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Abstract

We describe a new method to compute general cubature formulae. The problem is initially 

transformed into the computation of truncated Hankel operators with flat extensions. We then 

analyze the algebraic properties associated to flat extensions and show how to recover the cubature 

points and weights from the truncated Hankel operator. We next present an algorithm to test the 

flat extension property and to additionally compute the decomposition. To generate cubature 

formulae with a minimal number of points, we propose a new relaxation hierarchy of convex 

optimization problems minimizing the nuclear norm of the Hankel operators. For a suitably high 

order of convex relaxation, the minimizer of the optimization problem corresponds to a cubature 

formula. Furthermore cubature formulae with a minimal number of points are associated to faces 

of the convex sets. We illustrate our method on some examples, and for each we obtain a new 

minimal cubature formula.
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1. Cubature formula

1.1. Statement of the problem

Consider the integral for a continuous function f,
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where Ω ⊂ ℝn and w is a positive function on Ω.

We are looking for a cubature formula which has the form

(1)

where the points ζj ∈ ℂn and the weights wj ∈ ℝ are independent of the function f. They are 

chosen so that

where V is a finite dimensional vector space of functions. Usually, the vector space V is the 

vector space of polynomials of degree ≤ d, because a well-behaved function f can be 

approximated by a polynomial, so that Q[f] approximates the integral I[f].

Given a cubature formula (1) for I, its algebraic degree is the largest degree d for which I[f] 
= 〈σ|f〉 for all f of degree ≤ d.

1.2. Related works

Prior approaches to the solution of cubature problem can be grouped into roughly two 

classes. One, where the goal is to estimate the fewest weighted, aka cubature points possible 

for satisfying a prescribed cubature rule of fixed degree [9,24,26,29,30,33]. The other class 

focusses on the determination and construction of cubature rules which would yield the 

fewest cubature points possible [7,34,38–41,44,45]. In [34], for example, Radon introduced 

a fundamental technique for constructing minimal cubature rules where the cubature points 

are common zeros of multivariate orthogonal polynomials. This fundamental technique has 

since been extended by many, including e.g. [33,41,45] where notably, the paper [45] uses 

multivariate ideal theory, while [33] uses operator dilation theory. In this paper, we propose 

another approach to the second class of cubature solutions, namely, constructing a suitable 

finite dimensional Hankel matrix and extracting the cubature points using sub-operators of 

the Hankel matrix [18]. This approach is related to [21–23], which in turn are based on the 

methods of multivariate truncated moment matrices, their positivity and extension properties 

[11–13].

Applications of such algorithms determining cubature rules and cubature points over general 

domains occur in isogeometric modeling and finite element analysis using generalized 

Barycentric finite elements [17,1,35,36]. Additional applications abound in numerical 

integration for low dimensional (6–100 dimensions) convolution integrals that appear 

naturally in computational molecular biology [3,2], as well in truly high dimensional (tens of 

thousands of dimensions) integrals that occur in finance [32,8].
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1.3. Reformulation

Let R = ℝ[x] be the ring of polynomials in the variables x = (x1,…, xn) with coefficients in 

ℝ. Let Rd be the set of polynomials of degree ≤ d. The set of linear forms on R, that is, the 

set of linear maps from R to ℝ is denoted by R*. The value of a linear form Λ ∈ R* on a 

polynomial p ∈ R is denoted by 〈Λ|p〉. The set R* can be identified with the ring of formal 

power series in new variables y = (y1,…, yn):

The coefficients 〈Λ|xα〉 of these series are called the moments of Λ. The evaluation at a 

point ζ ∈ ℝn is an element of R, denoted by eζ, and defined by eζ : f ∈ R ↦ f(ζ) ∈ ℝ. For 

any p ∈ R and any Λ ∈ R*, let p ★ Λ : q ∈ R ↦ Λ(pq).

Cubature problem—Let V ⊂ R be a vector space of polynomials and consider the linear 

form Ī ∈ V* defined by

Computing a cubature formula for I on V then consists in finding a linear form

which coincides on V with Ī. In other words, given the linear form Ī on Rd, we wish to find a 

linear form  which extends Ī.

2. Cubature formulae and Hankel operators

To find such a linear form σ ∈ R*, we exploit the properties of its associated bilinear form 

Hσ : (p, q) ∈ R × R → 〈σ|pq〉, or equivalently, the associated Hankel operator:

The kernel of Hσ is kerHσ = {p ∈ R | ∀q ∈ R, 〈σ|pq〉 = 0}. It is an ideal of R. Let σ = 

R/ker Hσ be the associated quotient ring.

The matrix of the bilinear form or the Hankel operator Hσ associated to σ in the monomial 

basis, and its dual are (〈Λ|xα+β〉)α,β∈ℕn. If we restrict them to a space V spanned by the 

monomial basis (xα)α∈A for some finite set A ⊂ ℕn, we obtain a finite dimensional matrix 
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, and which is a Hankel matrix. More generally, for any vector 

spaces V, V′ ⊂ R, we define the truncated bilinear form and Hankel operators: 

 and . If V (resp. V′) is 

spanned by a monomial set xA for A ⊂ ℕn (resp. xB for B ⊂ ℕn), the truncated bilinear 

form and truncated Hankel operator are also denoted by . The associated Hankel 

matrix in the monomial basis is then .

The main property that we will use to characterize a cubature formula is the following (see 

[22,20]):

Proposition 2.1—A linear form σ ∈ R* can be decomposed as  with wi ∈ ℂ 
\ {0}, ζi ∈ ℂn iff

• Hσ : p ↦ p ★ σ is of rank r,

• ker Hσ is the ideal of polynomials vanishing at the points {ζ1,…, ζr}.

This shows that in order to find the points ζi of a cubature formula, it is sufficient to 

compute the polynomials p ∈ R such that ∀q ∈ R, 〈σ|pq〉 = 0, and to determine their 

common zeroes. In Section 4 we describe a direct way to recover the points ζi, and the 

weights ωi from suboperators of Hσ.

In the case of cubature formulae with real points and positive weights, we already have the 

following stronger result (see [22,20]):

Proposition 2.2—Let σ ∈ R*.

with wi > 0, ζi ∈ ℝn iff rankHσ = r and Hσ ≽ 0.

A linear form  with wi > 0, ζi ∈ ℝn is called a r-atomic measure since it 

coincides with the weighted sum of the r Dirac measures at the points ζi.

Therefore, the problem of constructing a cubature formula σ for I exact on V ⊂ R can be 

reformulated as follows: Construct a linear form σ ∈ R* such that

• rank Hσ = r < ∞ and Hσ ≽ 0.

• v ∈ V, I[v] = 〈σ|v〉.

The rank r of Hσ is given by the number of points of the cubature formula, which is expected 

to be small or even minimal.

The following result states that a cubature formula with dim(V) points, always exists.
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Theorem 2.3. (See [42,4].)—If a sequence (σα)α∈ℕn,|α|≤t is the truncated moment 
sequence of a measure μ (i.e. σα = ∫ xαdμ for |α| ≤ t), then it can also be represented by an 

r-atomic measure: for |α| ≤ t,  where r ≤ st, wi > 0, ζi ∈ supp(μ).

This result can be generalized to any set of linearly independent polynomials v1,…, vr ∈ R 
(see the proof in [4] or Theorem 5.9 in [22]). We deduce that the cubature problem always 

has a solution with dim(V) or less points.

Definition 2.4—Let rc(I) be the maximum rank of the bilinear form 

 where W, W′ ⊂ V are such that ∀w ∈ W, ∀w′ ∈ W
′, ww′ ∈ V. It is called the Catalecticant rank of I.

Proposition 2.5—Any cubature formula for I exact on V involves at least rc(I) points.

Proof: Suppose that σ is a cubature formula for I exact on V with r points. Let W, W′ ⊂ V 

be vector spaces such that ∀w ∈ W, ∀w′ ∈ W′, ww′ ∈ V. Since  coincides with 

, which is the restriction of the bilinear form Hσ to W × W′, we deduce that 

. Thus r ≥ rc(I).

Corollary 2.6—Let W ⊂ V such that ∀w, w′ ∈ W, ww′ ∈ V. Then any cubature formula 
of I exact on V involves at least dim(W) points.

Proof: As we have ∀p ∈ W, p2 ∈ V so that I(p2) = 0 implies p = 0. Therefore the quadratic 

form  is positive definite of rank dim(W). By Proposition 

2.5, a cubature formula of I exact on V involves at least rc(I) ≥ dim(W) points.

In particular, if V = Rd any cubature formula of I exact on V involves at least 

 points.

In [25], this lower bound is improved for cubature problems in two variables.

3. Flat extensions

In order to reduce the extension problem to a finite-dimensional problem, we consider 

hereafter only truncated Hankel operators. Given two subspaces W, W′ of R and a linear 

form σ defined on W ·W′ (i.e. σ ∈ 〈W ·W′〉*), we define
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If w (resp. w′) is a basis of W (resp. W′), then we will also denote . The 

matrix of  in the basis w = {w1,…, ws},  is [〈σ|wiwj〉]1≤i≤s,1≤j≤s′.

Definition 3.1—Let W ⊂ V, W′ ⊂ V′ be subvector spaces of R and σ ∈ 〈V · V′〉*. We 

say that  is a flat extension of  if .

A set B of monomials of R is connected to 1 if it contains 1 and if for any m ≠ 1 ∈ B, there 

exist 1 ≤ i ≤ n and m′ ∈ B such that m = xim′.

As a quotient R/ker Hσ has always a monomial basis connected to 1, so in the first step we 

take for w, w′, monomial sets that are connected to 1.

For a set B of monomials in R, let us define B+ = B ∪ x1B ∪ ··· ∪ xn, B and ∂B = B+ \ B.

The next theorem gives a characterization of flat extensions for Hankel operators defined on 

monomial sets connected to 1. It is a generalized form of the Curto–Fialkow theorem [13].

Theorem 3.2. (See [23,6,5].)—Let B ⊂ C, B′ ⊂ C′ be sets of monomials connected to 1 

such that |B| = |B′| = r and C · C′ contains B+ · B′+. If σ ∈ 〈C · C′〉* is such that 

, then  has a unique flat extension Hσ̃ for some σ̃ ∈ R*. 

Moreover, we have  and R = 〈B〉 ⊕ker Hσ̃ = 〈B′〉 ⊕ker Hσ̃. In the case 

where B′ = B, if , then Hσ̃ ≽ 0.

Based on this theorem, in order to find a flat extension of , it suffices to construct an 

extension  of the same rank r.

Corollary 3.3—Let V ⊂ R be a finite dimensional vector space. If there exists a set B of 
monomials connected to 1 such that V ⊂ 〈B+ · B+〉 and σ ∈ 〈B+ · B+〉* such that ∀v ∈ V, 〈σ|

v〉 = I[v] and , then there exist wi > 0, ζi ∈ ℝn, i = 1,…, r 
such that ∀v ∈ V,

This characterization leads to equations which are at most of degree 2 in a set of variables 

related to unknown moments and relation coefficients as described by the following 

proposition:

Proposition 3.4—Let B and B′ be two sets of monomials of R of size r, connected to 1 

and σ be a linear form on 〈B′ + · B+〉. Then,  admits a flat extension Hσ̃ such that 
Hσ̃ is of rank r and B (resp. B′) a basis of R/ker Hσ̃ iff
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(2)

with  such that ℚ is invertible 
and

(3)

for some matrices ℙ ∈ ℂB×∂B′, ℙ′ ∈ ℂB′×∂B.

Proof: If we have = ℚtℙ,  = ℚℙ′, ℕ = ℙtℚℙ′, then

has clearly the same rank as . According to Theorem 3.2,  admits a flat 

extension Hσ̃ with σ̃ ∈ R* such that B and B′ are bases of σ̃ = R/ker Hσ̃.

Conversely, if Hσ̃ is a flat extension of  with B and B′ bases of σ̃ = R/ker Hσ̃, 

then  is invertible and of size r = |B| = |B′|. As Hσσ is of rank r, 

 is also of rank r. Thus, there exists ℙ′ ∈ ℂB′×∂B (ℙ′ = ℚ−1 ) such that  = ℚℙ′. 

Similarly, there exists ℙ ∈ ℂB×∂B′ such that = ℚtℙ. Thus, the kernel of 

 is the image of . We 

deduce that ℕ = tℙ′ = ℙtℚℙ′.

Remark 3.5—A basis of the kernel of  is given by the columns of , which 

represent polynomials of the form

for α ∈ ∂B. These polynomials are border relations which project the monomials xα of ∂B 

on the vector space spanned by the monomials B, modulo ker . It is proved in [6] 
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that they form a border basis of the ideal ker Hσ̃ when  is a flat extension and 

is invertible.

Remark 3.6—Let A ⊂ ℕn be a set of monomials such that 〈σ|xα〉 = I[xα]. Considering the 

entries of ℙ, ℙ′ and the entries σα of ℚ with α ∉ A as variables, the constraints (3) are 

multilinear equations in these variables of total degree at most 3 if ℚ contains unknown 

entries and 2 otherwise.

Example 3.7—We consider here V = R2k for k > 0. By Proposition 3.4, any cubature 

formula for I exact on V has at least rk := dim Rk points. Let us take B to be all the 

monomials of degree ≤ k so that B+ is the set of monomials of degree ≤ k + 1. If a cubature 

formula for I is exact on R2k and has rk points, then  is a flat extension of  of 

rank rk. Consider a decomposition of  as in (2). By Proposition 3.4, we have the 

relations

(4)

where

• ℚ = (I[xβ+β′])β,β′∈B,

• = (〈σ|xβ+β′〉)β∈B,β′∈∂B with 〈σ|xβ+β′〉 = I[xβ+β′] when |β + β′| ≤ 2k,

• ℕ = (〈σ|xβ+β′〉)β,β′∈∂B,

• ℙ = (pβ,α)β∈B,α∈∂B.

The equations (4) are quadratic in the variables ℙ and linear in the variables in  Solving 

these equations yields a flat extension  of . As , any real solution of 

this system of equations corresponds to a cubature for I on exact R2k of the form 

 with wi > 0, ζi ∈ ℝn.

We illustrate the approach with R = ℝ[x1, x2], V = R4, 

. Let

be the series truncated in degree 4, corresponding to the first moments (not necessarily given 

by an integral).
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where σ1 = σ5,0, σ2 = σ4,1, σ2 = σ3,2, σ4 = σ2,3, σ5 = σ1,4, σ6 = σ0,5, σ7 = σ6,0, σ8 = σ5,1, σ9 

= σ4,2, σ10 = σ3,3, σ11 = σ2,4, σ12 = σ1,5, σ13 = σ0,6.

The first 6 × 6 diagonal block  is invertible. To have a flat extension , we 

impose the condition that the sixteen 7 × 7 minors of , which contains the first 6 

rows and columns, must vanish. This yields the following system of quadratic equations:

Bucero et al. Page 9

Linear Algebra Appl. Author manuscript; available in PMC 2016 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The set of solutions of this system is an algebraic variety of dimension 3 and degree 52. A 

solution is σ1 = −484, σ2 = 226, σ3 = −54, σ4 = 82, σ5 = −6, σ6 = 167, σ7 = −1456, σ8 = 

614, σ9 = −162, σ10 = 182, σ11 = −18, σ12 = 134, σ13 = 195.

3.1. Computing an orthogonal basis of σ

In this section, we describe a new method to construct a basis B of σ and to detect flat 

extensions, from the knowledge of the moments σα of σ(y). We are going to inductively 

construct a family P of polynomials, orthogonal for the inner product

and a monomial set B connected to 1 such that 〈B〉 = 〈P〉.

We start with B = {1}, P = {1} ⊂ R. As 〈1, 1〉σ = 〈σ | 1〉 ≠ 0, the family P is orthogonal for 

σ and 〈B〉 = 〈P〉.

We now describe the induction step. Assume that we have a set B = {m1,…, ms} and P = 

{p1,…, ps} such that

• 〈B〉 = 〈P〉;

• 〈pi, pj〉σ ≠ 0 if i = j and 0 otherwise.

To construct the next orthogonal polynomials, we consider the monomials in 

 and project them on 〈P〉:

By construction,  and . We extend B by 

choosing a subset of monomials  such that the matrix

is invertible. The family P is then extended by adding an orthogonal family of polynomials 

{ps+1,…, ps+k} constructed from { }. If all the polynomials  are such that 

, the process stops.

This leads to the following algorithm:

Algorithm 1—Input: the coefficients σα of a series σ ∈ ℂ[[y]] for α ∈ A ⊂ ℕn connected 
to 1 with σ0 ≠ 0.
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• Let B := {1}; P = {1}; r := 1; E = 〈yα〉α∈A;

• While s > 0 and B+ · B+ ⊂ E do

– Compute  and 

;

– Compute a (maximal) subset  of ∂B 

such that  is invertible;

– Compute an orthogonal family of polynomials {ps+1,…, 

ps+k} from { };

– B := B ∪ B′, P := P ∪ {ps+1,…, ps+k}; r+ = k;

• If B+ · B+ ⊄ ⊂ E then return failed.

Output: failed or success with

• a set of monomials B = {m1,…, mr} connected to 1, and non-degenerate 
for 〈·, ·〉σ;

• a set of polynomials P = {p1,…, pr} orthogonal for σ and such that 〈B〉 = 

〈P〉;

•
the relations  for the monomials  in 

.

The above algorithm is a Gramm–Schmidt-type orthogonalization method, where, at each 

step, new monomials are taken in ∂B and projected onto the space spanned by the previous 

monomial set B. Notice that if the polynomials pi are of degree at most d′ < d, then only the 

moments of σ of degree ≤ 2d′ + 1 are involved in this computation.

Proposition 3.8—If Algorithm 1 outputs with success a set B = {m1,…, mr} and the 

relations , for  in , then σ coincides on 〈B+ · 

B+〉 with the series σ̃ such that

• rank Hσ̃ = r;

• B and P are bases of σ̃ for the inner product 〈·, ·〉σ̃;

• The ideal Iσ̃ = ker Hσ̄ is generated by (ρi)i=1,…,l;

• The matrix of multiplication by xk in the basis P of σ̃ is
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Proof: By construction, B is connected to 1. A basis B′ of 〈B+〉 is formed by the elements 

of B and the polynomials ρi, i = 1,…, l. Since Algorithm 1 stops with success, we have ∀i, j 

∈ [1, l], ∀b ∈ 〈B〉, 〈ρi, b〉σ = 〈ρi, ρj〉σ = 0 and . As 〈B+〉 = 〈B〉 ⊕ 

〈ρ1,…, ρl〉,  and  is a flat extension of . By 

construction, P is an orthogonal basis of 〈B〉 and the matrix of  in this basis is diagonal 

with non-zero entries on the diagonal. Thus  is of rank r.

By Theorem 3.2, σ coincides on 〈B+ ·B+〉 with a series σ̃ ∈ R* such that B is a basis of σ̄ 

= R/Iσ̃ and .

As 〈B+〉 = 〈B〉 ⊕ 〈ρ1,…, ρl〉 = 〈P 〉 ⊕〈ρ1,…, ρl〉 and P is an orthogonal basis of σ̄, which 

is orthogonal to 〈ρ1,…, ρl〉, we have

with ρ ∈ 〈ρ1,…, ρl〉. This shows that the matrix of the multiplication by xk modulo Iσ̄ = (ρ1,

…, ρl), in the basis P = {p1,…, pr} is .

Remark 3.9—It can be shown that the polynomials (ρi)i=1,·,l are a border basis of Iσ̃ for the 

basis B [23,6,27,28].

Remark 3.10—If , then by Proposition 2.2, the common roots ζ1,…, ζr of the 

polynomials ρ1,…, ρl are simple and real ∈ ℝn. They are the cubature points:

with wj > 0.

4. The cubature formula from the moment matrix

We now describe how to recover the cubature formula, from the moment matrix . 

We assume that the flat extension condition is satisfied:

(5)
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Theorem 4.1—Let B and B′ be monomial subsets of R of size r connected to 1 and σ ∈ 

〈B+ · B′+〉*. Suppose that . Let 

and . Then,

1. B and B′ are bases of σ̃ = R/ker Hσ̃,

2.  is the matrix of multiplication by xi in the basis B (resp. B′) 
of σ̃,

Proof: By the flat extension Theorem 3.2, there exists σ̄ ∈ R* such that Hσ̃ is a flat 

extension of  of rank r = |B| = |B′| and . As R = 〈B〉 ⊕ ker 

Hσ̄ and rank Hσ̃ = r, σ̃ = R/ker Hσ̄ is of dimension r and generated by B. Thus B is a basis 

of σ̃. A similar argument shows that B′ is also a basis of σ̃. We denote by π : σ̃ → 
〈B〉 and π′ : σ̃ → 〈B′〉 the isomorphisms associated to these bases representations.

The matrix [ ] is the matrix of the Hankel operator

in the basis B and the dual basis of B′. Similarly, [ ] is the matrix of

in the same bases. As xi ★ σ̄ = σ̄ ○ Mi where Mi : σ̃ → σ̃ is the multiplication by xi in 

σ̃, we deduce that H̄
xi★σ̄ = H̄σ̄ ○ Mi and  is the matrix of 

multiplication by xi in the basis B of σ̃. By exchanging the role of B and B′ and by 

transposition ( ), we obtain that  is the transpose of 

the matrix of multiplication by xi in the basis B′ of σ̃.

Theorem 4.2—Let B be a monomial subset of R of size r connected to 1 and σ ∈ 〈B+ · 

B+〉*. Suppose that  and that . Let 

. Then σ can be decomposed as
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with wj > 0 and ζj ∈ ℝn such that Mi have r common linearly independent eigenvectors uj, j 
= 1, …, r and

•
 for 1 ≤ i ≤ n, 1 ≤ j ≤ r;

•
.

Proof: By Theorem 4.1, the matrix Mi is the matrix of multiplication by xi in the basis B of 

σ̃. As , the flat extension Theorem 3.2 implies that Hσ̄ ≽ 0 and that

where wj > 0 and ζj ∈ ℝn are the simple roots of the ideal ker Hσ̄. Thus the commuting 

operators Mi are diagonalizable in a common basis of eigenvectors ui, i = 1, …, r, which are 

scalar multiples of the interpolation polynomials at the roots ζ1, …, ζr: ui(ζi) = λi ≠ 0 and 

ui(ζj) = 0 if j ≠ i (see [15, Chap. 4] or [10]). We deduce that

so that . As ui(ζi) = λi, we have .

Algorithm 2—Input: B is a set of monomials connected to 1, σ ∈ 〈 B+ · B+〉* such that 

 is a flat extension of  of rank |B|.

• Compute an orthogonal basis {p1, …, pr} of B for σ;

•

Compute the matrices ;

• Compute their common eigenvectors u1, …, ur.

Output: For j = 1, …, r,

•
;

•
.

Remark 4.3—Since the matrices Mk commute and are diagonalizable with the same basis, 

their common eigenvectors can be obtained by computing the eigenvectors of a generic 

linear combination l1M1 + ··· + lnMn, li ∈ ℝ.
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5. Cubature formula by convex optimization

As described in the previous section, the computation of cubature formulae reduces to a low 

rank Hankel matrix completion problem, using the flat extension property. In this section, 

we describe a new approach which relaxes this problem into a convex optimization problem.

Let V ⊂ R be a vector space spanned by monomials xα for α ∈ A ⊂ ℕn. Our aim is to 

construct a cubature formula for an integral function I exact on V. Let i = (I[xα])α∈A be the 

sequence of moments given by the integral I. We also denote i ∈ V * the associated linear 

form such that ∀v ∈ V, 〈i | v〉 = I[v].

For k ∈ ℕ, we denote by

the set of semi-definite Hankel operators on Rt is associated to moment sequences which 

extend i. We can easily check that ℋk(i) is a convex set. We denote by  the set of 

elements of ℋk(i) of rank ≤ r.

A subset of  is the set of Hankel operators associated to cubature formulae of r points:

We can check that  is also a convex set.

To impose the cubature points to be in a semialgebraic set  defined by equality and 

inequalities , one can 

refine the space of ℋk(i) by imposing that σ is positive on the quadratic module (resp. 

preordering) associated to the constraints  [19]. For the sake of 

simplicity, we don’t analyze this case here, which can be done in a similar way.

The Hankel operator  associated to a cubature formula of r points is an element 

of . In order to find a cubature formula of minimal rank, we would like to compute a 

minimizer solution of the following optimization problem:

However this problem is NP-hard [16]. We therefore relax it into the minimization of the 

nuclear norm of the Hankel operators, i.e. the minimization of the sum of the singular values 

of the Hankel matrix [37]. More precisely, for a generic matrix P ∈ ℝst × st, we consider the 

following minimization problem:
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(6)

Let (A, B) ∈ ℝsk × sk × ℝsk × sk → 〈A, B〉 = trace(AB) denote the inner product induced by 

the trace on the space of sk × sk matrices. The optimization problem (6) requires minimizing 

the linear form H → trace(HPPt) = 〈H, PPt〉 on the convex set ℋk(i). As the trace of PtHP is 

bounded by below by 0 when H ≽ 0, our optimization problem (6) has a non-negative 

minimum ≥ 0.

Problem (6) is a Semi-Definite Program (SDP), which can be solved efficiently by interior 

point methods. See [31]. SDP is an important ingredient of relaxation techniques in 

polynomial optimization. See [19,22].

Let  be the set of polynomials of degree ≤ 2k which are sums 

of squares, let x(k) be the vector of all monomials in x of degree ≤ k and let q(x) = (x(k))tPPt 

x(k) ∈ Σk. Let pi(x) (1 ≤ i ≤ sk) denote the polynomial 〈Pi, x(k)〉 associated to the column Pi 

of P. We have  and for any σ ∈ R2k,

For any l ∈ ℕ, we denote by πl: Rl → Rl the linear map which associates to a polynomial p 
∈ Rl its homogeneous component of degree l. We say that P is a proper matrix if π2k(q(x)) ≠ 

0 for all x ∈ ℝn.

We are thus looking for cubature formulae with a small number of points, which correspond 

to Hankel operators with small rank. The next result describes the structure of truncated 

Hankel operators, when the degree of truncation is high enough, compared to the rank.

Theorem 5.1—Let  and let Hσ be its truncated Hankel operator on Rk. If Hσ ≽ 0 

and Hσ is of rank r ≤ k, then

with ωi > 0 and ζi ∈ ℝn distinct for i = 1, …, r.

Proof: The substitution τ0: S[2k] → R2k which replaces x0 by 1 is an isomorphism of 

vector spaces. Let  be the pull-back map on the . Let 

 be the linear form induced by σ on S[2k] and let  be 
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the corresponding truncated operator on S[k]. The kernel K̄ of Hσ̄ is the vector space spanned 

by the homogenization in x0 of the elements of the kernel K of Hσ.

Let ≽ be the lexicographic ordering such that x0 ≽ ··· ≽ xn. By [14, Theorem 15.20, p. 351], 

after a generic change of coordinates, the initial J of the homogeneous ideal (K̄) ⊂ S is Borel 

fixed. That is, if xixα ∈ J, then xjxα ∈ J for j > i. Let B̄ be the set of monomials of degree k, 

which are not in J. As J is Borel fixed and different from S[2k], . Similarly we check 

that if  with α1 = ··· = αl−1 = 0, then . This shows 

that B = τ0(B̄) is connected to 1.

As 〈 B̄ 〉 ⊕〈J〉 = 〈 B̄ 〉 ⊕ K̄ = S[k] where K̄ = ker Hσ̄, we have |B| = r. As B is connected to 1, 

deg(B) < r ≤ k and B+ ⊂ Rk.

By the substitution x0 = 1, we have Rk = 〈B〉 ⊕ K with K = ker Hσ. Therefore, Hσ is a flat 

extension of . By the flat extension Theorem 3.2, there exist λi > 0, ζī = (ζi,0, ζi,1, …, 

ζi,n) ∈ ℝn+1 distinct for i = 1, …, r such that

(7)

Notice that for any λ ≠ 0, eζ̄i = λ−keλζ̄ion S[2k].

By an inverse change of coordinates, the points ζ̄i of (7) are transformed into some points ζ̄i 
= (ζi,0, ζi,1, …, ζi,n) ∈ n+1 such that ζi,0 ≠ 0 (say for i = 1, …, r′) and the remaining r − r′ 

points with ζi,0 = 0. The image by  of  with ζi,0 ≠ 0 is

where . The image by  of  with 

, which vanishes on all the monomials xα with |α| < 2k, since 

their homogenization in degree 2k is  and their evaluation at ζī = (0, ζi,1, …, ζi,n) 

gives 0. The value of  at xα with |α| = 2k,  where ζi = (ζi,1,…, 

ζi,n). We deduce that

By dehomogenization, we have  for i = 1, …, r′ 
and ζi = (ζi,1, …, ζi,n) ∈ ℝn for i = r′ + 1, …, n.
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We exploit this structure theorem to show that if the truncation order is sufficiently high, a 

minimizer of (6) corresponds to a cubature formula.

Theorem 5.2—Let P be a proper operator and . Assume that there exists 

 such that Hσ* is a minimizer of (6) of rank r with r ≤ k. Then  i.e. 
there exist ωi > 0 and ζi ∈ ℝn such that

Proof: By Theorem 5.1,

with ωi > 0 and ζi ∈ ℝn for i = 1, …, r.

Let us suppose that r ≠ r′. As , the elements of V are of degree < 2k, therefore σ* 

and  coincide on V and Hσ′ ∈ ℋk(i). We have the decomposition

The homogeneous component of highest degree π2k(q) of  is the sum of 

the squares of the degree-k components of the pi:

so that . As trace(PHσ*P) is minimal, we must have 

, which implies that π2k(q)(ζi) for i = r′ + 1, …, r. However, this is 

impossible, since P is proper. We thus deduce that r′ = r, which concludes the proof of the 

theorem.

This theorem shows that an optimal solution of the minimization problem (6) of small rank 

(r ≤ k) yields a cubature formula, which is exact on V. Among such minimizers, we have 

those of minimal rank as shown in the next proposition.
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Proposition 5.3—Let  and H be an element of ℋk(i) with minimal rank r. If k 

≥ r, then  and it is either an extremal point of ℋk(i) or on a face of ℋk(i), which is 

included in .

Proof: Let  be of minimal rank r.

By Theorem 5.1,  with ωi > 0 and ζi ∈ ℝn for i = 1, 

…, r. The elements of V are of degree < 2k, therefore σ and  coincide on V. 

We deduce that Hσ′ ∈ ℋk(i).

As rank Hσ′ = r′ ≤ r and Hσ ∈ ℋk(i) is of minimal rank r, r = r′ and .

Let us assume that Hσ is not an extremal point of ℋk(i). Then it is in the relative interior of a 

face F of ℋk(i). For any Hσ1 in a sufficiently small ball of F around Hσ, there exist t ∈ ]0, 

1[ and Hσ2 ∈ F such that

The kernel of Hσ is the set of polynomials p ∈ Rk such that

As Hσi ≽ 0, we have Hσi (p, p) = 0 for i = 1, 2. This implies that ker Hσ ⊂ ker Hσi, for i = 1, 

2. From the inclusion ker Hσ1 ∩ ker Hσ2 ⊂ ker Hσ, we deduce that

As Hσ is of minimal rank r, we have dim ker Hσ ≥ dim ker Hσi. This implies that ker Hσ = 

ker Hσ1 = ker Hσ2.

As r ≤ k, σ has a monomial basis B (connected to 1) in degree < k and Rk = 〈B〉 ⊕ ker Hσ. 

Consequently, Hσ (resp. Hσi) is a flat extension of  and we have the 

decomposition

with ωi,j > 0, i = 1,…, r, j = 1, 2. We deduce that  and all the elements of the line 

(Hσ, Hσ1) which are in F are also in . Since F is convex, we deduce that .
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Remark 5.4—A cubature formula is interpolatory when the weights are uniquely 

determined from the points. From the previous theorem and proposition, we see that if a 

cubature formula is of minimal rank and interpolatory, then it is an extremal point of ℋk(i).

According to the previous proposition, by minimizing the nuclear norm of a random matrix, 

we expect to find an element of minimal rank in one of the faces of ℋk(i), provided k is big 

enough. This yields the following simple algorithm, which solves the SDP problem, and 

checks the flat extension property using Algorithm 1. Furthermore it computes the 

decomposition using Algorithm 2 or increases the degree if there is no flat extension:

Algorithm 3

• ; notflat := true; P:= random sk × sk matrix;

• While (notflat) do

– Let σ be a solution of the SDP problem: minH∈ℋk(i) 

trace(PtHP);

– If  is not a flat extension, then k := k + 1; else notflat := 
false;

•
Compute the decomposition of , ωi > 0, ζi ∈ ℝn.

6. Examples

We now illustrate our cubature method on a few explicit examples.

Example 6.1 (Cubature on a square)—Our first application is a well known case, 

namely, the square domain Ω = [−1, 1] × [−1, 1]. We solve the SDP problem (6), with a 

random matrix P and with no constraint on the support of the points. In the following table, 

we give the degree of the cubature formula (i.e. the degree of the polynomials for which the 

cubature formula is exact), the number N of cubature points, the coordinates of the cubature 

points and the associated weights.

Degree N Points Weights

3 4 ±(0.46503, 0.464462) 1.545

±(0.855875, −0.855943) 0.454996

5 7 ±(0.673625, 0.692362) 0.595115

±(0.40546, −0.878538) 0.43343

±(−0.901706, 0.340618) 0.3993

(0, 0) 1.14305

7 12 ±(0.757951, 0.778815) 0.304141

±(0.902107, 0.0795967) 0.203806

±(0.04182, 0.9432) 0.194607

±(0.36885, 0.19394) 0.756312
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Degree N Points Weights

±(0.875533, −0.873448) 0.0363

±(0.589325, −0.54688) 0.50478

The cubature points are symmetric with respect to the origin (0, 0). The computed cubature 

formula involves the minimal number of points, which all lie in the domain Ω.

Example 6.2 (Barycentric Wachpress coordinates on a pentagon)—Here we 

consider the pentagon C of vertices v1 = (0, 1), v2 = (1, 0), v3 = (−1, 0), v4 = (−0.5, −1), v5 = 

(0.5, −1).

To this pentagon, we associate (Wachpress) barycentric coordinates [43], which are defined 

as follows. The weighted function associated to the vertex vi is defined as:

where Ai is the signed area of the triangle (x, vi−1, vi) and Bi is the area of (x, vi+1, vi−1). 

The coordinate function associated to vi is:

These coordinate functions satisfy:

• λi(x) ≥ 0 for x ∈ C

•
,
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•

For all polynomials p ∈ R = ℝ[u0, u1, u2, u3, u4], we consider

We look for a cubature formula σ ∈ R* of the form:

(8)

with wi > 0, ζi ∈ ℝ5, such that I[p] = 〈σ | p〉 for all polynomials p of degree ≤ 2.

The moment matrix  associated to B = {1, u0, u1, u2, u3, u4} involves moments of 

degree ≤ 2:

Its rank is rank .

We compute . In this matrix, there are 105 unknown parameters. We solve the 

following SDP problem

(9)

which yields a solution with minimal rank 5. Since the rank of the solution matrix is the rank 

of , we do have a flat extension. Applying Algorithm 1, we find the orthogonal 

polynomials ρi, the matrices of the operators of multiplication by a variable, their common 

eigenvectors, which gives the following cubature points and weights:

Points Weights

(0.249888, −0.20028, 0.249993, 0.350146, 0.350193) 0.485759

(0.376647, 0.277438, −0.186609, 0.20327, 0.329016) 0.498813
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Points Weights

(0.348358, 0.379898, 0.244967, −0.174627, 0.201363) 0.509684

(−0.18472, 0.277593, 0.376188, 0.329316, 0.201622) 0.490663

(0.242468, 0.379314, 0.348244, 0.200593, −0.170579) 0.51508
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	Proposition 2.1
	Proposition 2.2
	Theorem 2.3. (See [42,4].)
	Definition 2.4
	Proposition 2.5
	Proof

	Corollary 2.6
	Proof



	3. Flat extensions
	Definition 3.1—Let W ⊂ V, W′ ⊂ V′ be subvector spaces of R and σ ∈ 〈V · V′〉*. We say that  is a flat extension of  if .A set B of monomials of R is connected to 1 if it contains 1 and if for any m ≠ 1 ∈ B, there exist 1 ≤ i ≤ n and m′ ∈ B such that m = xim′.As a quotient R/ker Hσ has always a monomial basis connected to 1, so in the first step we take for w, w′, monomial sets that are connected to 1.For a set B of monomials in R, let us define B+ = B ∪ x1B ∪ ··· ∪ xn, B and ∂B = B+ \ B.The next theorem gives a characterization of flat extensions for Hankel operators defined on monomial sets connected to 1. It is a generalized form of the Curto–Fialkow theorem [13].Theorem 3.2. (See [23,6,5].)—Let B ⊂ C, B′ ⊂ C′ be sets of monomials connected to 1 such that |B| = |B′| = r and C · C′ contains B+ · B′+. If σ ∈ 〈C · C′〉* is such that , then  has a unique flat extension Hσ̃ for some σ̃ ∈ R*. Moreover, we have  and R = 〈B〉 ⊕ker Hσ̃ = 〈B′〉 ⊕ker Hσ̃. In the case where B′ = B, if , then Hσ̃ ≽ 0.Based on this theorem, in order to find a flat extension of , it suffices to construct an extension  of the same rank r.Corollary 3.3—Let V ⊂ R be a finite dimensional vector space. If there exists a set B of monomials connected to 1 such that V ⊂ 〈B+ · B+〉 and σ ∈ 〈B+ · B+〉* such that ∀v ∈ V, 〈σ|v〉 = I[v] and , then there exist wi > 0, ζi ∈ ℝn, i = 1,…, r such that ∀v ∈ V,This characterization leads to equations which are at most of degree 2 in a set of variables related to unknown moments and relation coefficients as described by the following proposition:Proposition 3.4—Let B and B′ be two sets of monomials of R of size r, connected to 1 and σ be a linear form on 〈B′ + · B+〉. Then,  admits a flat extension Hσ̃ such that Hσ̃ is of rank r and B (resp. B′) a basis of R/ker Hσ̃ iff(2)with  such that ℚ is invertible and(3)for some matrices ℙ ∈ ℂB×∂B′, ℙ′ ∈ ℂB′×∂B.Proof: If we have 
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= ℚtℙ, 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.324px" height="9.268px" viewBox="4.084 -1.072 9.324 9.268" enable-background="new 4.084 -1.072 9.324 9.268"
xml:space="preserve">
<path d="M13.407,8.197h-1.414V0.231L8.409,8.197h-0.28l-3.43-7.49v7.49H4.084v-9.268h3.038L9.558,4.22l2.296-5.292h1.554V8.197z
M8.829,5.887L5.89-0.568H4.812l3.401,7.392h0.196L8.829,5.887z"/>
</svg>
 = ℚℙ′, ℕ = ℙtℚℙ′, thenhas clearly the same rank as . According to Theorem 3.2,  admits a flat extension Hσ̃ with σ̃ ∈ R* such that B and B′ are bases of 
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σ̃ = R/ker Hσ̃.Conversely, if Hσ̃ is a flat extension of  with B and B′ bases of 
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σ̃ = R/ker Hσ̃, then  is invertible and of size r = |B| = |B′|. As Hσσ is of rank r,  is also of rank r. Thus, there exists ℙ′ ∈ ℂB′×∂B (ℙ′ = ℚ−1
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) such that 
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 = ℚℙ′. Similarly, there exists ℙ ∈ ℂB×∂B′ such that 
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= ℚtℙ. Thus, the kernel of  is the image of . We deduce that ℕ = 
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tℙ′ = ℙtℚℙ′.Remark 3.5—A basis of the kernel of  is given by the columns of , which represent polynomials of the formfor α ∈ ∂B. These polynomials are border relations which project the monomials xα of ∂B on the vector space spanned by the monomials B, modulo ker . It is proved in [6] that they form a border basis of the ideal ker Hσ̃ when  is a flat extension and  is invertible.Remark 3.6—Let A ⊂ ℕn be a set of monomials such that 〈σ|xα〉 = I[xα]. Considering the entries of ℙ, ℙ′ and the entries σα of ℚ with α ∉ A as variables, the constraints (3) are multilinear equations in these variables of total degree at most 3 if ℚ contains unknown entries and 2 otherwise.Example 3.7—We consider here V = R2k for k > 0. By Proposition 3.4, any cubature formula for I exact on V has at least rk := dim Rk points. Let us take B to be all the monomials of degree ≤ k so that B+ is the set of monomials of degree ≤ k + 1. If a cubature formula for I is exact on R2k and has rk points, then 
 is a flat extension of 
 of rank rk. Consider a decomposition of 
 as in (2). By Proposition 3.4, we have the relations
(4) where•ℚ = (I[xβ+β′])β,β′∈B,•
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= (〈σ|xβ+β′〉)β∈B,β′∈∂B with 〈σ|xβ+β′〉 = I[xβ+β′] when |β + β′| ≤ 2k,•ℕ = (〈σ|xβ+β′〉)β,β′∈∂B,•ℙ = (pβ,α)β∈B,α∈∂B.The equations (4) are quadratic in the variables ℙ and linear in the variables in 
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 Solving these equations yields a flat extension 
 of 
. As 
, any real solution of this system of equations corresponds to a cubature for I on exact R2k of the form 
 with wi > 0, ζi ∈ ℝn.We illustrate the approach with R = ℝ[x1, x2], V = R4, 
. Let
 be the series truncated in degree 4, corresponding to the first moments (not necessarily given by an integral).
 where σ1 = σ5,0, σ2 = σ4,1, σ2 = σ3,2, σ4 = σ2,3, σ5 = σ1,4, σ6 = σ0,5, σ7 = σ6,0, σ8 = σ5,1, σ9 = σ4,2, σ10 = σ3,3, σ11 = σ2,4, σ12 = σ1,5, σ13 = σ0,6.The first 6 × 6 diagonal block 
 is invertible. To have a flat extension 
, we impose the condition that the sixteen 7 × 7 minors of 
, which contains the first 6 rows and columns, must vanish. This yields the following system of quadratic equations: 
The set of solutions of this system is an algebraic variety of dimension 3 and degree 52. A solution is σ1 = −484, σ2 = 226, σ3 = −54, σ4 = 82, σ5 = −6, σ6 = 167, σ7 = −1456, σ8 = 614, σ9 = −162, σ10 = 182, σ11 = −18, σ12 = 134, σ13 = 195.
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σ̃ = R/ker Hσ̃,2. is the matrix of multiplication by xi in the basis B (resp. B′) of 
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σ̃,Proof: By the flat extension Theorem 3.2, there exists σ̄ ∈ R* such that Hσ̃ is a flat extension of  of rank r = |B| = |B′| and . As R = 〈B〉 ⊕ ker Hσ̄ and rank Hσ̃ = r, 
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σ̃ = R/ker Hσ̄ is of dimension r and generated by B. Thus B is a basis of 
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σ̃. A similar argument shows that B′ is also a basis of 
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σ̃. We denote by π : 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="13.188px" height="10.188px" viewBox="3.36 -1.741 13.188 10.188" enable-background="new 3.36 -1.741 13.188 10.188"
xml:space="preserve">
<path d="M16.144-1.114c0,0.038-1.581,2.879-4.744,8.524c0.236,0.033,0.439,0.05,0.609,0.05c0.543,0,1.036-0.238,1.479-0.715
c0.062-0.066,0.108-0.1,0.142-0.1c0.062,0,0.092,0.033,0.092,0.1c0,0.104-0.132,0.255-0.396,0.453
C12.877,7.533,12.337,7.7,11.704,7.7c-0.108,0-0.26-0.009-0.453-0.027l-0.185,0.318L9.793,8.197l0.347-0.595
C9.526,7.465,8.959,7.203,8.441,6.816C7.478,7.793,6.592,8.281,5.785,8.281c-0.868,0-1.303-0.342-1.303-1.026
c0-0.25,0.066-0.458,0.198-0.623c0.142-0.185,0.333-0.276,0.573-0.276c0.298,0,0.446,0.14,0.446,0.418
c0,0.302-0.135,0.453-0.403,0.453c-0.071,0-0.151-0.021-0.241-0.061s-0.13-0.06-0.12-0.06c-0.09,0-0.135,0.068-0.135,0.205
c0,0.222,0.111,0.401,0.333,0.538C5.327,7.963,5.54,8.02,5.772,8.02c0.793,0,1.609-0.477,2.449-1.431
c-0.76-0.793-1.14-1.63-1.14-2.513c0-0.51,0.15-0.951,0.453-1.324C7.86,2.36,8.273,2.164,8.774,2.164
c0.858,0,1.526,0.47,2.003,1.409c0.562-0.68,1.124-1.357,1.686-2.032c0.67-0.765,1.298-1.378,1.883-1.841
c0.774-0.618,1.31-0.928,1.607-0.928C16.08-1.227,16.144-1.189,16.144-1.114z M10.586,3.8C10.19,3.04,9.677,2.66,9.049,2.66
c-0.458,0-0.84,0.175-1.146,0.524C7.615,3.514,7.471,3.913,7.471,4.38c0,0.68,0.323,1.357,0.97,2.032L10.586,3.8z M10.905,5.371
c0-0.477-0.066-0.882-0.198-1.218L8.646,6.575c0.458,0.387,1.018,0.646,1.678,0.778C10.711,6.665,10.905,6.004,10.905,5.371z
M15.747-0.894c-0.713,0.288-1.589,0.994-2.627,2.117c-0.52,0.571-1.248,1.456-2.188,2.655c0.146,0.562,0.22,1.034,0.22,1.417
c0,0.32-0.053,0.655-0.156,1.005L15.747-0.894z"/>
</svg>
σ̃ → 〈B〉 and π′ : 
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σ̃ → 〈B′〉 the isomorphisms associated to these bases representations.The matrix [ ] is the matrix of the Hankel operatorin the basis B and the dual basis of B′. Similarly, [ ] is the matrix ofin the same bases. As xi ★ σ̄ = σ̄ ○ Mi where Mi : 
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σ̃ → 
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σ̃ is the multiplication by xi in 
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σ̃, we deduce that H̄xi★σ̄ = H̄σ̄ ○ Mi and  is the matrix of multiplication by xi in the basis B of 
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σ̃. By exchanging the role of B and B′ and by transposition ( ), we obtain that  is the transpose of the matrix of multiplication by xi in the basis B′ of 
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σ̃.Theorem 4.2—Let B be a monomial subset of R of size r connected to 1 and σ ∈ 〈B+ · B+〉*. Suppose that  and that . Let . Then σ can be decomposed aswith wj > 0 and ζj ∈ ℝn such that Mi have r common linearly independent eigenvectors uj, j = 1, …, r and• for 1 ≤ i ≤ n, 1 ≤ j ≤ r;•.Proof: By Theorem 4.1, the matrix Mi is the matrix of multiplication by xi in the basis B of 
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σ̃. As , the flat extension Theorem 3.2 implies that Hσ̄ ≽ 0 and thatwhere wj > 0 and ζj ∈ ℝn are the simple roots of the ideal ker Hσ̄. Thus the commuting operators Mi are diagonalizable in a common basis of eigenvectors ui, i = 1, …, r, which are scalar multiples of the interpolation polynomials at the roots ζ1, …, ζr: ui(ζi) = λi ≠ 0 and ui(ζj) = 0 if j ≠ i (see [15, Chap. 4] or [10]). We deduce thatso that . As ui(ζi) = λi, we have .Algorithm 2—Input: B is a set of monomials connected to 1, σ ∈ 〈 B+ · B+〉* such that  is a flat extension of  of rank |B|.•Compute an orthogonal basis {p1, …, pr} of B for σ;•Compute the matrices ;•Compute their common eigenvectors u1, …, ur.Output: For j = 1, …, r,•;•.Remark 4.3—Since the matrices Mk commute and are diagonalizable with the same basis, their common eigenvectors can be obtained by computing the eigenvectors of a generic linear combination l1M1 + ··· + lnMn, li ∈ ℝ.
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vector spaces. Let  be the pull-back map on the . Let  be the linear form induced by σ on S[2k] and let  be the corresponding truncated operator on S[k]. The kernel K̄ of Hσ̄ is the vector space spanned by the homogenization in x0 of the elements of the kernel K of Hσ.Let ≽ be the lexicographic ordering such that x0 ≽ ··· ≽ xn. By [14, Theorem 15.20, p. 351], after a generic change of coordinates, the initial J of the homogeneous ideal (K̄) ⊂ S is Borel fixed. That is, if xixα ∈ J, then xjxα ∈ J for j > i. Let B̄ be the set of monomials of degree k, which are not in J. As J is Borel fixed and different from S[2k], . Similarly we check that if  with α1 = ··· = αl−1 = 0, then . This shows that B = τ0(B̄) is connected to 1.As 〈 B̄ 〉 ⊕〈J〉 = 〈 B̄ 〉 ⊕ K̄ = S[k] where K̄ = ker Hσ̄, we have |B| = r. As B is connected to 1, deg(B) < r ≤ k and B+ ⊂ Rk.By the substitution x0 = 1, we have Rk = 〈B〉 ⊕ K with K = ker Hσ. Therefore, Hσ is a flat extension of . By the flat extension Theorem 3.2, there exist λi > 0, ζ̄i = (ζi,0, ζi,1, …, ζi,n) ∈ ℝn+1 distinct for i = 1, …, r such that(7)Notice that for any λ ≠ 0, eζ̄i = λ−keλζ̄ion S[2k].By an inverse change of coordinates, the points ζ̄i of (7) are transformed into some points ζ̄i = (ζi,0, ζi,1, …, ζi,n) ∈ 
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n+1 such that ζi,0 ≠ 0 (say for i = 1, …, r′) and the remaining r − r′ points with ζi,0 = 0. The image by  of  with ζi,0 ≠ 0 iswhere . The image by  of  with , which vanishes on all the monomials xα with |α| < 2k, since their homogenization in degree 2k is  and their evaluation at ζ̄i = (0, ζi,1, …, ζi,n) gives 0. The value of  at xα with |α| = 2k,  where ζi = (ζi,1,…, ζi,n). We deduce thatBy dehomogenization, we have  for i = 1, …, r′ and ζi = (ζi,1, …, ζi,n) ∈ ℝn for i = r′ + 1, …, n.We exploit this structure theorem to show that if the truncation order is sufficiently high, a minimizer of (6) corresponds to a cubature formula.Theorem 5.2—Let P be a proper operator and . Assume that there exists  such that Hσ* is a minimizer of (6) of rank r with r ≤ k. Then  i.e. there exist ωi > 0 and ζi ∈ ℝn such thatProof: By Theorem 5.1,with ωi > 0 and ζi ∈ ℝn for i = 1, …, r.Let us suppose that r ≠ r′. As , the elements of V are of degree < 2k, therefore σ* and  coincide on V and Hσ′ ∈ ℋk(i). We have the decompositionThe homogeneous component of highest degree π2k(q) of  is the sum of the squares of the degree-k components of the pi:so that . As trace(PHσ*P) is minimal, we must have , which implies that π2k(q)(ζi) for i = r′ + 1, …, r. However, this is impossible, since P is proper. We thus deduce that r′ = r, which concludes the proof of the theorem.This theorem shows that an optimal solution of the minimization problem (6) of small rank (r ≤ k) yields a cubature formula, which is exact on V. Among such minimizers, we have those of minimal rank as shown in the next proposition.Proposition 5.3—Let  and H be an element of ℋk(i) with minimal rank r. If k ≥ r, then  and it is either an extremal point of ℋk(i) or on a face of ℋk(i), which is included in .Proof: Let  be of minimal rank r.By Theorem 5.1,  with ωi > 0 and ζi ∈ ℝn for i = 1, …, r. The elements of V are of degree < 2k, therefore σ and  coincide on V. We deduce that Hσ′ ∈ ℋk(i).As rank Hσ′ = r′ ≤ r and Hσ ∈ ℋk(i) is of minimal rank r, r = r′ and 
.Let us assume that Hσ is not an extremal point of ℋk(i). Then it is in the relative interior of a face F of ℋk(i). For any Hσ1 in a sufficiently small ball of F around Hσ, there exist t ∈ ]0, 1[ and Hσ2 ∈ F such thatThe kernel of Hσ is the set of polynomials p ∈ Rk such thatAs Hσi ≽ 0, we have Hσi (p, p) = 0 for i = 1, 2. This implies that ker Hσ ⊂ ker Hσi, for i = 1, 2. From the inclusion ker Hσ1 ∩ ker Hσ2 ⊂ ker Hσ, we deduce thatAs Hσ is of minimal rank r, we have dim ker Hσ ≥ dim ker Hσi. This implies that ker Hσ = ker Hσ1 = ker Hσ2.As r ≤ k, 
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σ has a monomial basis B (connected to 1) in degree < k and Rk = 〈B〉 ⊕ ker Hσ. Consequently, Hσ (resp. Hσi) is a flat extension of 
 and we have the decomposition
 with ωi,j > 0, i = 1,…, r, j = 1, 2. We deduce that 
 and all the elements of the line (Hσ, Hσ1) which are in F are also in 
. Since F is convex, we deduce that 
.Remark 5.4—A cubature formula is interpolatory when the weights are uniquely determined from the points. From the previous theorem and proposition, we see that if a cubature formula is of minimal rank and interpolatory, then it is an extremal point of ℋk(i).According to the previous proposition, by minimizing the nuclear norm of a random matrix, we expect to find an element of minimal rank in one of the faces of ℋk(i), provided k is big enough. This yields the following simple algorithm, which solves the SDP problem, and checks the flat extension property using Algorithm 1. Furthermore it computes the decomposition using Algorithm 2 or increases the degree if there is no flat extension:Algorithm 3•
; notflat := true; P:= random sk × sk matrix;•While (notflat) do–Let σ be a solution of the SDP problem: minH∈ℋk(i) trace(PtHP);–If 
 is not a flat extension, then k := k + 1; else notflat := false;•Compute the decomposition of 
, ωi > 0, ζi ∈ ℝn.
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	6. Examples
	Example 6.1 (Cubature on a square)—Our first application is a well known case, namely, the square domain Ω = [−1, 1] × [−1, 1]. We solve the SDP problem (6), with a random matrix P and with no constraint on the support of the points. In the following table, we give the degree of the cubature formula (i.e. the degree of the polynomials for which the cubature formula is exact), the number N of cubature points, the coordinates of the cubature points and the associated weights.DegreeNPointsWeights34±(0.46503, 0.464462)1.545±(0.855875, −0.855943)0.45499657±(0.673625, 0.692362)0.595115±(0.40546, −0.878538)0.43343±(−0.901706, 0.340618)0.3993(0, 0)1.14305712±(0.757951, 0.778815)0.304141±(0.902107, 0.0795967)0.203806±(0.04182, 0.9432)0.194607±(0.36885, 0.19394)0.756312±(0.875533, −0.873448)0.0363±(0.589325, −0.54688)0.50478The cubature points are symmetric with respect to the origin (0, 0). The computed cubature formula involves the minimal number of points, which all lie in the domain Ω.Example 6.2 (Barycentric Wachpress coordinates on a pentagon)—Here we consider the pentagon C of vertices v1 = (0, 1), v2 = (1, 0), v3 = (−1, 0), v4 = (−0.5, −1), v5 = (0.5, −1).To this pentagon, we associate (Wachpress) barycentric coordinates [43], which are defined as follows. The weighted function associated to the vertex vi is defined as:where Ai is the signed area of the triangle (x, vi−1, vi) and Bi is the area of (x, vi+1, vi−1). The coordinate function associated to vi is:These coordinate functions satisfy:•λi(x) ≥ 0 for x ∈ C•,•For all polynomials p ∈ R = ℝ[u0, u1, u2, u3, u4], we considerWe look for a cubature formula σ ∈ R* of the form:(8)with wi > 0, ζi ∈ ℝ5, such that I[p] = 〈σ | p〉 for all polynomials p of degree ≤ 2.The moment matrix  associated to B = {1, u0, u1, u2, u3, u4} involves moments of degree ≤ 2:Its rank is rank .We compute . In this matrix, there are 105 unknown parameters. We solve the following SDP problem(9)which yields a solution with minimal rank 5. Since the rank of the solution matrix is the rank of , we do have a flat extension. Applying Algorithm 1, we find the orthogonal polynomials ρi, the matrices of the operators of multiplication by a variable, their common eigenvectors, which gives the following cubature points and weights:PointsWeights(0.249888, −0.20028, 0.249993, 0.350146, 0.350193)0.485759(0.376647, 0.277438, −0.186609, 0.20327, 0.329016)0.498813(0.348358, 0.379898, 0.244967, −0.174627, 0.201363)0.509684(−0.18472, 0.277593, 0.376188, 0.329316, 0.201622)0.490663(0.242468, 0.379314, 0.348244, 0.200593, −0.170579)0.51508
	Example 6.1 (Cubature on a square)


	Table T1
	Table T2
	References

