters become 

completely confounded by the nuisance parameters α and cannot be estimated from case-

control data alone. However, in the setting considered here, the additional constraint (2) 

defined by the external model allows estimation of all of the parameters of the full model 

even when the distribution of the risk-factors may differ in the two underlying populations.

2.4.1 Computation and Asymptotic Theory—As in the procedure considered in 

Section 2.3, we use the Newton-Raphson method to solve the stationary equations for the 

synthetic constrained loglikelihood  or , depending on whether the internal study is 

based on simple random or case-control sampling. Formulae for the score and Hessian for 

simple random sampling and for case-control sampling are given in Appendix S.3 of the 

Supplementary Material.

As mentioned previously, to simplify exposition, in the case-control setting we absorb the 

nuisance parameter α into β, and let η = (βT, λT)T. Denote by q and ℓ the dimensions of β 

and λ. The following lemma shows that β̃ obtained from  or  indeed 

maximizes the log-likelihood function log(Lβ,F) or  with probability tending to one 

under the constraint ∫ uβ(X, Z; θ)dF̃†(X, Z) = 0.

Lemma 2: Suppose that q > ℓ, and Nr/N → κ > 0. Under regularity conditions for the model 
fβ(y|x, z) and conditions (i)–(iv) given in Appendix S.4 of the Supplementary Material, the 

loglikelihood functions log(Lβ,F) or  is maximized at β = β̃ with probability 
approaching one under the constraint ∫ uβ(X, Z; θ)dF̃†(X, Z) = 0, where β̃ is in the interior 
of a neighborhood of true parameter value β0, and η̃ = (βT̃, λ̃T)T is the solution to 

 or .

We also provide asymptotic distribution theory for the SCML estimator η̃ = (β̃T, λ̃T)T. The 

proofs of these theoretical results are given in Appendix S.5 of Supplementary Material.
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Proposition 2: Recall that Nr/N → κ > 0.  with 0 denoting a ℓ-vector of 
zeros and ℓ the dimension of λ. Under the assumptions in Lemma 2 and condition (v) in 
Appendix S.4 of the Supplementary Material, the estimator η̃ = (β̃T, λ̃T)T satisfying 

 or  is asymptotically normal as N → ∞, such that N1/2(η̃ − η0) 

converges in distribution to a zero-mean normal distribution with covariance matrix

(9)

where with E† denoting expectation over the external covariate distribution F†(X, Z), G = 

CTB−1C, B = E{iββ(Y, X, Z)}, C = E†{cβ(X, Z; θ)}, , and iββ(Y, 
X, Z) and cβ(X, Z; θ) defined in (S.4) and (S.2), respectively, in Appendix S.2 of the 

Supplementary Material.

The variance-covariance matrix (9) for η̃ can be readily estimated by replacing the 

component quantities in the expression with their sample analogies. In Section S.5 of the 

Supplementary Material, we show how to modify Proposition 2 when there is uncertainty in 

the parameter estimates of the external study.

From Propositions 1 and 2, we see differences between (β̂, λ̂) and (β̃, λ̃) in their asymptotic 

theory. First, unlike β̂, the SCML estimator β̃ is not guaranteed to be more efficient than the 

internal-sample only estimator. However, β̃ is usually more efficient than the latter estimator, 

especially when κ is large, i.e., the size of the reference sample for estimating F(·, ·) is 

sufficiently large relative to that of the internal sample. In particular, in the special case of κ 
→ ∞, the matrix B−1CG−1CTB−1 is positive definite and hence β̃ is always more efficient 

than that of the internal-sample only estimator. Second, unlike (β̂, λ̂), (β̃ λ̃) are correlated 

asymptotically, although the correlation vanishes as κ → ∞.

3 SIMULATION STUDIES

We conduct simulation studies to evaluate the performance of the proposed methods in a 

wide variety of settings of practical interest. We consider developing models for a binary 

outcome Y using logistic and non-logistic link functions. In all simulations, it is assumed (X, 
Z) is bivariate normal with zero marginal means, unit marginal variances and a correlation of 

0.3.

In other numerical studies (not shown here), the conclusions from simulation studies did not 

change qualitatively if we used an alternative to the bivariate normal distribution for 

simulating (X, Z).

We study three different settings, in two of which we assume that the full model of interest 

has the form
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where h−1 denotes the inverse link function corresponding to a logistic or a probit model. In 

one of these settings, we assume that the external model is under-specified but involves both 

covariates with the form

and in the second setting we assume that the external model is missing the covariate Z 
altogether and has the form

In the third setting, we consider a measurement error problem where it is assumed that Z is 

the true covariate of interest and X is a surrogate of Z in the sense that Y is independent of X 
given Z. In this setting, we assume that the full and reduced models of interest are

respectively.

In each setting, we simulate data under the correct full model given a set of parameter values 

and then obtain the values of external parameters by fitting the reduced model, which by 

definition is incorrectly specified, to a very large data set. In the under-specified and missing 
covariate scenarios, the parameter values of the true model (β0, βX, βZ, βXZ) = (−1.6, 0.4, 

0.4, 0.2); in the measurement error scenario, they are (β0, βZ) = (−1.6, 0.4). In all models, 

the parameter specifications lead to a population disease prevalence around 20%. For 

simulating case-control samples for the internal study, in each simulation, we first generate a 

random sample and then select fixed and equal numbers of cases and controls. In both the 

simple random and case-control sampling settings, the size of the internal sample is N = 

1000. The external data are generated with a very large sample size and fixed throughout the 

simulations.

As a benchmark for comparison, in each simulation, in addition to the constrained maximum 

likelihood estimator proposed, we obtain the internal-sample-only estimate β̂I, and 

implement a generalized regression (GR) estimator, popular in the survey literature and 

developed for regression inference with double or two-phase sampling by Chen and Chen 

(2000). Specifically, the estimator takes the form

(10)

In (10), θẼ and θ̃I are estimates for θ using the external and internal samples, respectively, 

while
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where sβ(Y, X, Z) = ∂log fβ(Y|X, Z)/∂β, and where EI denotes the sample expectation based 

on the internal study. In the current implementation of such a calibration method, unlike in 

the original proposal, we disregard the uncertainty associated with θ̂E, since in the current 

setting such uncertainty is assumed to be negligible compared with the uncertainty in the 

internal sample. As shown in Chen and Chen (2000), the asymptotic covariance matrix of 

 is given as

(11)

which accounts for the uncertainty of θ̂I, and can be estimated by replacing each component 

quantity with its sample analogue.

Further, since the method of Chen and Chen (2000) was originally developed for simple 

random sampling designs only, when implementing their method for logistic regression 

analysis of a case-control design, we make an ad-hoc modification to GR estimator which 

we denote as mGR. Instead of applying the calibration formula (10) to the full set of 

regression parameters β, we apply it only to the subset of β excluding the intercept 

parameter. Such a modification is based on the rationale that, according to Prentice and Pyke 

(1979), for fβ(·) following a logistic regression model, the prospective maximum likelihood 

estimator provides valid and efficient estimates of all the parameters of the model except the 

intercept.

Tables 1–3 display simulation results with N = 1000. We also examine the cases with N = 

400, which lead to similar conclusions and are relegated to Tables S.1–S.4 in the 

Supplementary Material. From Tables 1–3 we conclude that the constrained maximum 

likelihood estimator β̂CML is always more efficient than the internal-sample-only estimator 

βÎ. For the under-specified and missing covariate scenarios, substantial efficiency gains are 

observed for regression parameters corresponding to the covariates that are also included in 

the reduced model fitted with external data, i.e., for (β0, βX, βZ) and (β0, βX), respectively. 

In the measurement error setting, the efficiency gain is observed for the main covariate of 

interest (Z) where the reduced model only includes an error-prone surrogate (X). These 

observations hold under both the simple random and case-control sampling designs. Under 

the simple random sampling design, the estimator βĜR performs similarly to or slightly 

worse than our estimator β̂CML in the under-specified and missing covariate settings. 

However, in the measurement error setting, βĜR is far less efficient than β̂CML. Under the 

case-control sampling design, the mGR estimator incurred substantial bias in the under-
specified setting, but not in the other two settings. From these simulation results and those 

conducted in a smaller sample-size setting (N = 400), we can conclude that the asymptotic 

distribution theory provided in Proposition 1 for βĈML performs quite well, as seen by the 

generally close agreement between the estimated (ESE) and simulation standard errors (SE), 

and between the nominal and simulation coverage probabilities of the Wald-type confidence 
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intervals based on asymptotic normality. Tables S.5–S.7 in the Supplementary Material show 

the performance of the different estimators in the setting of probit models under the random-

sampling design. The results are generally similar to those for the logistic model in Tables 

1–3.

We next investigate the properties of the different estimators when the distribution of (X, Z) 

differs between the internal and external populations. All of the steps are identical as before 

except that we assume corr(X, Z) is 0.1 in the external population. In this scenario, we 

implement the SCML method assuming a reference sample for the external population is 

available to estimate the underlying covariate distribution. We assume that the sample size 

for the reference sample is the same as that of the internal study, and in each simulation the 

random reference sample for (X, Z) is drawn from the distribution that is the same as that for 

the external population. We obtain the value of the external parameter by fitting a reduced 

model to a very large data set simulated using the external covariate distribution. Table 4 

shows the results under the missing covariate setting for logistic regression with simple 

random and case-control sampling.

Since results from the regression calibration βĜR and the constrained maximum likelihood 

β̂CML estimates are quite similar in this setting, results for the former are omitted in Table 4. 

As can be seen in Table 4, β̂, as well as β̂GR, is subject to remarkable bias for parameters 

corresponding to the covariates included in the reduced model. This is expected since β̂, as 

well as β̂GR, is derived under the assumption of complete homogeneity between the internal 

and external studies, and incorporation of the inconsistent external information can result in 

biased parameter estimates. On the other hand, we see from Table 4 that the SCML estimate 

β̃ performs quite well under both the simple random and case-control sampling: it is 

virtually unbiased, and more efficient than the estimate β̂I based on the internal sample only. 

The efficiency gain of β̃ over β̂I is particularly large for parameters corresponding to the 

covariates included in the reduced model. The standard error estimators and confidence 

intervals based on Proposition 2 for the synthetic constrained maximum likelihood 

estimation perform quite well in the settings considered.

4 DATA APPLICATION: BREAST CANCER RISK MODELING

We illustrate an application of our methodology by re-analysis of data from the Breast 

Cancer Detection and Demonstration Project (BCDDP) used by Chen et al (2006) for 

building a model for breast cancer risk prediction. The Breast Cancer Risk Assessment Tool 

(BCRAT), sometimes known as the Gail Model, is a widely used model for predicting the 

risk of breast cancer based on a handful of standard risk factors, including age at menarche 

(agemen), age at first live birth (ageflb), weight, number of first-degree relatives with breast 

cancer (numrel) and number of previous biopsies (nbiops). Chen et al (2006) developed an 

updated model, known as BCRAT2, to include mammographic density (MD), the areal 

proportion of breast tissue that is radiographically dense, that is known to be a strong risk 

factor for breast cancer. They used data available from 1217 cases and 1610 controls within 

the BCDDP study on whom data were available on these standard risk factors as well as 

MD. To increase efficiency, however, they used two-phase design methodology, utilizing 

data on standard risk factors that were available on a larger sample of subjects, including 
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about 2808 cases and 3119 controls within the BCDDP study. Details of the BCDDP study 

design, case-control sample selections and two-phase design methodology used can be 

found in their previous publication (Chen et al. 2006; 2008).

Within the last decade, epidemiologic studies of cancers and many other chronic diseases 

have gone through a major transition due to the formation of various consortia that allow for 

the powerful analysis of common factors across many studies based on a very large set of 

samples. For example, two major consortia have been formed to study breast cancer: one 

based on cohort studies, e.g., the BPC3 study of Canzian et al, 2010, and others based on 

case-control studies (Breast Cancer Association Consortium, 2006) have been formed. These 

studies have led to extremely powerful investigation of various types of hypotheses, such as 

genetic association, based on tens of thousands of cases and controls depending on the types 

of risk factors that are being analyzed. Many of the studies participating in these consortia 

have standard risk factors available, although sometimes in a crude form. However, 

mammographic density (MD), which is much harder to evaluate, is rarely available in these 

studies.

To illustrate the utility of the proposed methodology, we develop a model for predicting 

breast cancer risk using data available on the full set of risk factors from the 1217 cases and 

1610 controls of the “internal” BCDDP study and calibrating to the parameters from a 

standard risk factor model built from 12802 cases and 14296 controls from the “external” 

BPC3 consortium. The BPC3 standard risk factor model did not include mammographic 

density or the number of biopsies (nbiops); it included family history (famhist) as yes/no 

instead of the actual number of affected relatives, and recorded weight in tertiles as opposed 

to as a continuous variable. We used only summary level information from the BPC3 study, 

namely the estimates of the log-odds-ratio parameters and their standard errors. Our goal is 

to build a model similar to BCRAT2, i.e. a model with the standard risk factors as coded in 

BCRAT, and mammographic density.

Table 5 presents the results for model fit based on CML- and GR-based calibration 

approaches, together with the standard logistic regression analysis of the BCDDP data alone. 

In the model, the variable agemen is trichotomized according to age at menarche ≥ 14, 12–

13, or < 12, and the two dummy variables for the latter two categories are denoted as 

agemen1 and agemen2; the variable ageflb is categorized into four groups according to age 

at first live birth < 20, 20–24, 25–29, and ≥ 30, and the latter three groups are denoted as 

ageflb1, ageflb2, and ageflb3. For both CML and GR methods, the standard errors were 

adjusted to account for uncertainty in the parameter estimates of the external model (see 

Appendix S.5 in Supplementary Material as well as in the proofs of Propositions 1 and 2). 

As expected, both CML and GR methods led to much smaller standard errors for the 

parameter estimates associated with covariates included in the external model than the 

analysis of the BCDDP data alone. For a number of these factors, including number of first-

degree relatives with breast cancer and age at menarche, the use of the external model seems 

to change point estimates of model coefficients to a degree that cannot be explained by 

uncertainty alone. Closer inspection of the estimates of the parameters of the reduced model 

from the internal and external studies, also shown in Table 5, indicates that breast cancer 

associations for these two factors were different between the two studies to a degree that 
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may be indicative of true population differences. Since BPC3 represents a consortium of 

cohort studies underlying a broader population than that underlying the BCDDP study, a risk 

model that is built based on the calibrated estimates could potentially be more broadly 

applicable. However, future validation studies would be needed to verify such an assertion.

Of the two calibration estimators, both CML and GR method produced comparable point 

estimates, but CML produced noticeably smaller standard errors for number of first-degree 

relatives with breast cancer and weight, two variables that were included in cruder forms in 

the external model. These results are consistent with higher efficiency of CML over GR in 

the simulation setting of measurement error. For the number of previous biopsies and 

mammographic density, two factors which were not included in the external model, both 

CML and GR produced results similar to the standard analysis of the BCDDP data alone. In 

Table S.8 of the Supplementary Material, we present results for CML and GR proceeding as 

though the external model parameters came from a data set that is so large that uncertainty 

can be ignored. In this case, as expected, we observe that the efficiency of both CML and 

GR further increases relative to BCDDP-only analysis. Moreover, the relative efficiency of 

CML over GR increases for the parameters associated with weight and number of first-

degree relatives with breast cancer.

5 DISCUSSION

We have proposed alternative maximum likelihood methods for utilizing information from 

external big data sets while building refined regression models based on an individual 

analytic study. External information, when properly used, can increase both efficiency of 

underlying parameter estimates and the generalizability of the overall models to broader 

populations. In recognition of the potential of external data, survey methodologists have long 

used various types of “design-based” or “model-assisted” calibration techniques for 

estimating target parameters of interest without relying on a full probability model for the 

data. In this report, we provide a framework for a very general model-based, yet 

semiparametric, maximum likelihood inferential framework that requires only summary-

level information from external sources.

Our simulation studies and data analysis show that the constrained maximum likelihood 

(CML) and synthetic constrained maximum likelihood (SCML) methods can achieve major 

efficiency gains over generalized regression (GR) type calibration estimators for covariates 

in a model that are measured with a poorer instrument in the external study. On the other 

hand, for covariates that are measured the same way in the external and internal studies, the 

efficiency of these two methods was similar. It is, however, noteworthy that the modified GR 

estimator we implemented for the case-control study is not a proper model-free calibration 

estimator in the sense survey methodologists use. The method is only applicable for logistic 

models and is likely to be more efficient than a proper design-based GR estimator when the 

model is correct. Future research is merited to explore the theoretical properties of such 

modified GR estimators and their connection with ML estimators.

Our simulation studies show that model calibration using external information has important 

caveats as well. In particular, if the risk factor distribution differs between the underlying 
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populations for the internal and external studies, any type of calibration method, model-

based or not, can produce severe bias in estimates of the underlying regression parameters, 

even when the regression relationship fβ(Y|X, Z) is exactly the same in the two populations. 

The assumption of complete exchangeability of populations that is required in calibration 

methods is more likely to be violated in the kind of applications we envision than in survey-

sampling or two-phase design applications, where by design there is a common underlying 

population. Ideally, in this setting, model calibration should be performed with respect to a 

risk factor distribution that is representative of the external population. Our synthetic 

conditional maximum likelihood (SCML) method allows this by importing covariate 

distributions from an external reference sample. Even when such a sample is not available, 

the SCML method can be used to perform sensitivity analysis under various hypothetical or 

simulated covariate distributions that may be considered realistic for the external population. 

It is further important to note that likelihood-based methods require the assumption that the 

full model fβ(Y|X, Z) is correctly specified for both the internal and the external populations. 

Although the internal study can be used for performing model diagnostics for the underlying 

population, the assumption is not testable for the external population because of lack of 

information on Z and inaccessibility of individual level data.

The proposed methods may have applications in other areas, such as bench-marking small 

area estimates to match larger area estimates (Mugglin and Carlin, 1998; Bell, et al., 2013; 

Zhang, et al, 2014), analyzing randomized clinical trial data so that they are generalizable to 

larger populations (Greenhouse, et al., 2008; Frangakis, 2009; Stuart, et al., 2011; Pearl and 

Bareinboim, 2014; Hartman, et al., 2015) and standardization and control of confounding for 

observational studies (Keiding and Clayton, 2014). In general, we foresee that model 

synthesis using disparate types of data sources will be increasingly important for biomedical 

research in the future. The key constraints we identify to relate models of varying size, i.e. 

equation (2), could be useful for model synthesis in more general settings than we have 

considered here. More research is needed to extend the framework for developing models 

incorporating information from studies that may have collected different, possibly 

overlapping, sets of covariates. In this setting, each study or a combination of studies that 

collect similar covariates, can provide information on a particular type of reduced model. 

Future research is also merited to explore methods that can incorporate these constraints in a 

“softer” fashion to account for sources of uncertainty of the external models and their 

parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Derivation of the Pseudo-Loglikelihood

We first derive the pseudo-loglikelihood (4) under the simple random sampling design. The 

semiparametric likelihood  is to be maximized under 

the constraint ∫ uβ(X, Z; θ)dF(X, Z) = 0, where uβ(X, Z; θ) is defined in (3), and F is treated 

nonparametrically by assigning masses (δ1, …, δm) to the unique values of the data (Xi, Zi) 

(i = 1, …, N), with m the number of unique data points and . Let nj be the 

number of (Xi, Zi) equal to the jth distinct pair value. For notational convenience, write fβ,i = 

fβ(Yi, Xi, Zi), uβ,i = uβ(Xi, Zi; θ), and Fi = F(Xi, Zi) (i = 1, …, N). Applying the Lagrange 

multiplier method, we solve the stationary point to

where λ and ϕ are Lagrange multipliers. By differentiating with respect to λ and ϕ, we 

obtain the stationary equation:  and , as desired. Further, by 

differentiating with respect to δj, we obtain the stationary equation

which, by multiplying δj and summing over j on both sides leads to ϕ = −N since 

 and . Hence

Plugging this δj into log(Lβ,F) results in a profile likelihood that is equivalent to (4), with λ 
rescaled by a factor of N.

Now consider the semiparametric constrained maximum likelihood under the case-control 

sampling design of the internal study. In this case we want to maximize the case-control 

loglikelihood  given in (5) subject to the constraint ∫ uβ(X, Z; θ)dF(X, Z) = 0. 

Define  for y = 0, 1,  and . 

By the characterization of F as above and the Lagrange multiplier method, we solve the 

stationary equation for
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Again, by differentiating with respect to λ and ϕ, we obtain the stationary equations: 

 and . The stationary equation by differentiating δj leads to

Multiplying by δj, and summing over j on both sides leads to ϕ = 0 given 

and . Hence

where μy = Ny/py (y = 0, 1) and μ0 in fact links to μ1 since p0 = 1 − p1. Plugging δj into 

 then gives the profile likelihood equivalent to (6).
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Figure 1. 
Geometric interpretation of the problem. The true distribution function P0(Y|X) for Y given 

(X, Z) across all values of β is depicted in the left panel, with the true value of β, i.e., β0 

shown. In the right top panel, we see the true distribution function P0(Y|X) for Y given X 
across all values of β with β0 shown. The assumed external data model is given in the 

bottom right panel across all values of θ, with the solution θ* to (1) being shown as the 

minimizer of the Kullback-Leibler distance between the fixed P0(Y|X) and the model space 

of gθ(Y|X).
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