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Abstract

We describe a new method to compute general cubature formulae. The problem is initially
transformed into the computation of truncated Hankel operators with flat extensions. We then
analyze the algebraic properties associated to flat extensions and show how to recover the cubature
points and weights from the truncated Hankel operator. We next present an algorithm to test the
flat extension property and to additionally compute the decomposition. To generate cubature
formulae with a minimal number of points, we propose a new relaxation hierarchy of convex
optimization problems minimizing the nuclear norm of the Hankel operators. For a suitably high
order of convex relaxation, the minimizer of the optimization problem corresponds to a cubature
formula. Furthermore cubature formulae with a minimal number of points are associated to faces
of the convex sets. We illustrate our method on some examples, and for each we obtain a new
minimal cubature formula.
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1. Cubature formula

1.1. Statement of the problem

Consider the integral for a continuous function 7
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where Q C R”7and wis a positive function on Q.

We are looking for a cubature formula which has the form

(o1 f)=D_w; f(¢)
i=1 1)

where the points ;€ C”and the weights w; € R are independent of the function 7 They are
chosen so that

(ol f)=I[fl,Vf eV,

where Vs a finite dimensional vector space of functions. Usually, the vector space Vis the
vector space of polynomials of degree < g because a well-behaved function fcan be
approximated by a polynomial, so that Q[ /] approximates the integral /4.

Given a cubature formula (1) for /, its algebraic degree is the largest degree dfor which /[#
= (ol#) for all fof degree < d

1.2. Related works

Prior approaches to the solution of cubature problem can be grouped into roughly two
classes. One, where the goal is to estimate the fewest weighted, aka cubature points possible
for satisfying a prescribed cubature rule of fixed degree [9,24,26,29,30,33]. The other class
focusses on the determination and construction of cubature rules which would yield the
fewest cubature points possible [7,34,38-41,44,45]. In [34], for example, Radon introduced
a fundamental technique for constructing minimal cubature rules where the cubature points
are common zeros of multivariate orthogonal polynomials. This fundamental technique has
since been extended by many, including e.g. [33,41,45] where notably, the paper [45] uses
multivariate ideal theory, while [33] uses operator dilation theory. In this paper, we propose
another approach to the second class of cubature solutions, namely, constructing a suitable
finite dimensional Hankel matrix and extracting the cubature points using sub-operators of
the Hankel matrix [18]. This approach is related to [21-23], which in turn are based on the
methods of multivariate truncated moment matrices, their positivity and extension properties
[11-13].

Applications of such algorithms determining cubature rules and cubature points over general
domains occur in isogeometric modeling and finite element analysis using generalized
Barycentric finite elements [17,1,35,36]. Additional applications abound in numerical
integration for low dimensional (6-100 dimensions) convolution integrals that appear
naturally in computational molecular biology [3,2], as well in truly high dimensional (tens of
thousands of dimensions) integrals that occur in finance [32,8].
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1.3. Reformulation

Let #=R[x] be the ring of polynomials in the variables x = (x,..., Xp) with coefficients in
R. Let Rybe the set of polynomials of degree < d. The set of linear forms on R, that is, the
set of linear maps from Rto R is denoted by /. The value of a linear form A € F" ona
polynomial p € Ris denoted by {A|p). The set £ can be identified with the ring of formal
power series in new variables y = ()4, ..., V,):

R* — R[[y]]
A = Ay)= §7L<Alxa>y“-

The coefficients (A[x®) of these series are called the moments of A. The evaluation at a
point ¢'€ R”is an element of ~, denoted by e, and defined by e, : f€ R— f() € R. For
any p€ Randany A € R, let px A : g€ R— A(pg).

Cubature problem—Let VC Rbe a vector space of polynomials and consider the linear
form 7€ V" defined by

.V =R
v = I[V]

Computing a cubature formula for /on Vthen consists in finding a linear form
o=> wiec:f — Y w;f((),
i=1 j=1

which coincides on Vwith 7 In other words, given the linear form 7on R, we wish to find a

. T . -
linear form U=Zi:1wie<i which extends /.

2. Cubature formulae and Hankel operators

To find such a linear form o € /", we exploit the properties of its associated bilinear form
H,: (p, 9 € Rx R— {a|pg), or equivalently, the associated Hankel operator:

H,:-R — R*
p o pro

The kernel of HiskerH,={p€ R| Y g€ R, {olpqg) = 0}. Itis an ideal of R. Let .o/, =
R/ker H, be the associated quotient ring.

The matrix of the bilinear form or the Hankel operator A, associated to o in the monomial
basis, and its dual are ((A|xa+ﬂ))a‘ pen/. If we restrict them to a space V/spanned by the
monomial basis (x%) e 4 for some finite set A C N7, we obtain a finite dimensional matrix
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[Hf’A]:((A|x"+ﬁ>)a,ﬁ€A, and which is a Hankel matrix. More generally, for any vector
spaces V, V' C R, we define the truncated bilinear form and Hankel operators:

HY (v,0') eV x V' — (olpg) e Rand BV € V s vxo € V' . If V(resp. V') is
spanned by a monomial set x4 for A C N (resp. xZ for BC N, the truncated bilinear

form and truncated Hankel operator are also denoted by 7745, The associated Hankel

matrix in the monomial basis is then [ ;" "]=((A|x**7)) _

The main property that we will use to characterize a cubature formula is the following (see
[22,20]):

Proposition 2.1—A linear form o € R* can be decomposed asazz;lwiegi with w; € C
\ {0}, (;ECiff

. Hy: pr— p* oisofrankr,
. ker H,, is the ideal of polynomials vanishing at the points {(y,..., C}.

This shows that in order to find the points ¢;of a cubature formula, it is sufficient to
compute the polynomials p € R such that Vg € R, {alpg) = 0, and to determine their
common zeroes. In Section 4 we describe a direct way to recover the points ¢, and the
weights w;from suboperators of H,,.

In the case of cubature formulae with real points and positive weights, we already have the
following stronger result (see [22,20]):

Proposition 2.2—Leto € .
U:Zwieci
1=1

with w;> 0, (€ R iffrankH,= rand H, > 0.

T
A linear form 0=Zi:1wieci with w;> 0, ¢;€ R”is called a /~atomic measure since it
coincides with the weighted sum of the r Dirac measures at the points ¢;.

Therefore, the problem of constructing a cubature formula o for /exact on VC Rcan be
reformulated as follows: Construct a linear form o € /" such that

. rank H,=r< oo and H, = 0.

. VE V, [N ={aV).

The rank rof H, is given by the number of points of the cubature formula, which is expected
to be small or even minimal.

The following result states that a cubature formula with dim( V) points, always exists.
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Theorem 2.3. (See [42,4].)—If a sequence (04) N’ aj<t IS the truncated moment
sequence of a measure i (i.e. o, = /' X%au for|a| < t), then it can also be represented by an

T
r-atomic measure. for|a| < ¢ Uazzizlwi&a where r< s, w;> 0, C;€ supp(L).

This result can be generalized to any set of linearly independent polynomials w3,..., ,E R
(see the proof in [4] or Theorem 5.9 in [22]). We deduce that the cubature problem always
has a solution with dim(V) or less points.

Definition 2.4—Let r{/) be the maximum rank of the bilinear form
HYW (w,w') € W x W' I[ww']where W, W C Varesuchthat VW€ W,V € W
", ww € V. ltis called the Catalecticant rank of /.

Proposition 2.5—Any cubature formula for | exact on V involves at least r{ /) points.

Proof: Suppose that o is a cubature formula for /exact on Vwith rpoints. Let W, W C V
be vector spaces such that VW€ W, vw' € W, ww/ € V. Since H}"”W, coincides with
H;VW,, which is the restriction of the bilinear form A, to Wx W', we deduce that

r=rank H, > rank H;MW,:rank(H;V’W/ ). Thus r= rd}).

Corollary 2.6—Let WC V such thatN w, w € W, ww/ € V. Then any cubature formula
of I exact on V involves at least dim(W) points.

Proof: As we have Vp € W, p? € Vso that /%) = 0 implies p= 0. Therefore the quadratic

form H"":(p,q) € W x W — I|pq]is positive definite of rank dim(14). By Proposition
2.5, a cubature formula of /exact on Vinvolves at least r{/) = dim(IW) points.

In particular, if V= Ryany cubature formula of /exact on Vinvolves at least

. [¢]+n
dlmRL%J_< n )points.

In [25], this lower bound is improved for cubature problems in two variables.

3. Flat extensions

In order to reduce the extension problem to a finite-dimensional problem, we consider
hereafter only truncated Hankel operators. Given two subspaces W, W of Rand a linear
form o defined on W-W (i.e. o€ (W -W')"), we define

H"W . wxw SR
(w,w,) — (U\ww/).
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If w (resp. w”) is a basis of W (resp. W), then we will also denote Hg"vw/;:H;"vW/. The

matrix of ¥ in the basis w = {w,..., w, w ={wy,...,w} is {olwmwlicisi<ies

Definition 3.1—Let WC V, W C V' be subvector spaces of Rand o€ (V- V)", We

/. . /. ’ ’
say that V>V is a flat extension of HW'W if rank VY =rank "W .
(o g (o g

A set Bof monomials of Ris connected to1 if it contains 1 and if for any m# 1 € B, there
exist1< /< nand m’ € Bsuch that m= x;m’.

As a quotient R/ker H, has always a monomial basis connected to 1, so in the first step we
take for w, w’, monomial sets that are connected to 1.

For a set B of monomials in R, let us define B = BU yBU -- U x,, Band dB= B*\ B.

The next theorem gives a characterization of flat extensions for Hankel operators defined on
monomial sets connected to 1. It is a generalized form of the Curto—Fialkow theorem [13].

Theorem 3.2. (See [23,6,5].)—Let BC C, B C C’ be sets of monomials connected to 1
such that|B|=|B'| = rand C- C' contains B - B'™*. Ifc€{C- C')" is such that
Hf’B/ =rank HSC ', then HSC " has a unique flat extension H; for some o € R

Moreover, we have ker Hz=(ker Hf»d) and R={B) ®ker H;=(B') ®ker H;. In the case
where B' = B, ifHP"P » 0, then Hz > 0.

Based on this theorem, in order to find a flat extension of Hf’B/, it suffices to construct an

R /+
extension F5"-5  of the same rank /.

Corollary 3.3—Let VVC R be a finite dimensional vector space. If there exists a set B of
monomials connected to 1 such that VC (B* - B*) and o € (B - B*)" such that~v vE V/{a|

V) = IV andrank H?P =rank HZ"P" =|B|=r, then there exist w;>0, (;ER”, i=1,..., r
such thatvve Vv,

1= s o(s).
=1

This characterization leads to equations which are at most of degree 2 in a set of variables
related to unknown moments and relation coefficients as described by the following
proposition:

Proposition 3.4—Let B and B be two sets of monomials of R of size r, connected to 1

’+
and o be a linear formon{B’ * - B*). Then, H b "B admits a flat extension Hg such that
H; is of rank r and B (resp. B') a basis of RIker H; iff
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) ( Q M ) ,

WithQ:[vaB'], M’:[HE:BB/], Mt:[HvaB/}, N:[HﬁBvaB/] such thatQ is invertible
and

M=Q'P, M'=QP’, N=P'QF’, (3)

for some matrices P € CB*B p’ ¢ cB'*08

Proof: If we have M= QP,M = QP’, N = PIQP’, then
g+t _ [ Q QP
[Hs I= < P!Q P'QP )

/ r+
has clearly the same rank as Q=[ H2+# . According to Theorem 3.2, 25 admits a flat
extension H;with o € & such that Band B’ are bases of .«/ ;= Rlker Hj.

r+
Conversely, if H;is a flat extension of Hf+’B with Band B bases of .« ;= Rlker Hy,
then [Hf’B’]:[HfaB/]:Q is invertible and of size r=|B8 = |B|. As Hyis of rank 7,

1+ /
HB"B s also of rank 7. Thus, there exists P* € C5 98 (P” = QM) such thatM = QP".
Similarly, there exists P € C8*98 such that M= QP. Thus, the kernel of

P )
/ / ’ t (resp' ( >)
[HBTB +] (resp. [HP +7B+]:[Hf*73 +] )is the image of( I ) L) we
deduce that N =MP’ = PIQP’.

P
Remark 3.5—A basis of the kernel of Hf+73/+ is given by the columns of( I ) which
represent polynomials of the form

Pa=x"= pasX’
BeB

for a € dB. These polynomials are border relations which project the monomials x¢ of 08

r+
on the vector space spanned by the monomials B, modulo ker Hf+vB . It is proved in [6]
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’+ /
that they form a border basis of the ideal ker H;when F5"-5 s a flat extension and 755
is invertible.

Remark 3.6—Let A C N” be a set of monomials such that {o]x) = /[x4]. Considering the
entries of P, P” and the entries o, of Q with a & A as variables, the constraints (3) are
multilinear equations in these variables of total degree at most 3 if Q contains unknown
entries and 2 otherwise.

Example 3.7—We consider here V= R, for k> 0. By Proposition 3.4, any cubature
formula for /exact on V'has at least 7, := dim Ry points. Let us take Bto be all the
monomials of degree < k'so that B* is the set of monomials of degree < A+ 1. If a cubature

formula for /is exact on R, and has 74 points, then 77557 is a flat extension of 7755 of

rank r4 Consider a decomposition of Hf*»B+ as in (2). By Proposition 3.4, we have the
relations

M=QP, N=P'QP, (4)

where
. Q=(Ix*FNgpes
. M= (APF ))pe g 5 copWith (cixP*F ) = [xP*F] when |5+ B'| < 2k,
. N = (o# )5 con
. P = (0p.4)peBacos

The equations (4) are quadratic in the variables P and linear in the variables in M Solving

these equations yields a flat extension 725" of 5.5, As 5B » ¢, any real solution of
this system of equations corresponds to a cubature for | on exact /4 of the form

o=>"" wiec with w;> 0, (;E R,

We illustrate the approach with R=R[xq, Xo], V= Ry,

_ 2 2 —+_ 2 2 3 .2 2 3
B—{l,Il,IQ,Il,l'lIQ,.’EZ}, B _{17Ilax27zlaI1I27127I1’I1I27'T1z27x2}' Let

be the series truncated in degree 4, corresponding to the first moments (not necessarily given
by an integral).
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[ 8 —4 17 —-16 14 15 =52 34 —6 47 ]
-4 -16 14 =52 34 -6 -160 8 —18 38
17 14 15 34 —6 47 86 —18 38 51
—16 —52 34 —160 86 —18 g1 g9 g3 04
HB+’B+: 14 34 —6 86 —18 38 g9 g3 g4 g5
7 15 —6 47 —18 38 51 g3 g4 05 gg

—52 —160 86 o] (D) 03 o7 o3 09 010
34 8 —18 o9 o3 o4 og 09 010 O11
-6 —-18 38 o3 04 o5 09 010 011 012
47 38 51 oy o5 g 010 011 012 013

where o4 = 050, 0, = 041, 02 = 032, 04 = 023, O5 = 014, O = Op 5, O7 = T, 08 = 05 1, Oy
=042, 010 = 03,3, 011 = 02,4, 012 = 015, 013 = 0p,6-

The first 6 x 6 diagonal block 7757 is invertible. To have a flat extension 77557, we

impose the condition that the sixteen 7 x 7 minors of 775", which contains the first 6
rows and columns, must vanish. This yields the following system of quadratic equations:

—814 59202 —1 351 68007, 05— 476 8640, 03—599 04002 —301 44005573 —35 072072
—520892 032071 —396 821 76005 —164 529 1520341 693 44007 —86 394 672 128=0
—814 59203 —1 351 6800903 —476 8640504 —599 04003 —301 4400304, —35 07205
4335275 39205+257 276 16003496 277 6320441 693 44009—34 904 464 128=0
—814 59202 —1 351 6800304 —476 8640305 —599 04002 —301 4400405 —35 07202
+13 226 88003+13 282 56004 —8 227 20005+1 693 440011, +31 714 560=0
—814 59202—1 351 6800,05—476 8640,06—599 04002 —301 4400506—35 07202
4212 860 736044162 698 88005 +51 427 45606+1 693 440013 —13 356 881 792=0
—814 5920105 —675 8400103 —238 4320104 —675 84002 —837 47205073
—1507200204—150 7200§ —350720304+167 637 69601 —131 807 93602
—150272 06403—82264 5760 4+1 693 44005+54 990 043 008=0
—814 5920503 —675 840050, —238 4320505 —675 84003 —837 472030, —150 7200305
—150 7200& —350720405+6 613 44005+174 278 976034124 524 48004
+48 138 81605+1 693 440010 —746 438 400=0
—814 5920’30’4—675 8400'30'5—238 4320’30’6—675 8400'2—837 4720’40’5—150 7200’40’6
—150 72002 —35 0720506+106 430 36803 +87 962 88004 +32 355 008075
—41136000641 693 440012—183 201 600=0
—8145920904—675 8400505—238 4320506—675 840030,—599 0400305
—150 7200306—238 43202 —150 7200 405—35 0720 406+106 430 36807
+81 349440034193 351 424044128 638 08005+48 138 81604
+1693 4400711 —21 721 986 624=0
—8145920103—6758400104—238 4320105—675 8400203—599 0400204
—150 7200505 —238 43203 — 150 7200304 —35 0720305 +6 613 4400, +6 641 28007
—264 559 61603—198 410 88004 —82 264 57605+1 693 44009+1 312 368 000=0
—814 5920104—675 84001 05—238 4320’1 0’6—675 8400’2(74—599 0400’205
—1507200206—238 4320304 —150 7200305—35 07203054106 430 3680
+81 349 44009+25 713 72803 —260 446 01604, —198 410 88005 —82 264 5760¢
+1693 440010+34 550 702 464=0
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The set of solutions of this system is an algebraic variety of dimension 3 and degree 52. A
solution is on = —-484, o» = 226, 03 = —54, 04 = 82, oy, = -6, g5 = 167, oy = —1456, oy =
614, og = -162, o0 = 182, o1 = -18, g1 = 134, 13 = 195.

3.1. Computing an orthogonal basis of </,

In this section, we describe a new method to construct a basis B of 7, and to detect flat
extensions, from the knowledge of the moments o, of o(y). We are going to inductively
construct a family P of polynomials, orthogonal for the inner product

(P, q9) — (p,q),:=(0lpg),

and a monomial set B connected to 1 such that {B) = {P).

We start with 8= {1}, P={1} C R. As (1, 1),= (o | 1) # 0, the family Pis orthogonal for
cand (B) =(P).

We now describe the induction step. Assume that we have a set B= {/m,..., mg and P=
{p1,..., ps} such that

. (B)=(P);

. (0i B o# 0if i= jand O otherwise.
To construct the next orthogonal polynomials, we consider the monomials in

dB={m), ..., m,}and project them on (A):

By construction, (p;, p;),=0and (py, ..., ps, p;)=(ma, . .., ms,m,). We extend B by

choosing a subset of monomials B'={m; ,...,m; } such that the matrix

[<p'ijvpi,/> ] .
70 1<4,5" <k

is invertible. The family Pis then extended by adding an orthogonal family of polynomials
{Ds+1,- -+, Psi constructed from { pgl, e ,p;k}. If all the polynomials p; are such that

(pi»p;),=0, the process stops.
This leads to the following algorithm:

Algorithm 1—Input: the coefficients o, of a series o € C[[y]] for a € A C N” connected
tol withoy # 0.
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. LetB:={1}, P={1},r:=1, E= {y®) e a;
. Whiles> 0 and Bt - Bt C E do

Compute 9B={m, ..., m;} and

pEmimY ke
Compute a (maximal) subset B'={m; , ..., m; } of B
such z‘hat[ p ;, P ;j/ >0]1§j7j/§k is invertible,
- Compute an orthogonal family of polynomials {pg1,.. .,
Pseid from{ p,,....p Y.
- B:=BUB, P:=PU{0st1,..., Psii}; =k
. If B" - B* ¢ C E then return failed.

Output: failed or success with

. a set of monomials B={my,..., m3} connected to 1, and non-degenerate
for{:, o

. a set of polynomials P={pi,..., p} orthogonal for o and such that{B) =
(P
the relations pi:=m;— Z;:l 5= p; for the monomials ., in

oB={m},...,m}.

The above algorithm is a Gramm-Schmidt-type orthogonalization method, where, at each
step, new monomials are taken in g8 and projected onto the space spanned by the previous
monomial set B. Notice that if the polynomials p;are of degree at most & < ¢, then only the
moments of o of degree <24 + 1 are involved in this computation.

Proposition 3.8—/f Algorithm 1 outputs with success a set B={m,..., m} and the

’
(m,spj)

relations pirzm;—zljzl TP form indB={m, ..., m,}, then o coincides on{B"* -
B*) with the series o such that

. rank H;=r;

. B and P are bases of </ ; for the inner product -, -},

. The ideal 1;= ker Hy is generated by (p) =1,..../;

. The matrix of multiplication by xy in the basis P of </ ; Is

()
i) J1ciger
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Proof: By construction, Bis connected to 1. A basis B” of (B*) is formed by the elements
of Band the polynomials p;, 7= 1,..., /. Since Algorithm 1 stops with success, we have V', f

€[1, 1, VbE(B), (Piv bYo= (Pi: Pj)a: Oand py,...,p € keer+’B+- As(B")=(B) @
(p1.--.. pi), rank HP B =rank AP P and F2"-5" is a flat extension of F7-5. By
construction, Pis an orthogonal basis of { B) and the matrix of HBB in this basis is diagonal
with non-zero entries on the diagonal. Thus 755 is of rank r.

By Theorem 3.2, o coincides on { 8" - B*) with a series o € & such that Bis a basis of .7 5
= R/Igand [;,:(ker[—[er’BJr):(pl7 . ,pl).

As(B")=(B) ® (o1,.... p)) ={P) ®{p1,..., p) and Pis an orthogonal basis of .=/ 5, which
is orthogonal to {py,..., pj), we have

r

(o|zxpip;)
TEPi=y Lt pitp
' ;::1 (alp3) ™7

with o € {p1,..., p)). This shows that the matrix of the multiplication by x; modulo /;= (o1,

. i . ]\Ik:<<alwkl"iz}j))
..., pJ), inthe basis P={py,..., pFis % @D ) i

Remark 3.9—It can be shown that the polynomials (o)1 . sare a border basis of /5 for the
basis B[23,6,27,28].

Remark 3.10—If g8 » ¢, then by Proposition 2.2, the common roots ¢3,..., ,of the
polynomials py, ..., psare simple and real € R”. They are the cubature points:

,
=D wjeq;,
i=1

with w;> 0.

4. The cubature formula from the moment matrix

7+
We now describe how to recover the cubature formula, from the moment matrix H(f?*}B .
We assume that the flat extension condition is satisfied:

’+ / '
vk HE"E _HEE BB | ()
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Theorem 4.1—Let B and B' be monomial subsets of R of size r connected to 1 and o €
(B B*Y". Suppose that " P —rank PP | B|=|B|. LetA—=[HPP| [H25P ]
and(01)) =[ 2= | HE-F] . Then

1. Band B are bases of </ 5= Rlker H;,

2. M; (resp. Mi/) is the matrix of multiplication by X; in the basis B (resp. B')
of o g

Proof: By the flat extension Theorem 3.2, there exists o € /" such that A is a flat

extension of Hf+»B/+ of rank r=|B=|B’| and kerH;:(keer+’B/+). As R=(B) ® ker
Hgzand rank H;=r, o/ 5= Rker Hzis of dimension rand generated by B. Thus Bis a basis
of .« 5. A similar argument shows that B is also a basis of .« ;. We denote by 7 : .« ;—
(B)and n’ : .« ;— (B’) the isomorphisms associated to these bases representations.

The matrix [Hf’B/] is the matrix of the Hankel operator

Hg:%& — fﬁZf;

a + axo

in the basis B and the dual basis of B’. Similarly, [HjjiB’B,] is the matrix of

in*gldg — 527;

a > axT; k0

in the same bases. As xj* o= o O M,;where M;: o/ ;— ./ ;is the multiplication by x;in

- — s —1 ’
o 5 we deduce that Hyx 5= H;O Mjand[HB-B| [H:B:B |is the matrix of
multiplication by x;in the basis B of .« 5. By exchanging the role of Band B and by

st ’ ’ r —1
transposition ([ H2-2 | =[ HZ -B]), we obtain that [ F2-=:8 |[B:B ] is the transpose of
the matrix of multiplication by x;in the basis B of ./ 5.

Theorem 4.2—Let B be a monomial subset of R of size r connected to 1 and o € { B* -

B*)". Suppose thatrank HP"B" =rank HPP=|B|=r and that HB-B » . Let

r =1 ’
M;=[HBP | [HBB . Then o can be decomposed as

,
o= wje,
Jj=1
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with w;> 0 and ;€ R” such that M; have r common linearly independent eigenvectors uj, /
=1,...,rand

Gai=t for1 < i< 1< <r;

(ouj)

Proof: By Theorem 4.1, the matrix M;is the matrix of multiplication by x;in the basis B of
o 5. As HB-P » (, the flat extension Theorem 3.2 implies that Hz> 0 and that

T
=D wje,
Jj=1

where w;> 0 and ¢;€ R” are the simple roots of the ideal ker 4. Thus the commuting
operators M;are diagonalizable in a common basis of eigenvectors uj, /=1, ..., r, which are
scalar multiples of the interpolation polynomials at the roots (3, ..., {7 u{¢) =A;# 0 and
u{g) =0 if j# i(see [15, Chap. 4] or [10]). We deduce that

r

(E|uj):2wkuj(ck):wj)\j and (E|ziuj>:§j,iwj)\j,
k=1

50 that ¢j,/ =752 As U{G) = A we have w;= "0

(oTuy) ;i (CG 10 Cn)"

Algorithm 2—Input: B is a set of monomials connected to 1, o € { B* - BY)" such that

HEBB" js a flat extension of TP-B of rank |B.

. Compute an orthogonal basis{p., ..., p} of B for o;

M= ( (ologpips >>
Compute the matrices @ ) <ij<r
. Compute their common eigenvectors uy, ..., Uy.
Output: Forj=1, ..., r,

Ci= ((”\mlu_ﬁ <”‘-’”in“j>)-
F=\ ey 0 ety )

(oluy)

w;=

Remark 4.3—Since the matrices M, commute and are diagonalizable with the same basis,
their common eigenvectors can be obtained by computing the eigenvectors of a generic
linear combination A1My + - + ;M) [;E€ R.
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5. Cubature formula by convex optimization

As described in the previous section, the computation of cubature formulae reduces to a low
rank Hankel matrix completion problem, using the flat extension property. In this section,
we describe a new approach which relaxes this problem into a convex optimization problem.

Let VC Rbe a vector space spanned by monomials x@ for a € A C NI”. Our aim is to
construct a cubature formula for an integral function /exact on V. Let i = (X%]) e 4 be the
sequence of moments given by the integral /. We also denote i € V™ the associated linear
form such that VveE V, (i | v) = 1.

For K€ N, we denote by
%k(i):{Hakf € R5,04=iqfora € A, H, > 0},

the set of semi-definite Hankel operators on R;is associated to moment sequences which

extend i. We can easily check that #4(i) is a convex set. We denote by A% (i) the set of
elements of #/A(i) of rank < r.

A subset of (i) is the set of Hankel operators associated to cubature formulae of 7points:

EF ()= {Hg € AF(i)|o=) wiec,w;i>0,( € ]R"} .

i=1

We can check that &% (i)=U, & (i) is also a convex set.

To impose the cubature points to be in a semialgebraic set.” defined by equality and
inequalities .’={x € R"|¢}(x)=0, ..., g0 (x)=0,g{ (x) > 0,..., g, (x) > 0}, one can
refine the space of /(i) by imposing that o is positive on the quadratic module (resp.

preordering) associated to the constraints g={¢?,...,9%:9;", ..., g, } [19]. For the sake of
simplicity, we don’t analyze this case here, which can be done in a similar way.

The Hankel operator H,, e &” (i) associated to a cubature formula of 7 points is an element
of £ (i). In order to find a cubature formula of minimal rank, we would like to compute a
minimizer solution of the following optimization problem:

min rank (H)
Hex k(i)

However this problem is NP-hard [16]. We therefore relax it into the minimization of the
nuclear norm of the Hankel operators, i.e. the minimization of the sum of the singular values
of the Hankel matrix [37]. More precisely, for a generic matrix 2 € RS> 5, we consider the
following minimization problem:
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min trace(P'HP)
He k(i) (6)

Let (A, B) € RSk* Sk x R%* sk — (A, B) = trace(AB) denote the inner product induced by
the trace on the space of sy x s, matrices. The optimization problem (6) requires minimizing
the linear form H— trace(HPPY) = {H, PP’} on the convex set #X{i). As the trace of AHPis
bounded by below by 0 when A > 0, our optimization problem (6) has a non-negative
minimum = 0.

Problem (6) is a Semi-Definite Program (SDP), which can be solved efficiently by interior
point methods. See [31]. SDP is an important ingredient of relaxation techniques in
polynomial optimization. See [19,22].

o U o
LetD = {p_zizlpi Ipi € Rk} be the set of polynomials of degree < 2k which are sums
of squares, let x(¥) be the vector of all monomials in x of degree < kand let g(x) = (x(¥)/pPP!
x(8 € TK Let pfx) (1 < i< sg) denote the polynomial {#; x(¥) associated to the column A;

of P. We have Q(X)ZZ:;M (x)” and for any o € Ry,
trace(P'H, P)=(H,|PP")=(c|q(x)).

For any /€ N, we denote by ;. R;— R,the linear map which associates to a polynomial p
€ Ryits homogeneous component of degree / We say that Pis a proper matrix if 7o (g(X)) #
0forall x € R”.

We are thus looking for cubature formulae with a small number of points, which correspond
to Hankel operators with small rank. The next result describes the structure of truncated
Hankel operators, when the degree of truncation is high enough, compared to the rank.

Theorem 5.1—Let o ¢ R, and let H, be its truncated Hankel operator on Ry. If H, > 0
and H,, is of rank r < k, then

’l‘/ T
o= Zwieg}-"" Z W;i€¢,; © Mok
i=1 i=r'41

with w;> 0 and ;€ R distinct fori=1, ..., r.

Proof: The substitution zp: S — R4 Which replaces xg by 1 is an isomorphism of K
vector spaces. Let 75 : Ry, — S{3; be the pull-back map on the dual (; (o)=0 o 7). Let

=00 10=74(0) € S[y, be the linear form induced by oon Sp4 and let Hz:Syx — Spy be
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the corresponding truncated operator on S 4. The kernel K of Hyis the vector space spanned
by the homogenization in x; of the elements of the kernel Kof H,.

Let > be the lexicographic ordering such that xp = -+ > X, By [14, Theorem 15.20, p. 351],
after a generic change of coordinates, the initial Jof the homogeneous ideal (K) C Sis Borel
fixed. That is, if xx@ € J then xx € Jfor j> /. Let Bbe the set of monomials of degree ;

which are not in J. As Jis Borel fixed and different from Spp4, & e B. Similarly we check
that if 250 ... 20~ € Jwith a; =+ = a1 =0, then zgoJrlxlo‘l*l ... zom ¢ J. This shows
that B = 1(5B) is connected to 1.

As( B) ®&(J))=( B) ® K= Syq where K= ker H, we have |8 = r. As Bis connected to 1,
deg(B) < r< kand Bt C RX,
By the substitution xp = 1, we have R, = (B) ® K with K = ker H,. Therefore, H,is a flat

extension of g 5.5, By the flat extension Theorem 3.2, there exist A.;> 0, Ci=(Cio Cits s
Cin € R™Ldistinct for /=1, ..., rsuch that

o= Z)\ie__ on S[Zk]'
5 ¢ )

Notice that forany A #0, ez, = ?Ckeu‘lon S2A4-

By an inverse change of coordinates, the points ¢, of (7) are transformed into some points {;
= (Cio, Cits --» Cin) EK™Lsuch that {0 # 0 (say for /=1, ..., /') and the remaining 7— r’
points with ;o = 0. The image by 7 of €z, € ngk] with (o #0is

Tg(eCi) = (i%]ge@

where ¢i=:1-(Gi,1, - -+ Gin)- The image by r; of ez, € S{ap with
Gio=0isalinear form € R3;, Which vanishes on all the monomials x* with |a| < 24; since
their homogenization in degree 2k is x%’“"“'xa and their evaluation at {;= (0, {1, ..., i)

gives 0. The value of 7o (ez,) at X with |a| = 2k, ¢ -+ - (P =ec, (x*) where {;= (in,---,
Cjn)- We deduce that

Tg(e@) = e, O Mop.

By dehomogenization, we have wi:Ai§§§>0, Q:ﬁ(gl, . Gin) €ERMfOri=1, ..., r
and ;= (i1, ..., Cip) ERfori=r +1,...,n.
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We exploit this structure theorem to show that if the truncation order is sufficiently high, a
minimizer of (6) corresponds to a cubature formula.

Theorem 5.2—Let P be a proper operator and ., ~ des(V)+1. Assume that there exists

o* € R}, such that Hy* is a minimizer of 6) of rank r with r< k. Then H,. € & (i) i.e.
there exist w;> 0 and ; € R" such that

-
o* = Zwieg}-
i=1

Proof: By Theorem 5.1,

!
T T
ot = Zwieg}"’ Z Wi, © Tok,
i=1 i=r' 41

with w;>0and FER for i=1, ..., r.
Let us suppose that 7# /. As . > des(V)41, the elements of Vare of degree < 2k; therefore o

’

ando = Z;lwieg coincide on Vand H,» € #(i). We have the decomposition

trace(PHy+ P)=(c*|q)=(0" |g)+_wiman(q)(¢:)
=1

The homogeneous component of highest degree 74(g) of Q(X):Zj;pi(x)z) is the sum of
the squares of the degree-k components of the p;:

(@)= (e (pi))?,
=1

so that Z:leiWQk(Q)(Ci) > 0. As trace(PH,»P) is minimal, we must have

Zi:TszﬂT%(q)(Ci):O, which implies that mox(g)(¢) for i= 7 +1, ..., . However, this is
impossible, since Pis proper. We thus deduce that // = 7, which concludes the proof of the
theorem.

This theorem shows that an optimal solution of the minimization problem (6) of small rank
(r< K) yields a cubature formula, which is exact on V. Among such minimizers, we have
those of minimal rank as shown in the next proposition.
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Proposition 5.3—Let, > deg(V)+1 and H be an element of 2/ X(i) with minimal rank r. If k
>, then H € &* (i) and it is either an extremal point of # ki) or on a face of #X(i), which is

included in & (i).

Proof: Let A, ¢ é‘;"'(i) be of minimal rank r.

By Theorem 5.1, 9 = Zizlwie<f+zizr/+1wiegi © T2k with w;> 0 and ¢; € R” for /=1,

..., I. The elements of Vare of degree < 2k, therefore oand o = Z;leiegi coincide on V.
We deduce that H,» € A X(i).

Asrank Hy =7 < rand H,€ ZKi) is of minimal rank 7, r= /" and H, € &*(i).

Let us assume that A, is not an extremal point of #A(i). Then it is in the relative interior of a
face Fof #Xi). For any Hgy in asufficiently small ball of Faround H,, there exist 7€ ]0,
1[and H,, € Fsuch that

H,=tH, +(1—t)H,,.
The kernel of H, is the set of polynomials p € Ry such that
0=H,(p,p)=tH,, (p,p)+(1—t)Hs,(p,p).

As H,;= 0, we have H;(p, p) = 0 for /=1, 2. This implies that ker H,, C ker H,, for /=1,
2. From the inclusion ker H, N ker H,, C ker H,, we deduce that

kerH,=kerH,, NkerH,,.

As H, is of minimal rank 7, we have dim ker H,,> dim ker H,; This implies that ker H, =
ker Hyy = ker Ho,.

As r< k, o/ ,has a monomial basis B (connected to 1) in degree < kand Ry = (B) @ ker H,,.

Consequently, H,, (resp. H,,) is a flat extension of H”"(resp. H.»")and we have the
decomposition

r r
g1 = E wl"legi, g9 = E wi’ze@,
i=1 i=1

with w;;>0, /=1,..., r, /=1, 2. We deduce that /7, € (g’rk(i) and all the elements of the line
(Ho Hyy) which are in Fare also in £(i). Since Fis convex, we deduce that 7 c &% (i).
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Remark 5.4—A cubature formula is interpolatory when the weights are uniquely
determined from the points. From the previous theorem and proposition, we see that if a
cubature formula is of minimal rank and interpolatory, then it is an extremal point of #4(i).

According to the previous proposition, by minimizing the nuclear norm of a random matrix,
we expect to find an element of minimal rank in one of the faces of #/A(i), provided & is big
enough. This yields the following simple algorithm, which solves the SDP problem, and
checks the flat extension property using Algorithm 1. Furthermore it computes the
decomposition using Algorithm 2 or increases the degree if there is no flat extension:

Algorithm 3
. Jor= [ des) ), notflat .= true; P.= random Sy x Sy matrix;
. While (notflat) do

- Let o be a solution of the SDP problem. min e # ki
trace(PIHP);

- If H,’f IS not a flat extension, then k.= k+ 1, else notflat .=
false;

Compute the decomposition ofo ZZ;lwieQ, w;i>0, (;ER"

6. Examples

We now illustrate our cubature method on a few explicit examples.

Example 6.1 (Cubature on a square)—Our first application is a well known case,
namely, the square domain Q = [-1, 1] x [-1, 1]. We solve the SDP problem (6), with a
random matrix Pand with no constraint on the support of the points. In the following table,
we give the degree of the cubature formula (i.e. the degree of the polynomials for which the
cubature formula is exact), the number A of cubature points, the coordinates of the cubature
points and the associated weights.

Degree N  Points Weights

3 4 +(0.46503, 0.464462) 1.545
+(0.855875, -0.855943)  0.454996

5 7 +(0.673625, 0.692362) 0.595115

+(0.40546, —0.878538) 0.43343
+(-0.901706, 0.340618)  0.3993

(0,0) 1.14305
7 12 #(0.757951,0.778815)  0.304141
+(0.902107, 0.0795967)  0.203806
+(0.04182, 0.9432) 0.194607
+(0.36885, 0.19394) 0.756312
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Degree N  Points Weights
+(0.875533, -0.873448)  0.0363
+(0.589325, -0.54688)  0.50478

The cubature points are symmetric with respect to the origin (0, 0). The computed cubature
formula involves the minimal number of points, which all lie in the domain Q.

Example 6.2 (Barycentric Wachpress coordinates on a pentagon)—Here we
consider the pentagon C of vertices 1, = (0, 1), b = (1, 0), = (-1, 0), 13 = (-0.5, -1), 5 =
(0.5, -1).

To this pentagon, we associate (Wachpress) barycentric coordinates [43], which are defined
as follows. The weighted function associated to the vertex v;is defined as:

Ai1—Bi+A;
=T A

where A;is the signed area of the triangle (x, Vi1, V) and B;is the area of (X, Vi1, Vi-1).
The coordinate function associated to v;is:

()=t
> wi(x)
These coordinate functions satisfy:
. A{x)=0forx€ C
4 5
A=l
=1 !
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b 5

Eiz1vi “Ai(x)=x

For all polynomials p € R=R[w, t4, th, Uk, Uy], We consider

I[p|= gﬂp o A(x)dx.

We look for a cubature formula o € /" of the form:

(olp)=D>_w;p(¢;)
= ®)

with w;> 0, ¢; € RS, such that /7] = {&| p) for all polynomials p of degree < 2.

The moment matrix A75-5 associated to B= {1, uy, 4, th, 1, Us} involves moments of
degree < 2:

2.5000 0.5167 0.5666 0.5167 0.4500 0.4500
0.5167 0.2108 0.1165 0.0461 0.0440 0.0992
| 0.5666 0.1165 0.2427 0.1165 0.0454 0.0454
7 0.5167 0.0461 0.1165 0.2108 0.0992 0.0440
0.4500 0.0440 0.0454 0.0992 0.1701 0.0911
0.4500 0.0992 0.0454 0.0440 0.0911 0.1701

Its rank is rank (H5:5)=5.

We compute Hf*vBJr. In this matrix, there are 105 unknown parameters. We solve the
following SDP problem

min trace(HZ"-B")
st HPPBT >0 ()

which yields a solution with minimal rank 5. Since the rank of the solution matrix is the rank

of 755, we do have a flat extension. Applying Algorithm 1, we find the orthogonal
polynomials p;; the matrices of the operators of multiplication by a variable, their common
eigenvectors, which gives the following cubature points and weights:

Points Weights

(0.249888, —0.20028, 0.249993, 0.350146, 0.350193)  0.485759
(0.376647, 0.277438, —0.186609, 0.20327, 0.329016)  0.498813
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Points Weights
(0.348358, 0.379898, 0.244967, —0.174627, 0.201363)  0.509684
(-0.18472, 0.277593, 0.376188, 0.329316, 0.201622) 0.490663
(0.242468, 0.379314, 0.348244, 0.200593, —0.170579)  0.51508
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 = ℚℙ′, ℕ = ℙtℚℙ′, thenhas clearly the same rank as . According to Theorem 3.2,  admits a flat extension Hσ̃ with σ̃ ∈ R* such that B and B′ are bases of 
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σ̃ = R/ker Hσ̃.Conversely, if Hσ̃ is a flat extension of  with B and B′ bases of 
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σ̃ = R/ker Hσ̃, then  is invertible and of size r = |B| = |B′|. As Hσσ is of rank r,  is also of rank r. Thus, there exists ℙ′ ∈ ℂB′×∂B (ℙ′ = ℚ−1
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.324px" height="9.268px" viewBox="4.084 -1.072 9.324 9.268" enable-background="new 4.084 -1.072 9.324 9.268"
xml:space="preserve">
<path d="M13.407,8.197h-1.414V0.231L8.409,8.197h-0.28l-3.43-7.49v7.49H4.084v-9.268h3.038L9.558,4.22l2.296-5.292h1.554V8.197z
M8.829,5.887L5.89-0.568H4.812l3.401,7.392h0.196L8.829,5.887z"/>
</svg>
) such that 
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 = ℚℙ′. Similarly, there exists ℙ ∈ ℂB×∂B′ such that 
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= ℚtℙ. Thus, the kernel of  is the image of . We deduce that ℕ = 
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tℙ′ = ℙtℚℙ′.Remark 3.5—A basis of the kernel of  is given by the columns of , which represent polynomials of the formfor α ∈ ∂B. These polynomials are border relations which project the monomials xα of ∂B on the vector space spanned by the monomials B, modulo ker . It is proved in [6] that they form a border basis of the ideal ker Hσ̃ when  is a flat extension and  is invertible.Remark 3.6—Let A ⊂ ℕn be a set of monomials such that 〈σ|xα〉 = I[xα]. Considering the entries of ℙ, ℙ′ and the entries σα of ℚ with α ∉ A as variables, the constraints (3) are multilinear equations in these variables of total degree at most 3 if ℚ contains unknown entries and 2 otherwise.Example 3.7—We consider here V = R2k for k > 0. By Proposition 3.4, any cubature formula for I exact on V has at least rk := dim Rk points. Let us take B to be all the monomials of degree ≤ k so that B+ is the set of monomials of degree ≤ k + 1. If a cubature formula for I is exact on R2k and has rk points, then 
 is a flat extension of 
 of rank rk. Consider a decomposition of 
 as in (2). By Proposition 3.4, we have the relations
(4) where•ℚ = (I[xβ+β′])β,β′∈B,•
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= (〈σ|xβ+β′〉)β∈B,β′∈∂B with 〈σ|xβ+β′〉 = I[xβ+β′] when |β + β′| ≤ 2k,•ℕ = (〈σ|xβ+β′〉)β,β′∈∂B,•ℙ = (pβ,α)β∈B,α∈∂B.The equations (4) are quadratic in the variables ℙ and linear in the variables in 
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 Solving these equations yields a flat extension 
 of 
. As 
, any real solution of this system of equations corresponds to a cubature for I on exact R2k of the form 
 with wi > 0, ζi ∈ ℝn.We illustrate the approach with R = ℝ[x1, x2], V = R4, 
. Let
 be the series truncated in degree 4, corresponding to the first moments (not necessarily given by an integral).
 where σ1 = σ5,0, σ2 = σ4,1, σ2 = σ3,2, σ4 = σ2,3, σ5 = σ1,4, σ6 = σ0,5, σ7 = σ6,0, σ8 = σ5,1, σ9 = σ4,2, σ10 = σ3,3, σ11 = σ2,4, σ12 = σ1,5, σ13 = σ0,6.The first 6 × 6 diagonal block 
 is invertible. To have a flat extension 
, we impose the condition that the sixteen 7 × 7 minors of 
, which contains the first 6 rows and columns, must vanish. This yields the following system of quadratic equations: 
The set of solutions of this system is an algebraic variety of dimension 3 and degree 52. A solution is σ1 = −484, σ2 = 226, σ3 = −54, σ4 = 82, σ5 = −6, σ6 = 167, σ7 = −1456, σ8 = 614, σ9 = −162, σ10 = 182, σ11 = −18, σ12 = 134, σ13 = 195.
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σ̃ = R/ker Hσ̃,2. is the matrix of multiplication by xi in the basis B (resp. B′) of 
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σ̃,Proof: By the flat extension Theorem 3.2, there exists σ̄ ∈ R* such that Hσ̃ is a flat extension of  of rank r = |B| = |B′| and . As R = 〈B〉 ⊕ ker Hσ̄ and rank Hσ̃ = r, 
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σ̃ = R/ker Hσ̄ is of dimension r and generated by B. Thus B is a basis of 
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σ̃. A similar argument shows that B′ is also a basis of 
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σ̃. We denote by π : 
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σ̃ → 〈B〉 and π′ : 
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σ̃ → 〈B′〉 the isomorphisms associated to these bases representations.The matrix [ ] is the matrix of the Hankel operatorin the basis B and the dual basis of B′. Similarly, [ ] is the matrix ofin the same bases. As xi ★ σ̄ = σ̄ ○ Mi where Mi : 
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σ̃ is the multiplication by xi in 
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σ̃, we deduce that H̄xi★σ̄ = H̄σ̄ ○ Mi and  is the matrix of multiplication by xi in the basis B of 
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σ̃. By exchanging the role of B and B′ and by transposition ( ), we obtain that  is the transpose of the matrix of multiplication by xi in the basis B′ of 
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σ̃.Theorem 4.2—Let B be a monomial subset of R of size r connected to 1 and σ ∈ 〈B+ · B+〉*. Suppose that  and that . Let . Then σ can be decomposed aswith wj > 0 and ζj ∈ ℝn such that Mi have r common linearly independent eigenvectors uj, j = 1, …, r and• for 1 ≤ i ≤ n, 1 ≤ j ≤ r;•.Proof: By Theorem 4.1, the matrix Mi is the matrix of multiplication by xi in the basis B of 
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σ̃. As , the flat extension Theorem 3.2 implies that Hσ̄ ≽ 0 and thatwhere wj > 0 and ζj ∈ ℝn are the simple roots of the ideal ker Hσ̄. Thus the commuting operators Mi are diagonalizable in a common basis of eigenvectors ui, i = 1, …, r, which are scalar multiples of the interpolation polynomials at the roots ζ1, …, ζr: ui(ζi) = λi ≠ 0 and ui(ζj) = 0 if j ≠ i (see [15, Chap. 4] or [10]). We deduce thatso that . As ui(ζi) = λi, we have .Algorithm 2—Input: B is a set of monomials connected to 1, σ ∈ 〈 B+ · B+〉* such that  is a flat extension of  of rank |B|.•Compute an orthogonal basis {p1, …, pr} of B for σ;•Compute the matrices ;•Compute their common eigenvectors u1, …, ur.Output: For j = 1, …, r,•;•.Remark 4.3—Since the matrices Mk commute and are diagonalizable with the same basis, their common eigenvectors can be obtained by computing the eigenvectors of a generic linear combination l1M1 + ··· + lnMn, li ∈ ℝ.
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	5. Cubature formula by convex optimization
	Theorem 5.1—Let  and let Hσ be its truncated Hankel operator on Rk. If Hσ ≽ 0 and Hσ is of rank r ≤ k, thenwith ωi > 0 and ζi ∈ ℝn distinct for i = 1, …, r.Proof: The substitution τ0: S[2k] → R2k which replaces x0 by 1 is an isomorphism of 
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vector spaces. Let  be the pull-back map on the . Let  be the linear form induced by σ on S[2k] and let  be the corresponding truncated operator on S[k]. The kernel K̄ of Hσ̄ is the vector space spanned by the homogenization in x0 of the elements of the kernel K of Hσ.Let ≽ be the lexicographic ordering such that x0 ≽ ··· ≽ xn. By [14, Theorem 15.20, p. 351], after a generic change of coordinates, the initial J of the homogeneous ideal (K̄) ⊂ S is Borel fixed. That is, if xixα ∈ J, then xjxα ∈ J for j > i. Let B̄ be the set of monomials of degree k, which are not in J. As J is Borel fixed and different from S[2k], . Similarly we check that if  with α1 = ··· = αl−1 = 0, then . This shows that B = τ0(B̄) is connected to 1.As 〈 B̄ 〉 ⊕〈J〉 = 〈 B̄ 〉 ⊕ K̄ = S[k] where K̄ = ker Hσ̄, we have |B| = r. As B is connected to 1, deg(B) < r ≤ k and B+ ⊂ Rk.By the substitution x0 = 1, we have Rk = 〈B〉 ⊕ K with K = ker Hσ. Therefore, Hσ is a flat extension of . By the flat extension Theorem 3.2, there exist λi > 0, ζ̄i = (ζi,0, ζi,1, …, ζi,n) ∈ ℝn+1 distinct for i = 1, …, r such that(7)Notice that for any λ ≠ 0, eζ̄i = λ−keλζ̄ion S[2k].By an inverse change of coordinates, the points ζ̄i of (7) are transformed into some points ζ̄i = (ζi,0, ζi,1, …, ζi,n) ∈ 
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n+1 such that ζi,0 ≠ 0 (say for i = 1, …, r′) and the remaining r − r′ points with ζi,0 = 0. The image by  of  with ζi,0 ≠ 0 iswhere . The image by  of  with , which vanishes on all the monomials xα with |α| < 2k, since their homogenization in degree 2k is  and their evaluation at ζ̄i = (0, ζi,1, …, ζi,n) gives 0. The value of  at xα with |α| = 2k,  where ζi = (ζi,1,…, ζi,n). We deduce thatBy dehomogenization, we have  for i = 1, …, r′ and ζi = (ζi,1, …, ζi,n) ∈ ℝn for i = r′ + 1, …, n.We exploit this structure theorem to show that if the truncation order is sufficiently high, a minimizer of (6) corresponds to a cubature formula.Theorem 5.2—Let P be a proper operator and . Assume that there exists  such that Hσ* is a minimizer of (6) of rank r with r ≤ k. Then  i.e. there exist ωi > 0 and ζi ∈ ℝn such thatProof: By Theorem 5.1,with ωi > 0 and ζi ∈ ℝn for i = 1, …, r.Let us suppose that r ≠ r′. As , the elements of V are of degree < 2k, therefore σ* and  coincide on V and Hσ′ ∈ ℋk(i). We have the decompositionThe homogeneous component of highest degree π2k(q) of  is the sum of the squares of the degree-k components of the pi:so that . As trace(PHσ*P) is minimal, we must have , which implies that π2k(q)(ζi) for i = r′ + 1, …, r. However, this is impossible, since P is proper. We thus deduce that r′ = r, which concludes the proof of the theorem.This theorem shows that an optimal solution of the minimization problem (6) of small rank (r ≤ k) yields a cubature formula, which is exact on V. Among such minimizers, we have those of minimal rank as shown in the next proposition.Proposition 5.3—Let  and H be an element of ℋk(i) with minimal rank r. If k ≥ r, then  and it is either an extremal point of ℋk(i) or on a face of ℋk(i), which is included in .Proof: Let  be of minimal rank r.By Theorem 5.1,  with ωi > 0 and ζi ∈ ℝn for i = 1, …, r. The elements of V are of degree < 2k, therefore σ and  coincide on V. We deduce that Hσ′ ∈ ℋk(i).As rank Hσ′ = r′ ≤ r and Hσ ∈ ℋk(i) is of minimal rank r, r = r′ and 
.Let us assume that Hσ is not an extremal point of ℋk(i). Then it is in the relative interior of a face F of ℋk(i). For any Hσ1 in a sufficiently small ball of F around Hσ, there exist t ∈ ]0, 1[ and Hσ2 ∈ F such thatThe kernel of Hσ is the set of polynomials p ∈ Rk such thatAs Hσi ≽ 0, we have Hσi (p, p) = 0 for i = 1, 2. This implies that ker Hσ ⊂ ker Hσi, for i = 1, 2. From the inclusion ker Hσ1 ∩ ker Hσ2 ⊂ ker Hσ, we deduce thatAs Hσ is of minimal rank r, we have dim ker Hσ ≥ dim ker Hσi. This implies that ker Hσ = ker Hσ1 = ker Hσ2.As r ≤ k, 
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σ has a monomial basis B (connected to 1) in degree < k and Rk = 〈B〉 ⊕ ker Hσ. Consequently, Hσ (resp. Hσi) is a flat extension of 
 and we have the decomposition
 with ωi,j > 0, i = 1,…, r, j = 1, 2. We deduce that 
 and all the elements of the line (Hσ, Hσ1) which are in F are also in 
. Since F is convex, we deduce that 
.Remark 5.4—A cubature formula is interpolatory when the weights are uniquely determined from the points. From the previous theorem and proposition, we see that if a cubature formula is of minimal rank and interpolatory, then it is an extremal point of ℋk(i).According to the previous proposition, by minimizing the nuclear norm of a random matrix, we expect to find an element of minimal rank in one of the faces of ℋk(i), provided k is big enough. This yields the following simple algorithm, which solves the SDP problem, and checks the flat extension property using Algorithm 1. Furthermore it computes the decomposition using Algorithm 2 or increases the degree if there is no flat extension:Algorithm 3•
; notflat := true; P:= random sk × sk matrix;•While (notflat) do–Let σ be a solution of the SDP problem: minH∈ℋk(i) trace(PtHP);–If 
 is not a flat extension, then k := k + 1; else notflat := false;•Compute the decomposition of 
, ωi > 0, ζi ∈ ℝn.
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	6. Examples
	Example 6.1 (Cubature on a square)—Our first application is a well known case, namely, the square domain Ω = [−1, 1] × [−1, 1]. We solve the SDP problem (6), with a random matrix P and with no constraint on the support of the points. In the following table, we give the degree of the cubature formula (i.e. the degree of the polynomials for which the cubature formula is exact), the number N of cubature points, the coordinates of the cubature points and the associated weights.DegreeNPointsWeights34±(0.46503, 0.464462)1.545±(0.855875, −0.855943)0.45499657±(0.673625, 0.692362)0.595115±(0.40546, −0.878538)0.43343±(−0.901706, 0.340618)0.3993(0, 0)1.14305712±(0.757951, 0.778815)0.304141±(0.902107, 0.0795967)0.203806±(0.04182, 0.9432)0.194607±(0.36885, 0.19394)0.756312±(0.875533, −0.873448)0.0363±(0.589325, −0.54688)0.50478The cubature points are symmetric with respect to the origin (0, 0). The computed cubature formula involves the minimal number of points, which all lie in the domain Ω.Example 6.2 (Barycentric Wachpress coordinates on a pentagon)—Here we consider the pentagon C of vertices v1 = (0, 1), v2 = (1, 0), v3 = (−1, 0), v4 = (−0.5, −1), v5 = (0.5, −1).To this pentagon, we associate (Wachpress) barycentric coordinates [43], which are defined as follows. The weighted function associated to the vertex vi is defined as:where Ai is the signed area of the triangle (x, vi−1, vi) and Bi is the area of (x, vi+1, vi−1). The coordinate function associated to vi is:These coordinate functions satisfy:•λi(x) ≥ 0 for x ∈ C•,•For all polynomials p ∈ R = ℝ[u0, u1, u2, u3, u4], we considerWe look for a cubature formula σ ∈ R* of the form:(8)with wi > 0, ζi ∈ ℝ5, such that I[p] = 〈σ | p〉 for all polynomials p of degree ≤ 2.The moment matrix  associated to B = {1, u0, u1, u2, u3, u4} involves moments of degree ≤ 2:Its rank is rank .We compute . In this matrix, there are 105 unknown parameters. We solve the following SDP problem(9)which yields a solution with minimal rank 5. Since the rank of the solution matrix is the rank of , we do have a flat extension. Applying Algorithm 1, we find the orthogonal polynomials ρi, the matrices of the operators of multiplication by a variable, their common eigenvectors, which gives the following cubature points and weights:PointsWeights(0.249888, −0.20028, 0.249993, 0.350146, 0.350193)0.485759(0.376647, 0.277438, −0.186609, 0.20327, 0.329016)0.498813(0.348358, 0.379898, 0.244967, −0.174627, 0.201363)0.509684(−0.18472, 0.277593, 0.376188, 0.329316, 0.201622)0.490663(0.242468, 0.379314, 0.348244, 0.200593, −0.170579)0.51508
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