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Abstract

Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is
now possible to measure this heterogeneity with high throughput single cell gene expres-
sion assays (single cell gJPCR and RNA-seq). These experimental approaches generate
gene expression distributions which can be used to estimate the kinetic parameters of gene
expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the
rate of transcription. We construct a complete pipeline for the analysis of single cell gPCR
data that uses the mathematics behind bursty expression to develop more accurate and
robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifi-
cally an algorithm for clustering cells by their bursting behavior (Simulated Annealing for
Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic
parameters of bursty expression across populations of cells (Estimation of Parameter
changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new
single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of
blood differentiation were individually up- and down-regulated. We could identify two unique
sub-populations within a seemingly homogenous group of hematopoietic stem cells. In
addition, we could predict regulatory mechanisms controlling the expression levels of eigh-
teen key hematopoietic transcription factors throughout differentiation. Detailed information
about gene regulatory mechanisms can therefore be obtained simply from high throughput
single cell gene expression data, which should be widely applicable given the rapid expan-
sion of single cell genomics.

Author Summary

Many genes are expressed in bursts, which can contribute to cell-to-cell variability. We
construct a pipeline for analyzing single cell gene expression data that uses the mathemat-
ics behind bursty expression. This pipeline includes one algorithm for clustering cells
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(Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for
comparing the kinetic parameters of bursty expression across populations of cells (Estima-
tion of Parameter changes in Kinetics, EPiK). We applied these methods to blood develop-
ment, including a new single cell dataset in which TFs involved in the earliest branchpoint
of blood differentiation were individually up- and down-regulated.

Introduction

Many genes are expressed in stochastic bursts: there are time periods where many transcripts
are quickly produced, interspersed randomly with gaps of little or no transcriptional activity.
Bursting gene expression was initially proposed as a mechanism to explain why cells in a seem-
ingly uniform cell culture responded heterogeneously to steroids [1]. Two decades later, new
live imaging technologies enabled researchers to observe transcriptional and translational
bursting in real-time, finally confirming that bursting gene expression is a widespread phe-
nomenon [2-4]. In fact, Dar et al. [5] tested 8,000 human genes and found that all of them
were expressed in episodic bursts.

Ko et al. [6] described bursting gene expression using a two-state model of gene expression,
depicted in Fig 1A. In this model, each gene can either be in an on or an off state, and the gene
stochastically transitions between these states, with transcription only taking place when the
gene is on. The distribution of mRNA across a population of cells is determined by the follow-
ing three kinetic parameters: the rate the gene turns on (K,,), the rate the gene turns off (K,g)
and the rate of transcription when the gene is on (K), all normalized to the rate of mRNA deg-
radation [7]. The values of these three kinetic parameters determine the distribution of mRNA
transcripts within a population of cells (Fig 1B).

Predicting the rate at which genes turn on, turn off, and transcribe mRNA can provide
insights into how genes are regulated. For instance, TFs which are necessary for transcription
would control the rate at which the genes turn on (K,,). One example of such a TF would be a
pioneering factor, which opens up the chromatin to allow transcription. Brown et al. [8] found
that switching between active/inactive states corresponded to distinct chromatin changes in
PHOS5. This is consistent with the results in Dadiani et al. [9], which show that manipulating
nucleosome-disfavoring sequences in yeast can influence the burst frequency. On the other
hand, TFs that control K; are responsible for modulating the levels of gene expression of genes
that are already on [10]. For instance, they may be involved in polymerase II (Polll) recruit-
ment or transcriptional elongation. Therefore, estimating these kinetic parameters could help
generate hypotheses for gene regulation mechanisms.

Until now, the study of transcriptional bursting has been limited by the available experi-
mental approaches. The most common high-throughput strategies (conventional RNA-seq or
gPCR) for measuring gene expression require biological material from thousands of cells.
These bulk strategies only measure the average levels of gene expression in populations of cells,
data that cannot be used to make functional predictions about the bursting dynamics of tran-
scription. While transcriptional bursting can be visualized in real-time in single cells, this is a
low-throughput approach which can only measure expression for a single gene per cell [3, 4].
Recently, there has been an emergence of single cell resolution RNA-seq and gPCR technolo-
gies, which can observe the full profile of gene expression in a population of cells. However,
these are snapshot methods, which can only measure gene expression at a single point in time,
because they involve lysing the cells.
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Fig 1. Two-state model of bursty gene expression. The distribution of gene expression in a population of cells is partially caused by bursts of gene
expression. (A) In the two state model of bursting gene expression, a gene stochastically turns on at rate K,,, and off at rate K¢ When the gene is on,
it transcribes mRNA at a rate of K;. Note that all three rates are normalised to the rate of mMRNA degradation (Ky). (B) These kinetic parameters control
the shape of the gene expression distribution. In this figure, we keep K; = 100 and vary K., and K. At high K, the distribution of MRNA transcripts is
similar to a Poisson distribution (i), at high K, the distribution of MRNA transcripts is similar to a negative binomial (i), and at low values for K, and
Kor the distribution is bimodal (iii).

doi:10.1371/journal.pcbi.1005072.g001
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Nevertheless, preliminary studies have shown that it is possible to utilize the shape of the
distribution of gene expression at a single point in time to estimate the kinetic parameters of
the two-state model. Raj et al. [11] used a variation of the mathematical analysis done by Pec-
coud and Ycart [7] to estimate the kinetic parameters in fluorescent in situ hybridization
(FISH)-based expression studies, and Kim and Marioni [12] developed a strategy to estimate
kinetic parameters in RNA-seq data. In addition, Teles et al. [13] applied a similar approach to
a single cell qPCR dataset in the context of a hematopoietic developmental system.

As it is now accepted that bursting dynamics can in principle be resolved from single cell
snapshot datasets, we can take advantage of this type of analysis to develop new algorithms that
can answer a wide range of biological questions. In this paper, we apply our understanding of
bursting gene expression to develop a more effective clustering algorithm for single cell gene
expression data, which we call Simulated Annealing for Bursty Expression Clustering (SABEC).
This can help researchers identify previously uncharacterized sub-populations of cells within
their single cell data. Secondly, we develop a statistical tool for identifying whether the burst fre-
quency (K,, or Ky4) or burst magnitude (K,) are the source of gene expression variations between
experimental samples. Instead of simply observing whether gene expression increases or
decreases across two populations of cells, this Estimation of Parameter changes in Kinetics
(EPiK) toolkit allows researchers to make inferences about the underlying regulatory mecha-
nisms affecting gene expression. We provide a complete pipeline in R for analyzing single cell
qPCR data, including data normalization steps, SABEC clustering and EPiK cluster comparisons.
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This pipeline can be utilized in a wide range of biological contexts. We apply it to study how
some of the key transcription factors in hematopoiesis are being regulated, discovering that the
hematopoietic stem cells studied in Moignard et al. [14] formed two distinct sub-populations,
distinguishable by Tel and Gatal expression levels. Then, by manipulating the expression levels
of two of the TFs involved in early differentiation (Gfil and Gata2), we predict that the primary
mechanisms by which these TFs influence their downstream targets is by manipulating K,,,,.
Finally, we compare the mechanisms by which cell surface markers are regulated in healthy
and leukemic cells based on data previously reported in Guo et al. [15].

Results
A pipeline for analyzing single cell gene expression data

We have developed a pipeline for analyzing single cell qQPCR data in order to determine the
mechanism by which TFs were regulated during differentiation (Fig 2).

The input data consists of single cell qQPCR data for a set of genes, where the cells have been
sorted into their expected cell populations, using fluorescence-activated cell sorting (FACS).
There are two main outputs of the pipeline. Firstly, cells are divided into populations (clusters)
based on their bursting behaviour— each gene has the similar rates of activation (K,,), rates of
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Fig 2. Pipeline for the analysis of single cell gene expression data. This paper develops several new tools for single cell analysis. (A) The kinetic
parameters are estimated using a large look-up table. The likelihoods for each possible parameter set are found by multiplying the experimental data by
the lookup table, and then the maximum likelihood is identified. (B) The SABEC algorithm is used to identify clusters of cells with uniform bursting
kinetics—this iterative algorithm alternates between assigning cells to clusters and estimating bursting kinetic parameters for each cluster. This clustering
algorithm is run 50 times and the results are summarized in a consensus matrix, which represents the frequency of each pair of cells being found in the
same cluster. (C) Finally, the EPiK tool identifies the most likely set of parameters to have varied for a gene across two different cell populations, using a
combination of the Bayesian Information Criterion (BIC), Marginal Probability (MP), and a Subsampling-based method, as described in (C). BIC
calculates the likelihood for each possible set of parameters, penalised by the number of free parameters. The MP score calculates the likelihood of each
parameter changing, independent of the behaviour of the other parameters. In the subsampling method, random sets of cells are selected, the kinetic
parameters estimated for each population of cells; then, the distributions of estimated kinetic parameters are compared. (D) These new tools are
combined to form a pipeline for analyzing single cell qPCR data. The details for each step of this pipeline are described in the Methods.

doi:10.1371/journal.pcbi.1005072.9002
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inactivation (K,z) and rates of transcription (K;) across all cells within each cluster. Secondly,
the pipeline compares between each pair of cell populations and predicts the mechanism by
which each gene changes its expression- by changing the rate the gene turned on and off or by
changing the rate of transcription once the gene is already active.

A key component in the pipeline is our strategy for estimating the kinetic parameters. Previ-
ous approaches for estimating the kinetic parameters were slow to compute, because they
involved iterative algorithms, such as simulated annealing [13], expectation maximisation [11],
or Gibbs Sampling [12]. Meanwhile, we have a pre-computed look-up table for P(x|K,,,, K,
K}), the probability of seeing x mRNA transcripts, given a set of kinetic parameters (Fig 2A and
Eq 1). This table can be used to compute the most likely set of kinetic parameters using a single
matrix multiplication- a very efficient computation (Eq 2).

In the pipeline, first we normalize the measurements from the qPCR and transform them
into estimated mRNA counts (See Eq 6). Next, these measurements are input into a newly
developed unsupervised clustering algorithm (SABEC) which identifies populations of cells
with uniform bursting kinetics. SABEC is an iterative algorithm that starts by randomly assign-
ing cells to clusters; next, the algorithm alternates between estimating the kinetic parameters
for each gene within each cluster (using Eq 2) and probabilistically re-assigning cells to clusters
based on their likelihood of belonging to each cluster (using Eq 9), until the algorithm con-
verges— i.e. when fewer than 5% of cells swap clusters. SABEC is run fifty times using different
initial sets of randomly assigned clusters, and the results are summarised as a consensus
matrix— a matrix that records the number of times two cells were grouped together. The num-
ber of clusters can be determined by one of the following methods: the proportion ambiguously
clustered (PAC), Variable Information (VI) or the corrected Rand score (See Fig 2B).

Finally, each pair of populations is compared using a statistical tool we developed called
EPiK, in order to identify whether each gene is regulated by modifying the rate the gene turns
on (burst frequency) or the level of transcription once the gene is active (burst magnitude).
EPiK is a compilation of three different methods: the Bayesian Information Criteria (BIC), a
Marginal Probability (MP) Score, and a subsampling method. Since for each gene there can be
between 0 and 3 parameters that can differ across a pair of populations, BIC identifies the set of
parameters most likely to differ after penalising parameter sets that are larger (See Eq 12). The
MP score separately calculates the likelihood of each parameter changing, independent of
whether the other parameters change or stay the same (See Eq 15). In the subsampling method,
the kinetic parameters are calculated for small random subsets of cells, then the distributions of
estimated kinetic parameters for the subsets are compared by the Kolmagorov-Smirnov statis-
tic(Fig 2C).

All together, our R data processing scripts, SABEC, and EPiK come together to form a pipe-
line that utilizes the mathematics of bursting gene expression to determine how genes are dif-
ferentially regulated across populations of cells (Fig 2D).

Validation of methods with in silico datasets

These methods were all tested in silico using data sets that have similar structures to the experi-
mental datasets. Each of the three methods introduced in this paper (ML approach for kinetic
parameter estimation, SABEC and EPiK) required a different set of simulated data.

The ML method for kinetic parameter estimation was benchmarked populations of cells
with known kinetic parameters to allow us to quantify the accuracy of the method. 3,000
parameter sets were randomly selected (uniformly distributed) with K,,, between 0 and 5, K4
between 0 and 20, and K, between 0 and 600. We randomly sampled 10% of the transcripts
from each of the simulated cell, to represent the technical noise caused by the loss of 90% of the
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starting material during sample preparation. We included a stochastic loss of mRNA tran-
scripts to account for material loss during cDNA library construction- Islam et al. [33] esti-
mates that only 48% of transcripts are reverse transcribed into cDNA, and Wu et al. [34] could
capture 42% of the total unique transcripts that were identified in bulk RNA-seq.

The simulated datasets for testing the SABEC method were chosen to be as similar to the
experimental datasets as possible. 100 simulation sets were generated, with each completely
parallel to the Moignard dataset; Each simulation set consisted of five populations of 124 cells
with 18 genes each, with their kinetic parameters equal to those estimated by the ML method
for the experimental data.

Finally, to test the final method of comparing kinetic parameters between two populations
of cells, 1600 simulated datasets were generated, each one consisted of a pair of populations of
124 cells with 1 gene each. There are eight combinations of kinetic parameters that can change
(none, all, three ways one parameter can change and three ways two parameters can change).
Two hundred pairs of populations were selected for each of these eight scenarios, with 100 sim-
ulations with 0 < K, < 5 and 100 simulations with 5 < K, < 10. The range of the other
parameters were 0 < K,,, < 5and 0 < K; < 600. In these simulations we also simulated the ran-
dom loss of 90% of the mRNAs.

Even after simulating 90% loss of biological material, the predicted parameters correlated
well with their real values, although K,;was the most difficult parameter to predict (See Fig
3A-3C), especially at wider parameter ranges (S1 and S2 Figs), but it still performed better
than the Kim and Marioni Method (S3 Fig). These in silico results emphasize that the cDNA
library efficiency can have a large impact on the absolute values of predicted parameters, which
suggests that raw parameter values are not comparable across different experiments. SABEC
also accurately predicted clusters of simulated datasets, with similar population structures and
parameter ranges to the experimental dataset (Fig 3D-3F). Finally, we found that the EPiK
method was very conservative, with approximately a 0.05% false positive rate when the meth-
ods were intersected (Fig 3G and 3H). Further details about the validations and comparisons
with alternative methods are described in depth in the Methods. Next, we applied these meth-
ods to experimental datasets.

Single cell analysis of hematopoietic stem cells and progenitors

The dataset we use to test our pipeline comes from Moignard et al. [14], which is a high quality
single cell QPCR dataset that includes approximately 124 cells each from five different popula-
tions of cells during hematopoeisis. Hematopoiesis is the process by which hematopoietic stem
cells (HSC) in the bone marrow differentiate into different types of red and white blood cell
types. This process can be depicted as a differentiation tree, in which each cell must make mul-
tiple “decisions” at each branching point in the tree that will determine its final cell fate.
Moignard et al. [14] includes two key branching points: i) HSC cells can become lymphoid-
primed multipotential progenitors (LMPPs) or premegakaryocytes (PreMegEs, also referred to
as PreMs in figures) and ii) LMPP cells can become granulocyte-macrophage progenitors
(GMPs) or common lymphoid progenitors (CLP).

The focus of this study is on the densely interconnected TF regulatory network that has
been shown to contribute to cell fate decisions. There is strong evidence that at least seven of
these TFs directly interact with one another, potentially forming a SCL/Lyl1/Gata2/Runx1/
Lmo2/Fli-1/Erg heptad, with some TFs directly binding to the DNA (such as Gata2 and SCL)
and other TFs serving a bridge between the DNA bound components (such as LMO2) [16].
Other key TFs that were profiled in Moignard et al. [14] were PU.1, Meisl, Hhex, Tel, Nfe2,
Eto2, Mitf and Ldb1.
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Fig 3. In silico validation of single cell analysis pipeline. In order to estimate the accuracy of the new tools developed in this paper, each tool was
evaluated against simulated datasets. (A-C) The kinetic parameter estimation method was tested against simulated data in which 90% of the data was
randomly discarded, to simulate the loss of biological material through inefficient cDNA preparation. The known kinetic parameters and the estimated
kinetic parameters were compared for K, (A), Kofr (B) and K; (C). (D-F) Next, SABEC was tested against simulated datasets that had the same kinetic
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was tested on 100 of such simulated datasets and the robustness of the clustering was measured by calculating the proportion of ambiguously clustered
cells (PAC). This figure depicts a hierarchical clustering of the consensus matrices that come from (D) the dataset whose clustering had the worst PAC
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positive rate would be approximately 2%— receiver operating characteristic (ROC) curves for these are found in S13 and S14.

doi:10.1371/journal.pcbi.1005072.9003
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There are a number of open questions about the differentiation of HSC into the various pro-
genitor cell populations. Firstly, although the cells were assigned to their populations via FACS,
it is unclear whether these sub-populations are truly uniform. For instance, some HSC cells
may be biased towards self-renewal or producing cells in the lymphoid or myeloid lineages.

Secondly, the specific mechanisms by which these TFs are being regulated are as yet unchar-
acterized. Influencing the rate at which genes turns on (K,,,) could increase the proportion of
cells with an active copy of a gene; whereas manipulating the transcription rate (K;) would
result in there being higher concentrations of mRNA, while maintaining the same proportion
of cells with an active gene. In hematopoiesis, cellular TF concentrations help determine which
branch the cell will take as it differentiates towards its final cell fate. Therefore, choosing to
manipulate K,,, instead of K; could influence the proportion of cells that enter a certain differ-
entiation trajectory. In addition, since the expression of these TFs is tightly linked, one gene’s
bursting dynamics could have repercussions on the dynamics of the entire network.

Hematopoietic stem cell populations have heterogeneous bursting
kinetics

Although the cells that we study have been sorted into distinct subpopulations using FACS,
this does not guarantee that the populations are indeed transcriptionally uniform. Some cells
may be misclassified by FACS (expected misclassification rate is 1% for the Moignard dataset),
and some of the known populations may be composed of as yet unidentified subpopulations.
In addition, extrinsic variability, such as having cells in different stages of the cell cycle, could
cause the populations to be heterogeneous.

It can be difficult to accurately identify homogenous subpopulations using standard cluster-
ing approaches like K-means or hierarchical clustering (S5 Fig). For instance, K-means is most
effective when each cluster is normally distributed and has similar variances. Due to bursting,
gene expression is unlikely to come from such a distribution; gene expression distributions can
look like a Poisson distribution, a negative binomial distribution, or even a bimodal distribu-
tion, depending on K,,, K,z and K;. Therefore, we developed a simulated annealing strategy
(Simulated Annealing for Bursty Expression Clustering, SABEC), which takes into account
bursting gene expression, in order to have more robust clustering. SABEC was rigorously tested
against simulated datasets that were designed to be as close as possible to the structure of the
experimental data (S6 Fig). Additionally, the algorithm was tested on a wide range of simulated
datasets, to see if this method could perform well under varied conditions, such as on data with
different numbers of genes measured in each cell and different numbers of cells in each popula-
tion (S7 Fig).

Next, SABEC was applied to the experimental single cell gPCR data from Moignard et al.
[14]. The final clustering is depicted in Fig 4A. Although the predicted hematopoiesis differen-
tiation tree is expected to look like Fig 4Bi, we found that HSC is divided into two distinct sub-
populations. One of these populations had 12.8% of cells expressing Gatal, while the other
population had none. Since Gatal is uncommon in HSC cells, but often found in multi-potent
progenitor populations (MPP, the earliest progenitor population formed by HSCs [17]), we
hypothesized that the populations of cells without Gatal may be self-renewal HSCs and the
other may be HSCs poised for differentiation.

Our clustering with SABEC was based solely on the expression of 18 TFs. However,
Moignard et al. [14] also profiled cell surface protein tyrosine kinase c-Kit. It is known that low
levels of c-Kit correlate to greater self-renewal potential in HSCs [18]. Even though all of the
HSC cells were positive for the c-Kit protein according to FACS, not all the cells had high levels
of c-Kit transcripts. Our hypothesized self-renewal HSC population had significantly lower
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doi:10.1371/journal.pcbi.1005072.9004

levels of c-Kit than our poised-to-divide population (p-value 9.117e-06 with Kolmogorov-
Smirnov test). Even though c-Kit was not one of the genes used to cluster the cells, there was
substantial difference in expression levels, suggesting the tree topology depicted in Fig 4Bii.
Further evidence for this arrangement is in S9 Fig.

The SABEC algorithm has provided us with subpopulations that appear to have uniform
bursting kinetics. In the next section we will identify which kinetic parameters were most likely
adjusted across each pair of cell populations, using EPiK. EPiK works best when cell popula-
tions have uniform bursting dynamics; S11 Fig shows how having mixed cell types can influ-
ence estimates of kinetic parameters. Therefore, we remove cells that do not cluster well with
other cells of the same type, with cutoff thresholds designated by the vertical lines in Fig 4C,
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which is determined by the region of the curve with the steepest slope. However, this pruning
protocol could bias parameter estimation if it were to eliminate cells that are falsely identified
as outliers (S10 Fig). Therefore, we run EPiK both on the pruned and unpruned datasets, and
only consider parameters that are consistently found to have changed under both conditions. It
is important to note that the proposed outlier cells may be of biological interest- for instance,
they may be rare cell types or cells in the process of differentiation. The pruned dataset is only
for use to boost the accuracy of predictions with EPiK, but all cells should be observed for
other types of analysis.

Transcription factors involved in hematopoiesis are regulated by
different mechanisms at each stage of differentiation

EPiK incorporates three different metrics for evaluating whether kinetic parameter changes are
significant. By taking the intersection of these three prediction methods, the false positive rate
decreases without a significant drop in the true positive rate. This gives us a very conservative list
of probable kinetic parameter changes (a 0.05% false positive rate with our simulated dataset).

The first method is the Bayesian Information Criterion (BIC) (S12 Fig), and the second
method is the marginal probability (MP), which is the log likelihood of a certain parameter
being varied, independent of whether the other two parameters vary or stay the same (S13 Fig).
In the third method, we repeatedly subsample cells from each population and estimate the
kinetic parameters for each subset, comparing the maximum distance between the cumulative
density functions of the distributions (S14 Fig).

These three methods were applied to the experimental data from Moignard et al. [14]. Each
of the methods is based on slightly different assumptions, so they each have different distribu-
tions of parameters being varied (See S15 Fig). For instance, BIC predicts that K, is adjusted
in a few cases, but this is not deemed significant by either the MP or subset methods. In addi-
tion, there are more significant parameter changes in the case of the pruned populations com-
pared to the complete populations, because these populations are more distinct from one
another.

We can now take a closer look at a few examples of TFs that have predicted kinetic parame-
ter changes during differentiation (Fig 5). The predictions from each method are drawn along
the branches of the hematopoiesis differentiation tree (Fig 5A-5E). To demonstrate the magni-
tude and direction of these kinetic parameter changes, Fig 5E-5H illustrates the kinetic param-
eter estimates for each population of cells.

In Fig 5A and 5F, four out of the six methods predict that Eto2 is up-regulated by increasing
K,y (red) during the HSC to PreM transition, which is consistent with Eto2 having a role in
increasing the proportion of cells that differentiate into PreM [19].

One striking feature of Fig 5A-5E is that Eto2, Mitf, and PU.1 are regulated by different
kinetic parameters in different stages of blood differentiation. PU.1 has known cell-type-spe-
cific enhancer elements [20], and our results may suggest that each of these may regulate PU.1
through different mechanisms. On the other hand, Nfe2 is consistently regulated by K,
throughout differentiation.

In some instances, all six methods come to a consensus as to which kinetic parameter was
the source of gene expression variability for a particular TF, and these are shown in Fig 6A.
Throughout hematopoiesis, most of the differences in gene expression come from changes of
K., but Lmo2, Nfe2 and Meis1 are regulated by K; in the transition from LMPP to GMP.
Recall that in the previous section, we identified that HSC forms two distinct sub-populations.
We compared the two HSC sub populations with their child populations (LMPP and PreM)
(see Fig 6). Between HSC1 and HSC2 only Tel seemed to consistently change its kinetic
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Fig 5. Transcription factor-specific kinetic parameter changes. For each specific gene, it is possible to use EPIK to predict which kinetic parameters
vary throughout differentiation. (A-D) For each transition between populations of cells, the kinetic parameter changes are predicted for each TF using all
six methods shown in the key, which we represent by six colored rectangles— the color corresponds to the parameters predicted to have changed, as
designated in the key. If there are not enough cells with a certain gene expressed in order to calculate parameter changes, then the rectangles are
depicted as white. The results are shown for a selection of TFs: Eto2 (A), Mitf (B), Nfe2 (C), and PU.1 (D). (E-H) To demonstrate that EPiK provides
reasonable results, we depict the maximum likelihood estimates for K; and K, for each population of cells (pruned dataset). If there is a predominant
change in K, (red), K; (yellow), or both variables (orange), then these populations are connected by lines of the corresponding color.

doi:10.1371/journal.pcbi.1005072.9005

parameter (K,,). As expected, the cell population with higher Gatal and c-Kit expression has
more in common with LMPP and PreM cells than the other HSC subpopulation.

In summary, our methods have allowed us to not only identify which genes have changed
their expression, but also what physical mechanism caused that change.

Tel [l
HSC HSC1 HSC2
Gata2
Gfilb Erg
PU.1 Lyl
SCL Meis1
Gata2
Gfitb
LMPP PreM PUA .
SCL
Lmo2
Meis1
Mitf
Gfit Nfe2
Lmo2 SCL
CLP GMP LMPP PreM

Fig 6. Most significant kinetic parameters variations during hematopoiesis. This figure illustrates kinetic parameter change predictions that are
consistent across all six methods illustrated in the key of Fig 5— in other words, this is the intersection of BIC, MP, and the subset methods, as applied to
both pruned and un-pruned datasets. Just as in Fig 5, red boxes designate that K,,, varies, yellow boxes designate that K; varies and orange boxes
designate that both parameters change. A positive/negative signifies that gene expression increases/decreases along the line (top to bottom; or in the
case of horizontal lines left to right). (A) The most significant kinetic parameter changes are shown for the expected hematopoietic tree. (B) Based on the
SABEC clustering analysis, it appeared as if there were two distinct HSC subpopulations— the differences between these two subpopulations and LMPP
and PreM subpopulations were also calculated.

doi:10.1371/journal.pcbi.1005072.9006
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Gata2 and Gfi1 may regulate transcription by influencing the rate genes
turn on

In the previous section, we identified TFs that were regulated by K,,,, or K, during blood differ-
entiation, but it is unclear which TFs were controlling these changes. It may be possible to dis-
cover the specific mechanistic role of a TF by manipulating its expression experimentally and

then calculating the change in kinetic parameters of its downstream targets.

We decided to focus on the Gfil-Gfilb-Gata2 subnetwork that was identified as being
important at the first branching point of HSCs to LMPP and PreMegEs [14]. Primary HSCs
are difficult to isolate in large quantities, culture and manipulate, so we turned to HPC7 cells, a
model cell line for hematopoietic stem and progenitor cells which has some differentiation
potential towards more mature blood cells [16, 21]. Similarly to HSCs, HPC?7 cells express
Gata2 and Gfilb, but little or no Gfil. We therefore up-regulated Gfil expression and down-
regulated Gata2 expression and performed single cell gene expression analysis for the gene set
described by Moignard et al. [14], as well as some additional genes involved in HSC differentia-
tion. We analysed 81 cells expressing an shRNA against Gata2 and 77 cells control cells
expressing an shRNA against Luciferase, and 72 cells overexpressing Gfil and 45 control cells
expressing an empty vector.

There are a number of strategies by which a TF could reduce gene expression: by decreasing
the rate a gene turns on, by increasing the rate a gene turns off, or by decreasing the rate of
transcription of an active gene, and each of these strategies would result in different temporal
dynamics of gene expression bursting. All six methods came to a consensus that up-regulating
Gfil seemed to significantly alter Erg, Gfilb, Hhex and Mpl, by lowering K,,,.. Previous research
suggests that Gfil is usually a repressor that either keeps the chromatin in a condensed state or
actively competes for binding with activators [22]. Both of these mechanisms of action are con-
sistent with Gfil down regulating its targets by lowering K,,,. Based on ChIP-seq experiments
from Sanchez-Castillo et al. [23], Gfil binds in or near all four of these potential targets (see S1
Table).

In the other experiment, Gata2 was down-regulated; however, this was not a complete
knockdown, with only a slight overall decrease in expression (S20 Fig). All six methods suggest
that Gfilb expression was decreased via a change in K, as Gata2 levels decreased. In the
pruned population of cells, Procr (also known as EPCR, a known target of Gata2) had higher
K,,, after the knockdown [24].

When Gata2 and Gfil were down- and up-regulated, our methods could only detect
changes in K,,,. Therefore, we can hypothesize that this could be the mechanism of action of
these two TFs.

Gene expression variations in leukemia

Our pipeline for the identification of differential kinetic parameter values can also be applied to
compare healthy and diseased cell populations. In particular, we apply it to four of the cell pop-
ulations isolated in Guo et al. [15]: two cell types from a healthy mouse (GMP, Lin+) and two
from a leukemic mouse (LGMP, LLin+), whose leukemic cells came from a MLL-AF9 fusion
protein [25]. The most significant kinetic parameter changes are shown in Fig 7. Some of the
genes profiled by Guo et al. [15] were found in fewer than 10 cells in one or more cell popula-
tion, and these were excluded from kinetic parameter comparisons.

Some of the genes are enriched in a single cell population; for instance, TLR9, a factor
whose expression influences the prognosis of leukemia [26], is found predominantly in the
LLin+ cells, and appears to be regulated by K,,,. Most of the identified kinetic parameter
changes were in K,,,, or a combination of K,,, and K,. However, MUC13 and SIGLEC5 were
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Fig 7. Kinetic parameter differences between leukemic and healthy cells. This figure illustrates kinetic
parameter change predictions for the single cell gPCR data in Guo et al. Just as in Figs 5 and 6, red boxes
indicate that K,,, varies, yellow boxes indicate that K; varies and orange boxes signify that both parameters
change. The blue box indicates that K¢ varies. A positive/negative signifies that gene expression increases/
decreases along the line (top to bottom; or in the case of horizontal lines left to right).

doi:10.1371/journal.pcbi.1005072.g007

predicted to have been regulated by only K, and IL3RA was predicted to be regulated by K4
Interestingly, IL3RA is the only example where all methods predict changes in K, which sug-
gests that this is a promising gene to focus on in future research.

Discussion

In this study, we exploit established mathematical models of bursting gene expression to
develop a new pipeline for analyzing single cell gPCR data to more robustly cluster biological
samples and provide insight into the mechanics of gene regulation. We apply these methods to
study gene regulation in hematopoietic stem cell and progenitor populations. Even though sin-
gle cell qPCR data can only provide snapshots of gene expression in a population of cells across
different time points, we can infer the temporal dynamics of gene expression in these cells, and
use this information to infer the population substructure (via SABEC) or regulatory mecha-
nisms (via EPiK). This pipeline can be applied to study how genes are regulated during the nat-
ural process of differentiation or as cells progress into a diseased state. In addition, by
manipulating the expression of a TF within its cell culture, we can infer its specific regulatory
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role. These algorithms perform well in simulated datasets (S1, S2, S6, S7, S8, S12, S13 and S14
Figs), performing better than similar computational tools (Figs 8, S3 and S5).

Instead of simply observing how much gene expression heterogeneity there is in a sample, it
is now possible to predict the specific regulatory mechanisms that contributed to heterogeneity.
Most crucially, this type of analysis can be done in a high-throughput manner.
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Fig 8. Consensus clustering comparison of SABEC and K-means. In the case of the Moignard dataset, SABEC is better than K-means at grouping cells
by their FACS label. (A, B) For each pair of cells, we can count the number of times a pair of cells cluster together— a cumulative density function of these
values, for K varying from 5 to 10, is shown in for SABEC (A) and K-means (B). Pairs of cells that are grouped together greater than 10% of the time and less
than 90% of the time—represented by the vertical lines in (A) and (B)— are considered to be ambiguously clustered. (C) The proportion of cells that are
ambiguously clustered (PAC) for SABEC and K-means is used to evaluate the robustness of the clustering approach. (D, E) Next we quantify the accuracy of
the clusters, as compared to the labelled values (as per FACS). Specifically, this was done using the variable information (VI) (D) and the corrected Rand
index (corrected Rand) (E). (F, G) The full consensus matrix, by cell type label according to FACS, for K = 6 are shown for SABEC (F) and K-means (G).

doi:10.1371/journal.pcbi.1005072.9008
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In addition, commonplace clustering algorithms like K-means and hierarchical clustering
are not meant to cluster data drawn from Poisson, negative binomal, and bimodal distribu-
tions, as is the case for single cell gene expression data. For instance, K-means performs best on
data that comes from normal distributions with similar standard deviations. For this reason, it
is critical to use a clustering algorithm that incorporates information about the shape of the
gene expression distributions when analyzing single cell resolution datasets.

However, it is unclear how the cell cycle could influence our results, so future experiments
ought to include cell cycle markers as controls [27]. In addition, our approach assumes that the
gene expression distributions are close to equilibrium. Fortunately, Peccoud and Ycart [7]
demonstrated that the two state model approaches the equilibrium distribution very rapidly (at
an exponential rate), so this assumption likely holds. Other researchers have attempted to fit a
multi-state model to data, instead of a two state model [28], but unless there is strong evidence
for a more complex model, it is wise to use the simplest approach to avoid over-fitting the data.
In the future, it may be possible to modify the model to detect cells that are in the process of
transitioning between cell populations- for instance, these may be cells that have estimated
kinetic parameters that are between two other populations. In addition, Teles et. al. [13] esti-
mated the probability of transition between cell populations using machine learning methods,
but this is beyond the scope of this paper.

One particularly useful application of this pipeline is the validation of assumptions used to
model specific sub-networks of genes important in differentiation. Often, these models assume
certain mechanisms by which the TFs influence one another. For instance, Narula et al. [29]
constructed a mathematical model of a hematopoietic sub-network under the assumption that
K,rwas the parameter that is biologically regulated, in the absence of any experimental data.
Instead of arbitrarily selecting a modeling strategy, we can now choose one that fits the data
best. In addition, we have discovered that different TFs are regulated through different mecha-
nisms in each stage of differentiation, implying that a single model of a gene network might
not universally apply. Therefore, these strategies would allow us to make more biologically
plausible models of gene subnetworks. Having a better understanding of gene regulation pro-
cesses is important in order to learn how these are perturbed in disease, and also to develop
protocols that produce desired cell types for cell therapy.

A modified version of this pipeline for RNA-seq data would be an important future develop-
ment. The kinetic parameter estimation strategy and EPiK may be applied to single cell RNA-
seq, as long as there is sufficient sequencing depth to capture the population-wide distribution
of gene expression. Both these methods scale approximately linearly with the number of cells
and genes under study, and could also be run in parallel for very large datasets. However,
SABEC would not scale well with the large number of genes analysed in RNA-seq experiments,
so alternative clustering approaches must be tested in an RNA-seq context.

The transcription process is a multi-step chemical reaction: chromatin must enter the correct
state, TFs must bind in the right places, the general transcription machinery must be recruited
and initiated, etc. It is currently impossible to distinguish the effects of all of these mechanisms
in a high-throughput way. Our pipeline provides a first attempt to understand how the kinetic
parameters underlying complex transcriptional processes influence heterogeneity within and
across cell populations, through the analysis of single cell gene expression data.

Methods
Cell culture

HPC?7 cells [21] were grown in suspension in Iscove’s Modified Eagle’s Medium (IMDM,
Gibco) with 10% FCS, 10% stem cell factor-conditioned medium, 1% penicillin/streptomycin
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(Sigma) and 1.5 x 10~* M monothioglycerol (MTG) at 37°C and 5% CO,. Cells were passaged
every two days to maintain a concentration of 0.5 — 2 x 10° cells/ml.

Retroviral transduction

For knockdown experiments, shRNA fragments were cloned into pMSCV/LTRmiR30-PIG
(pLMP, Open Biosystems): Luciferase (control, 5> CACGTACGCGGAATACTTCGAA 3’,
[30]), Gata2 (5 CGCCGCCATTACTGTGAATATT 3’, [31]). For overexpression experiments,
the mouse Gfil cDNA was inserted into pMSCV-ires-GFP (Addgene plasmid 20672), with the
empty vector used as a control. Retrovirus was produced using the pCL-Eco Retrovirus Packag-
ing Vector (Imgenex) in 293T cells.

HPC?7 cells were infected with retrovirus by centrifugation at 800 xg at 32°C for 1.5 hours
with 4 ug/ml polybrene (Sigma), after which the retroviral supernatant was replaced with fresh
media and cells were cultured as normal. Transduction efficiency was monitored by flow
cytometry for GFP.

Single cell gene expression analysis

Single GFP+ cells were sorted by FACS into individual wells of 96 well plates and single cell
RT-qPCR was carried out as described previously [14]. Cells were captured 48 hours after ret-
roviral transduction for Gfil overexpression and 72 hours after transduction for Gata2 knock-
down (S1 Table).

Estimation of kinetic parameters

Bursting gene expression can lead to a number of different distributions of gene expression in a
population of cells (See Fig 1B), ranging from a bimodal distribution (when K, and K,gare low)
to a Poisson distribution (when K,,, is much higher than K,4) to an exponential decay-like distri-
bution (when K,z is much higher than K,,,). The probability of having x mRNA molecules in a
cell with kinetic parameters K., K,sand K, is given by the analytical solution developed by [11]:

(K, +x)(K,, +K,,)K*
P(xK,, K, K, ( ) K

= 1F1(K K K —K 1
oK) = R IR, 7 Ky 0K, o T Kot Ky 6 =) ()

¢

In this equation, 1F1 represents the confluent hypergeometric function of the first kind, a sum-
mation over an infinite series that is time intensive to compute. To improve our runtimes, we pre-
computed an extensive lookup table of values of P(x|K,,, K K;). Let us say that we have # cells,
each with an mRNA molecule count (for a particular gene) of x;, and let X = {xy, x1, . . .x,,}. Given
this list of mMRNA counts from a semi-uniform population, we can assess the log likelihood of
each possible set of parameters:

L(Kan7Kojf7Kt|X) = Z(ln(P(xi‘KomKoffaKt))) (2)

X

The set of kinetic parameters that has the maximum likelihood is chosen. However, it is
important to note that some areas of the parameter space are more sensitive to parameter changes
than others. For instance, [11] notes that at large values of K, the equation of P(x|K,,, K, Ky)
approaches:

“HRon Kt :
K [(K,, +x) Ky
P(x|K,, K, K) = [ 1+—- s . ’
(x[K,,, K, K,) < +Koﬁ> ['(K,)T(x+1) (1 +If—f,> ¥
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This equation depends of the ratio of Ki/K,rather than K, and K, separately, which
means that K,iand K, are more difficult to distinguish as K,gincreases. The practical implica-
tion of this observation is illustrated in Fig 9A and 9B, which depict the log likelihoods at dif-
ferent kinetic parameter values for GFI1b in HSC cells, with regions that have log likelihoods
close to the peak value coloured in (specifically, within 0.5 of the maximum likelihood).
Although there is only a narrow range of possible K, values (A), there is a range of values
where K,4and K, can partially compensate for one another (B). A specific example is illus-
trated with simulated data in Fig 9C: while the original distribution of gene expression (grey)
varies visibly when K (blue) or K; (red) are varied, it is possible to change both variables
(purple) and almost recover the original distribution. Furthermore, this analysis suggests that
it would be difficult to incorporate any additional parameters into the system and find unique
estimates for each of them.

In S1 Fig, we test the performance of this strategy of kinetic parameter estimation on sim-
ulated data, including artificial technical noise. Although K, cannot be accurately identified
when K,z > 5, the ratio of K, to K, is accurately predicted (52 Fig). Our method also per-
forms better than the Gibbs Sampling based approach developed by Kim and Marioni, 2012
(S3 Fig).

Next, we applied this maximum likelihood approach for kinetic parameter estimation on
hematopoietic stem cell and progenitor populations (CLP, GMP, CLP, LMPP and PreM cells)
from [14]. The values for K,,, and In(K,;/K;) for the Moignard data are shown in Fig 9F. Note
that many of the TFs were particularly chosen due to their importance in early differentiation
of HSCs, so one would expect a lower level of gene expression (and therefore a higher K,4/K;
ratio) in later stage progenitor populations such as CLP and GMP. There is a wide range of esti-
mated kinetic parameter values across the TFs in each cell population; however, we need to
ensure that these kinetic parameter estimates are not being skewed by mis-classified cells before
we can evaluate whether these differences are statistically significant.

Parameter range and look-up table

It is crucial to select a table of appropriate range and point density for applying to the experi-
mental data. The criteria for selecting this table were: i) fewer than 5% of the experimental
points were at the maximum parameter value for the K,,, and K; parameters. ii) K,had to be
high enough in order to include the parameter range in which only the ratio of K to K,;matter
ii) the density of points was sufficient to minimise artifacts arising from the discretization of
the parameter space.

Given these constraints, the range of parameters was chosen to be 0 < K,,, < 5, 0 < Ko < 20
and 0 < K, < 200 and possible mRNA counts as 0 < x < 200. The sampling density for K,,, was
every 0.1, for K,gevery 0.4 and for K every 5 for a total of 395000 possible parameter sets.

We deposited the look-up table, the code used to generate the table in Mathematica and the
code for calculating the maximum likelihood in R on Github: https://github.com/ezer/
SingleCellPipelineOverview.

Scaling gPCR data to mRNA counts

The main source of data analysed in this paper comes from Moignard et al. [14], and contains
single cell QPCR data from five populations of hematopoietic stem cell and progenitor cells
(CLP, GMP, HSC, LMPP, PreM), as determined by FACS, with approximately 124 cells in
each population. The genes profiled by the qPCR include 18 TFs with crucial roles in cell

fate, which were normalised to two “housekeeping” genes (Polll and Ubc), as described in
Moignard et al. [14].
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Fig 9. Properties of two-state model and kinetic parameter estimation strategy. Kinetic parameters control the shape of the gene expression
distribution. Kinetic parameters are estimated by calculating the maximum likelihood from Eq 2. (A-B) In order to illustrate some properties of the two-state
model, the likelihoods of various kinetic parameter sets were calculated for a toy example—specifically GFl1b gene expression data in hematopoietic stem
cells (HSC). (A) For each possible K,, and K, value, we calculated the maximum log likelihood across all possible K; values. The overall log-maximum
likelihood was 603.66 and only values that were within 0.5 of this value were coloured in, with the maximum value in dark red. (B) The maximum log
likelihood of all possible K, values were also calculated, as K, and K; were varied. There is a region in subfigure B where K, and K; can compensate for
one another. (C) An example of parameter compensation was simulated: the original distribution (grey) has visible changes when K, (blue) and K; (red)
are varied, but the distributions are barely distinguishable when both parameters are varied (purple). (D) Finally, we show our method’s estimates of K,
and In(Ko#/K?) for each TF in each population of FACS cells.

doi:10.1371/journal.pcbi.1005072.9009
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The outcome of a PCR experiment is a normalised C; value, which relates to mRNA mole-
cules (x) as follows:

x = int(b-2°%) (4)
where a and b are constants. For each TF, we chose b:

_ _ *max
by = 9a— MiN (Xry) (5)

where X,,,,, = 200 is the maximum number of mRNA pre-calculated in our lookup table and
Xrris the set of mRNA counts for the particular TF. This choice of by stretches the values of x
to have as wide a range as possible. It also removes the need to set an a parameter, since the
equation for calculating x can be simplified to:

x = int(x,,, - 2m"FE G (6)

It is important to note that while a different b parameter was chosen for each TF, this b fac-
tor is consistent across all five populations of cells, which is crucial for our later attempts to
compare kinetic parameter values between cell populations. Even though the choice of b
changes the absolute value of the kinetic parameters that are estimated, it has minimal effects
on the strength of the linear correlation between the known and estimated values.

Simulated Annealing for Bursty Expression Clustering (SABEC)

SABEC begins by assigning each cell to a random population 1 to K. Note that the total number
of clusters K must be set at the start of the algorithm. Next, SABEC iteratively calculates the
kinetic parameters of each of the K populations, and the cells are reassigned to new populations
probabilistically.

In a standard Expectation Maximisation clustering algorithm, the probability of assigning a
cell to a population is proportional to the ratio of the likelihoods of the cell coming from each
population. Let the kinetic parameter set for a single population be S;(g) = (K,(g), Ko (g),
Ki(g)), where g is the gene (between 1 and G) and i labels the population (between 1 and K),
and let x(g) be the vector of mRNA counts for each gene, for a particular cell. The log likelihood
for a certain population can be calculated as follows:

G

L(S[x) =) _(In(P(x(g)[S,(g)) (7)

g=1

If the sum of the likelihoods for each population is L,,, this value can be scaled as such:

L(Sx)
L(Sx) = =7 (8)
tot
Since it would take a long time for this algorithm to converge if the clusters are close to one
another, we add a temperature parameter, so that initially it is easy for cells to be assigned to
different clusters, but it becomes harder and harder to swap clusters over time:

L"(S]x) = L'(S|x)" (9)

where 7 is the temperature parameter and t is the iteration number of the algorithm (a
counter that increments each time the cells are reassigned to new clusters). A cell is proba-
bilistically assigned to a new cluster based on the relative values of L"(S;|x) for each popula-
tion. The algorithm terminates when fewer than 5% of the cells swap clusters in an iteration,
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or after 100 iterations. S4 Fig shows how the accuracy of the algorithm depends of the tem-
perature parameter, T.

Since this algorithm is randomized and since it is possible for certain runs of the algorithm
to fall into local optima, we run this algorithm 50 times and conduct a secondary consensus
clustering step. In this step, a consensus matrix is produced, in which each cell of the matrix
represents the number of times that two cells are found in the same cluster. A plot of the cumu-
lative density function of the values of this matrix can help visualise the robustness of the
clustering (See Fig 8A). For comparison and to show the necessity for SABEC, consensus clus-
tering of K-means was also conducted (See Fig 8B).

Fig 8 shows the cumulative density functions for the number of times two cells cluster
together for SABEC (A) and K-means (B). [32] determined that the most robust metric for
comparing the consistency of consensus clustering methods is the Proportion Ambiguously
Clustered (PAC) score, which is defined as the proportion of cell pairs that cluster together in
10% and 90% of the repeated runs of the algorithm. This corresponds to the proportion of cell
pairs that lie between the vertical lines in the cumulative distribution functions in Fig 8(A) and
8(B). The PAC scores for SABEC and K-means are compared in C, illustrating that SABEC
usually has more consistent outcomes than K-means, with the fewest ambiguously clustered
cellsat K=7.

In addition, to estimate the accuracy of our method, we can assume that the expected cluster
assignment (as determined by FACS) is our gold standard. By comparing the results of our
clustering approach with the gold standard, we can estimate the accuracy of our method on the
experimental data. To do this, we cluster each of our consensus matrices into five clusters using
partitioning around medoids (PAM), a clustering approach similar to K-means (but more con-
sistent since it uses data points as centres). We can then compare our results to the gold stan-
dard labels using metrics such as VI (See Fig 8D) and the corrected Rand index (See Fig 8E).
SABEC performs better than K-means by these two metrics, with the estimated number of
clusters equal to 6. The one exception is that the corrected Rand index suggests that K-means
performs slightly better than SABEC when K = 5; however, SABEC provides substantially bet-
ter outcomes at K = 6. Based on simulated datasets with values similar to the experimental
data, we determined that these latter two methods provide more accurate estimates of the num-
ber of clusters than the PAC method, which can sometimes overestimate the appropriate num-
ber of clusters (S8 Fig).

Figs 8F and 2G compare the consensus matrices for K = 6 for SABEC (F) and K-means (G),
with the cells sorted by their FACS-determined labels. SABEC results appear more consistent,
with cells frequently clustering with other cells of the same type. In addition, any cells that are
“misclassified” tend to cluster instead with cell populations of their parent or children popula-
tions. For instance, some HSC cells cluster with their child populations (PreM and LMPP), and
some GMP and CLP cells cluster with their parent population (LMPP).

The R script for SABEC is available in Github: https://github.com/ezer/
SingleCellPipelineOverview, including a sample input file to run in parallel on a Condor clus-
ter, and appropriately merge the outputs.

Parameters chosen for K-means and hierarchical clustering

The SABEC method was compared to hierarchical clustering and K-means approaches. The
hierarchical clustering approach used was the default one associated with the heatmap function
in R (Euclidean distance metric and complete clustering). The K-means approach used the
default algorithm in R (Hartigan and Wong), but the maximum iterations was increased to 100
in order to be more comparable to the SABEC approach. K-means was repeated 50 times and
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an additional consensus clustering step was taken, in order to provide a fairer comparison to
SABEC. Note that the input to both the hierarchical clustering and K-means algorithms were
the normalised C, values, while the input to SABEC is the scaled mRNA counts. These algo-
rithm and distance metrics were chosen since they are the most commonly used. Other varia-
tions of hierarchical clustering and K-means were tested, but none of the results were
significantly better or different than the ones shown.

Estimation of Pairwise changes in Kinetics (EPIK)

The R script for determining which kinetic parameters vary across populations is available in
Github: https://github.com/ezer/SingleCellPipelineOverview.

Three methods were tested on simulated datasets of genes with randomly selected kinetic
parameters. We conducted these simulation tests for two different ranges of the kinetic param-
eters to illustrate that there is different sensitivity to parameter changes in different regions of
the parameter space (512, S13 and S14 Figs). These results suggest that changes in K, cannot
be accurately detected when K > 5. In addition, the methods often performs better when
fewer kinetic parameters change at once (S12 and S17 Figs). The correctly identified simulated
cases were those that have the largest magnitude of kinetic parameter change (S18 Fig) and had
average kinetic parameter values closer to the origin, where the kinetic parameters are more
accurately estimated (S19 Fig).

Two of the methods (MP and Subset methods), have continuous-valued outputs, and so a
threshold must be set for determining whether or not a change in a kinetic parameter is likely
significant. The thresholds were set to have approximately a 2% false positive rate, based on the
in silico validation tests. The threshold values for the MP method when K < 5 are —6.3, -8.5
and -6.8 for K,,,, Korand K;, and —4.9 and —6.0 for K,,, and K, when K¢ > 5. For the subset
method, the thresholds are 0.77, 0.91 and 0.86 (K,,,, Ko and K;, respectively) when K, < 5,
and 0.681 and 0.870 (K,, and K;) when K¢ > 5.

BICs-based method. There are eight possible parameter sets that could have varied across
the two populations of cells for each TF (no parameters adjusted, all parameters adjusted, three
cases with one parameter adjusted and three cases with two parameters adjusted). It is possible
to calculate the maximum likelihood of each scenario occurring. Let us assume we have a matrix
Ly, that lists the likelihoods for each population of cells p = 1, 2 and parameter set in the lookup
table m = 1 to 356,000. The maximum likelihood score when no parameter is being adjusted is:

none

L = maX(Ll.m + L2,m) (10)

Meanwhile, the maximum likelihood score when all the parameters are being adjusted is:

La]] = maX(Ll,m) + ma‘X(LZm) (11)

Clearly, L, will always be greater than or equal to L,,,,,.. Therefore, we must adjust these
likelihoods to take into account that fact that they involve different numbers of parameters
being adjusted. This is done as follows:

BIC, = N,(log (2n) — log (2n)) — 2L, (12)

Where i indices the set of parameters being adjusted, N; is the number of parameters presumed
adjusted, n is the number of cells and L; is the likelihoods, for example, L,,,,. or L,y calculated
above.

Marginal probability-based method. To calculate an MP score for K,,,,, let us make two
matrices A(f, j) and B(3, j), one for each of the two populations of cells we are trying to compare.
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Each contains L(K,,, Ko K| X), with i indexing the unique set of K,,,, values (with i = 1 to I)
and j indexing a unique set of (K, K;) pairs (with j = 1 to ).

A, = log (ZI: z]: eA<iJ>> (13)

i=1 j=1

A'(i) = log (Z/: eA“’j)A'”') (14)

j=1

B/(i) can be calculated in the same way as A’ (7).

I
MP, = log (Z e<A’<">+B’“>>> (15)
i=1

However, it is important to implement this strategy in such a way as to minimize the round-
ing errors caused by taking the exponent of negative number with large magnitude. This can be
accomplished thanks to the following statement:

log (¢* + €") = log(e" ™ +e" ™) + x (16)

By choosing x to be close to a or b, it is possible to avoid such errors. This strategy is
employed in all the calculations above involving summing exponents.

Subsetting method. In the third method, we repeatedly subsample 25% of the cells (100
times) and estimate the kinetic parameters for each subset. For each of the three options for the
kinetic parameter, we calculate the absolute distance between the cumulative density functions
of the two distributions, aka the Kolmogorov-Smirnov Statistic (S14 Fig). Note that we cannot
use the p-values from the Kolmogorov-Smirnov test, because we re-sample points many times,
so this statistic would be biased towards lower p-values. The threshold for the K-S statistic that
was deemed significant was the one with a 2% false positive rate. Changing the size of the sub-
samples only had a small effect on the accuracy of this strategy (516 Fig).

Supporting Information

S1 Fig. Parameter estimates for simulated data. Subfigures A-C show parameter estimates for
simulated parameter sets randomly drawn from 0 < K,,, < 5,0 < Ko< 10 and 0 < K; < 600,
for K, (A), Kop (B) and K, (C). Subfigures D-F show the same, but with 10 < K, < 20, also for
Kon (D), Ko (E) and K; (F). Note that the known and estimated kinetic parameter values are all
linearly correlated, except for K,gwhen it is greater than approximately 5.

(TIF)

S2 Fig. Estimates of K,/K,ratios in simulated datasets. These figures compare known and
estimates K,/K,ratios for the same datasets depicted in S1 Fig with (A) depicting simulations
where 0 < K, < 10 and (B) depicting simulations where 10 < K4 < 20. In both cases, the
known and estimated ratio of K,/Kis linearly correlated.

(TIF)

S3 Fig. Parameter estimation with Gibb’s Sampling. The kinetic parameters of the simulated
datasets were estimated using the Gibb’s Sampling approach introduced by [12]. This method
was designed for RN A-seq, so the gene length is a required input, but 10,000bp was included
for all genes and all the mRNA counts were multiplied by this value. K,,, is always between 0
and 5, and K, is always between 0 and 600, and 90% of the mRNA molecules are randomly
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removed. Subfigures A-C are for simulations with 0 < K, < 2, D-F are for 0 < K, < 10 and
G-Iare for 10 < Ky < 20. K,,, is estimated in subfigures A, D, G, K,is estimated in subfigures
B, E, Hand K, is estimated in subfigures C, F, I.

(TIF)

$4 Fig. Choosing the temperature parameter. SABEC requires a choice of a temperature
parameter (we chose 10 for most of this paper), which speeds convergence of the algorithm. 100
simulation datasets were clustered with SABEC (each repeated 50 times). The y-axes of A shows
the average number of iterations before convergence across these 50 repeats. Convergence is
defined as the number of iterations of the algorithm until fewer than 5% of the cells swapping
clusters, but it is capped at a maximum of 100 iterations. The grey shaded area represents the full
range of average values across all 100 simulated datasets and the black line represents the overall
average number of iterations. This subfigure illustrates that the larger the temperature, the
quicker the algorithm converges. Subfigures B,C illustrate how temperature influences the accu-
racy of the algorithm, as per the average variable information (VI) and corrected Rand index
across all 100 simulated datasets. Both these metrics illustrate that the higher the temperature,
the less accurate the algorithm. The aberration when the temperature parameter has a value of 6
comes from the fact that the number of iterations is capped at 100, so in some cases the algorithm
did not fully converge. Note that we choose a temperature of 10 elsewhere in this paper.

(TIF)

S5 Fig. Hierarchical clustering of hematopoietic stem cell and progenitor populations.
Here are the results of the hierarchical clustering of the normalised qPCR data, color coded the
same way as Fig 4.

(TIF)

S6 Fig. Example results of SABEC for simulated dataset. Out of the 100 simulated datasets
that were generated, three examples are illustrated here, with their consensus matrices shown
in subfigures A-C and the clustered heatmaps of these in D-F. These include the dataset that
had the worst robustness by PAC score (A,D), the best robustness (C, F) and a randomly
selected third example (B,E). The colours in D-F are blue for CLP, red for GMP, green for HSC,
purple for LMPP and orange for PreM. Note that the clustering is more robust than the experi-
mental dataset. In fact, manual inspection of 100 clusterings found no example of HSC being
split into two clusters, while GMP/CLP being clustered together (the scenario observed in the
experimental dataset), suggesting that the subdivision of HSC into two clusters is probably not
an artifact of the SABEC method.

(TTF)

S7 Fig. SABEC applied to simulated datasets with different numbers of genes and cells.
First, we generated a list of 100 parameter sets that were randomly selected from a normal dis-
tribution around the experimentally determined kinetic parameter values, with a standard
deviation equal to 5% of the parameter range in our look-up table (specifically, 0.25, 1 and 10,
for K,., Kogrand K, respectively). This created a kinetic parameter distribution that was similar
to the distribution estimated for the experimental data by [14]. For each simulated dataset, we
randomly selected kinetic parameter sets from this list, varying the number of genes and the
number of cells, but keeping the number of populations at 5. For each choice of number of
genes and number of cells, we repeated this procedure with 5 different simulated datasets. In
each case, the SABEC method was used to cluster the dataset (including the consensus cluster-
ing step). Subfigure A illustrates the variable information (VI) and B shows the corrected Rand
index. Subfigure C shows the average number of iterations of SABEC until convergence.

(TTF)
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S8 Fig. Estimating K for simulated datasets. We wished to determine how reliable PAC, VI
and the corrected Rand index were at predicting the correct number of clusters when interpret-
ing SABEC data. For instance, it could be that the SABEC method consistently causes there to
appear to be more clusters than there actually are, which could mean that the division of HSC
into two clusters is spurious. After predicting the number of clusters in the simulated datasets,
with each of the 100 resulting curves drawn for PAC (A), VI (B) and the corrected Rand index
(C), we see that PAC often predicts a spurious cluster, but VI and the correct Rand index do
not. This is one of the reasons we selected K = 6, trusting VI and the corrected Rand index
more than the PAC score.

(TTF)

S9 Fig. HSC subpopulations are separated before CLP/GMP populations separate. Here we
show clustered heatmaps of HSC (green), LMPP (purple) and PreM (orange) cells (A-C) and
LMPP (purple), CLP (blue) and GMP (red) (D-F) for the number of clusters K=5 (A,D), K=6
(B, E) and K = 7 (C,F). Specifically note how the distinction between the two subpopulations of
HSC is defined even in K = 5, but CLP and GMP are not distinguished until K = 6.

(TIF)

$10 Fig. Comparison of parameter predictions before and after pruning. Cells that did not
cluster well with other cells of their labelled population were removed in a pruning step,
because these cells may not have uniform gene expression bursting kinetics compared to the
other cells in their population. However, we were worried whether this would create a consis-
tent bias in the parameter estimates. The line of best fit is designated as the red dashed line.
Subfigures A-D compare the original estimates of the kinetic parameters on the complete data-
set with the parameter estimates for the pruned datasets in the [14] data, for K,,, (A), K, B),
K{(C) and K,/K, D). Subfigures E-H also compare the parameter estimate changes in the com-
plete and pruned datasets, but for the 100 simulated datasets. Note that removing outliers does
bias the kinetic parameter estimates, in the same direction as observed in the experimental
data, but to a much smaller extent. In particular, estimated K,,, parameters increase and K
and K, values decrease after the pruning procedure, in both cases.

(TTF)

S11 Fig. Bias in kinetic parameter predictions can be caused my mixed cell types. Another
potential cause of the change in kinetic parameter estimates after pruning observed in Fig 4 is
that the pruning procedure correctly removed cells that did not have homogenous bursting kinet-
ics. In this figure, we compare the kinetic parameter estimates when cell populations are mixed
with cells of a different type to the kinetic parameter estimates when the cell populations are
pure. For each of the 100 simulated datasets, 10 cells of each population were re-labelled as com-
ing from an incorrect cell type. A comparison of the estimated kinetic parameters in the mixed
and pure cell populations are shown for CLP (A-C), GMP (D-F), HSC (G-I), LMPP (J-L) and
PreM (M-O0). The red line designates the line-of-best fit. Note that the bias observed in S10 Fig is
seen prominently here: K, estimates are higher in mixed cell populations, while K,sand K; esti-
mates are lower, and the magnitude of the change is much more consistent with that seen in the
experimental data. Nevertheless, we cannot neglect the fact that removing false negative cells can
also bias the kinetic parameter estimates.

(TIF)

S$12 Fig. BIC results for simulated datasets. 800 simulated datasets with K, < 5 (A) and 800
simulated datasets with 5 < K,z < 10 (B) were generated, with 100 examples of each possible
type of kinetic parameter set change (x-axis). For each of these, BIC was used to predict the
kinetic parameter change, as shown by the colors in the stacked bar plot. Grey represents the
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case that none of the parameters change and black represents the case that all the kinetic
parameters change. The primary colors (red, blue, yellow) correspond with the case of one
kinetic parameter changes (K,,, Koand K, respectively). The secondary colors correspond
with the cases where two kinetic parameters change, with purple as K,,, and K, orange as K,,,
and K, and green as K,and K;. Clearly, BIC enriches for the correct set of parameters,
although it is a bit conservative when more than one kinetic parameter is varied. Note that
when K > 5, K, is often mislabeled as none and sometimes as K.

(TIF)

S$13 Fig. MP results for simulated datasets. These are the ROC curves for K, < 5 (A-C) and
Ko > 5 (D-F), with the area under the curve (AUC) listed for each figure. Based on the high
values of AUC, this method is predictive for K,,, and K, but less so for K, Note that predictive
power for K, completely disappears at higher values, although it does not seem to substantially
increase K; false positive rates.

(TIF)

S14 Fig. Subset results for simulated datasets. In black are the ROC curves for K5 < 5 (A-C)
and K4 > 5 (D-F), with the area under the curve (AUC) listed for each figure. The corre-
sponding MP ROC curves are drawn in grey for comparison. The results are fairly similar,
although notably the results are worse than MP for K, when K¢ > 5.

(TIF)

S$15 Fig. Distribution of kinetic parameter estimates under different methods. These pie
charts display the proportion of different kinetic parameter combinations deemed to have var-
ied for each TF between pairs of populations of cells connected by lines in Fig 4(Bi). The colors
designate which kinetic parameter was adjusted, yellow for K, red for K,,,, blue for K,z orange
for K; and K, green for K; and K purple for K,,, and K, grey for no changes and black for
all parameters. Subfigures A-B are for BIC, C-D for marginal probability (MP) and E-F for the
subset method (Sub). Each of the methods was applied to the dataset where potential outliers
were pruned (A, Cand E) and the complete datasets before the pruning step (B, D and F).
(TIF)

S$16 Fig. Varying subsample size. In order to determine whether the specificity and sensitivity
of the method depends significantly on the size of the subsamples, we re-ran the subsample
method, but sample half the cells (62) instead of a quarter of the cells, as shown in S14 Fig. The
grey line still represents the ROC curve for the MP method. The AUC scores are similar across
both subset sizes.

(TTF)

$17 Fig. How assumptions about frequency of parameter changes influence accuracy of MP
and subset method. The simulated datasets which were used to test the accuracy of these three
methods have an equal number of examples from each of the eight possible sets of parameters
that can change. However, we saw in S12 Fig that BIC misses many true positives when more
than one kinetic parameter varies. We wondered whether the accuracy of the MP and subset
methods are influenced by the assumptions of the number of kinetic parameters that were var-
ied. The black lines and corresponding black AUC values consider the 400 simulated datasets
where only 0 or 1 kinetic parameters are varied, while the blue lines and blue AUC values con-
sider the other 400 simulated datasets, where 2 or 3 kinetic parameters are varied. Subfigures
A-C show the results for the MP method and D-E show the results for the subset method. In
both cases, only the examples when with K,z < 5 are shown. Estimates for K,,, appear to be
similar under both assumptions, but the estimates for K,;and K; drop slightly when there are
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more kinetic parameters that vary (the blue line).
(TIF)

$18 Fig. Influence of magnitude of kinetic parameter changes on sensitivity of the intersec-
tion method. This histogram shows the full distribution of the magnitude of kinetic parameter
variation among simulated datasets in which that kinetic parameter varied (positives) for K,,,
(A), Ko (B) and K, (C). The samples that were correctly identified by the intersection of the
three methods (the true positives) are shaded dark grey, while the false negatives are light grey.
Note that the proportion of true positive values increases as the magnitude of the kinetic
parameter change increases.

(TIF)

$19 Fig. Influence of average kinetic parameter values on sensitivity of the intersection
method. This figure is parallel to S18 Fig, except instead of subtracting the two kinetic parame-
ters assigned to the pair of populations, these two values are averaged. For K,,, (A), K, (B) and
to a lesser extent K; (C), there is a higher rate of detection when the values are closest to the ori-
gin, the region where the kinetic parameters are more easily discernible.

(TIF)

$20 Fig. Effectiveness of experiments to up regulate GFI1 and down regulate GATA2.
These histograms depict the normalised Ct values for the GATA2 down regulation experiment
(A), the GATA2 control HPC7 cells (B), the GFI1 up regulation experiment (C), and the GFI1
control HPC?7 cells (D). The values where Ct is 15 are cells where there was no visible expres-
sion of the gene. GFI1 up regulation was successful for all of the cell, but GATA2 down regula-
tion only slightly decreased its overall expression compared to the controls.

(TTF)

S1 Table. Single cell gene expression dataset. This table includes the raw single cell gene cell
qPCR data from HPC?7 cells for the Gfil overexpression and Gata2 knockdown experiments.
(XLSX)
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