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Abstract

The interactions of molecules and particles in solution often involve an interplay between isotropic 

and highly directional interactions that lead to a mutual coupling of phase separation and self-

assembly. This situation arises, for example, in proteins interacting through hydrophobic and 

charged patch regions on their surface and in nanoparticles with grafted polymer chains, such as 

DNA. As a minimal model of complex fluids exhibiting this interaction coupling, we investigate 

spherical particles having an isotropic interaction and a constellation of five attractive patches on 

the particle’s surface. Monte Carlo simulations and mean-field calculations of the phase 

boundaries of this model depend strongly on the relative strength of the isotropic and patch 

potentials, where we surprisingly find that analytic mean-field predictions become increasingly 

accurate as the directional interactions become increasingly predominant. We quantitatively 

account for this effect by noting that the effective interaction range increases with increasing 

relative directional to isotropic interaction strength. We also identify thermodynamic transition 

lines associated with self-assembly, extract the entropy and energy of association, and characterize 

the resulting cluster properties obtained from simulations using percolation scaling theory and 

Flory-Stockmayer mean-field theory. We find that the fractal dimension and cluster size 

distribution are consistent with those of lattice animals, i.e., randomly branched polymers swollen 

by excluded volume interactions. We also identify a universal functional form for the average 

molecular weight and a nearly universal functional form for a scaling parameter characterizing the 

cluster size distribution. Since the formation of branched clusters at equilibrium is a common 

phenomenon in nature, we detail how our analysis can be used in experimental characterization of 

such associating fluids.

I. INTRODUCTION

Many complex fluids are composed of highly anisotropic molecules in solution that can be 

described by a superposition of directional and isotropic intermolecular interactions. To 

describe these fluids, patch models, which represent molecules as spheres decorated by a 

constellation of “patches” that introduce directional interactions, provide an attractive 
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minimal model that allows for the study of both liquid-liquid phase coexistence and self-

assembly.2 Although such models are applicable to a wide variety of complex fluids, most 

current work using these models focuses on protein and colloidal solutions.

Patchy models have been used extensively to describe small globular proteins, such as 

lysozyme and γ-crystallin,3-8 since they gained attention in 1999 due to work done by 

Benedek and coworkers.9 The introduction of patches represented an advance over prior 

models that only considered isotropic interactions.10-13 Although the treatment of proteins as 

spherical particles is simplistic, as detailed by Sarangapani et al.,14 this approach is useful 

for analyzing scattering data13,15 and for describing the phase coexistence of proteins.3,5,7,8

Recently, Dill et al.8 used a variant of a patch model where the proteins were treated as hard 

spheres, while the number and interaction strength of the patches were estimated using 

experimental liquid-liquid phase coexistence curves. In particular, they found that they could 

reproduce liquid-liquid phase coexistence curves for lysozyme and γ IIIa-crystallin in a 

phosphate buffer with pH strengths close to seven. However, they did not consider the 

presence of attractive isotropic interactions (in addition to those of the attractive patches), as 

Liu et al.5 had done previously. Liu et al. found that spheres with a short-range isotropic 

interaction and either 4, 5 or 7 attractive patches could also reproduce the liquid-liquid phase 

coexistence curves of lysozyme and γ-crystallin when normalized by both the critical 

temperature and density. Dill et al.,8 Liu et al.5 and others3,7 have focused primarily on 

liquid-liquid phase separation rather than self-assembly, a process that can occur well above 

the critical temperature for phase coexistence. Experimentally, it is known that proteins form 

self-assembled clusters, but it is less clear whether the clusters form under equilibrium or 

non-equilibrium conditions16-22 and how their formation relates to phase coexistence.

Distinct from the case of proteins, patch models have been used extensively to study the self-

assembly of synthesized anisotropic particles, in addition to their phase separation.23-29 

These studies are fueled by advances in the synthesis of new particles that are anisotropic in 

shape or interactions, as well as the use of particles in applications including electronics and 

drug delivery.30-33 For example, one realization of patchy particles uses DNA to provide 

highly specific interactions,34-37 with recent advances in synthesis allowing for systematic 

design of patch symmetries and size.36,37 The interactions of such patchy particles can be 

further controlled by modifying the length, sequence and number of DNA strands.33

Although the patch models are simplistic, they provide a platform for quantifying the role of 

anisotropic interactions compared to isotropic interactions, an interplay that is clearly of 

importance in both protein and particle solutions, as well as in molecular fluids with highly 

directional interactions, e.g., water and alcohols. Using a lattice-based patch model, Frenkel 

et al.38 identified the critical temperature and critical density for a wide range of both 

isotropic and patch interaction strengths, as well as various locations and numbers of patches 

using both simulations and theory. However, they did not compute the liquid-liquid phase 

coexistence curves nor did they study self-assembly. Roberts and Blanco39 also studied the 

role of anisotropic interactions, but limited their study to the second osmotic virial 

coefficient.
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The interplay of anisotropic and isotropic interactions has broad significance in the study of 

the coupling between phase separation and self-assembly. Dudowicz and coworkers40-42 

have studied this problem in detail within the context of lattice-based linear polymerization 

models. They are able to quantify the competition between phase separation and dynamic 

formation of polymers, a common type of self-assembly process. However, their theory has 

only been developed for molecules having the equivalent of two spots so that only linear 

polymers are formed. If more patches are considered, the resulting molecules self-assemble 

into dynamic, branched polymeric clusters.43-45 This case has received relatively less 

attention in the literature where the coupling between phase separation and self-assembly are 

considered.43,46

To quantify the effects of the relative isotropic to anisotropic interaction strength in the 

context of the practical problem of characterizing protein and patchy particle solutions and 

to fill a gap in the literature regarding the quantification of coupling between phase 

separation and self-assembly for multi-functional particles, we study a five spot patch model 

using both exact Monte Carlo simulations and a renormalized mean-field theory. We expect 

this generic model of multi-particle association to provide insight into the general pattern of 

phase separation and self-assembly in complex fluids; thus, we analyze the phase boundaries 

of these fluids and cluster formation properties including the self-assembly transition lines 

for cluster formation and percolation, energy and entropy of association, size distributions, 

and cluster shapes as a function of the relative interaction strength. Although our analysis of 

the phase boundaries follows the qualitative pattern examined for the two spot case,40-42 the 

extension to multi-functional association, coupled with both simulations and mean-field 

theories leads to many new results in comparison to former work.23-26,40-42,46 Specifically, 

we analytically quantify the relative difference of the simulation and mean-field critical 

temperatures due to fluctuations absent in mean-field descriptions. Additionally, we identify 

a universal function for the average cluster size, inspired by mean-field theories, and explore 

the implications of our results on the interpretation of experimental data.

The paper is organized as follows. In Sec. II, we describe our model of patchy particles, 

simulation techniques and the renormalized mean-field theory. In Sec. III, we present the 

liquid-liquid phase coexistence curves, and in Sec. IV, we present thermodynamic transition 

lines related to the formation of clusters for multiple different relative isotropic to directional 

interaction strengths. We also analyze the cluster size distribution using geometrical 

percolation theory and Flory-Stockmayer theory, and we quantify cluster shape and size 

using the radius of gyration tensor. Finally, we discuss the applicability of our results to 

experimentally realizable quantities in Sec. V, and in Sec. VI, we summarize the main 

findings of our work.

II. METHODS

A. Patchy Particle Model

Our patchy particles consist of spheres with diameter σ that are decorated with five 

completely penetrable, smaller spheres, or patches, of diameter δσ. The smaller spheres are 

arranged in a dipyramid shape with the center of the smaller spheres located at the edge of 
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the larger sphere (see Fig. 1). The large spheres interact with an isotropic square well 

potential:

(1)

where ri is the distant between the centers of the large spheres. The small spheres located on 

different particles interact through a purely attractive square well potential:

(2)

where rp is the distance between the centers of the small spheres. We chose 

, which is the largest size where geometric constraints 

dictate that patchy “bonds” only occur between two, rather than three or more particles; this 

choice allows for comparison with theory. We choose the isotropic range λ = 1.15 consistent 

with the model of Liu et al.5 Since the interactions are attractive and short-ranged, the 

isotropic term can be thought of qualitatively as a van der Waals interaction.

B. Monte Carlo Simulations

For the calculation of the liquid-liquid phase coexistence, we applied the transition matrix 

Monte Carlo (TMMC) method, as described in Ref. 48. TMMC was performed in the grand 

canonical ensemble where the number of particles N varies during the course of the 

simulation. For efficiency, each individual simulation considers only a range of N, 

specifically, from Nmin to Nmax. Due to the computational expense of simulations sampling 

large N, the range of particles is chosen to decrease with increasing Nmin. In particular, Nmin 

= N0n2/3 where N0 is a prefactor, n is the simulation number, and Nmax is chosen such that 

there is an overlap of four values of N, i.e. Nmax = N0(n + 1)2/3 + 4. For example, taking N0 

= 164, simulation numbers 0, 1 and 2 have [Nmin, Nmax] ranges of [0, 168], [164, 264] and 

[260, 345], respectively. Each simulation was run across 12 cores with the particle range 

determined using a similar method. Specifically, for odd processor number p, the range is 

[Nmin + c(p − 1)2/3, Nmin + c(p + 1)2/3 − 1], and for even processor number p, the range is 

[Nmin+(c/2)((p−2)2/3+p2/3), Nmin+(c/2)(p2/3+(p+2)2/3)−1] where c = 0.202(Nmax−Nmin). 

Such a choice allows for a large overlap in order to facilitate equilibration through swaps in 

particle range between processors.

All simulations were initialized without any particles in order to ensure random initial 

configurations and were only limited to their specified ranges once Nmin was achieved. At 

each Monte Carlo step, one of four types of moves were attempted: single particle insertions 

(10 % probability), single particle deletions (10 % probability), single particle rotations 

(40 % probability) or single particle displacements (40 % probability). Every 108 Monte 

Carlo moves, simulations on different cores were allowed to swap their Nmin and Nmax if 
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their N ranges overlapped. The target maximum displacement and maximum rotation angle 

were updated with a target acceptance rate of 50 %. Finally, the probability distributions of 

sampling N particles were updated using data across all 12 cores. Simulations continued 

until each N was visited 25,000 or more times from a different N. Normally, each N was 

visited from a different N close to 107 times for N less than 150 and close to 106 for almost 

all N up to 900, with the exception of the patchy limit ϵi = 0. The probability distributions 

from each simulation were then stitched together by matching the probability distributions at 

the largest N for the simulation with fewer particles, and demanding normalization. Finally, 

reweighting of the chemical potential was used to find the condition where the areas under 

both the low density and high density curves were equal, which was then used to define the 

average density in both the dilute and rich phases.

The corresponding critical point for the liquid-liquid phase separation was estimated using 

fits to the structure factor in the one phase region. Details of this technique can be found in 

the Supplementary Information (SI). Our results agree with standard scaling expressions for 

critical properties of theories that incorporate fluctuation effects by altering the critical 

exponents from their mean field theory values.49

For the one phase region, canonical Monte Carlo simulations were run with a 50 % 

probability of single particle displacement and a 50 % probability of single particle rotation 

at each Monte Carlo step. For densities ρ ≡ N/V < 0.8 σ−3, the initial configuration was 

generated via a grand canonical simulation until the desired density was reached. For ρ ≥ 0.8 

σ−3, this procedure was prohibitively computationally expensive to perform for each 

simulation, so it was performed once to generate a random initial condition that was then 

used for all temperatures and interaction strengths considered. The maximum displacement 

distance and maximum rotation angle were chosen such that moves were accepted roughly 

50 % of the time. After the maximum displacement and maximum angles were determined, 

the simulations were run for 5 × 109 Monte Carlo steps; the first 5 × 108 Monte Carlo steps 

were discarded in order to ensure the equilibration of the system. For calculations of the heat 

capacity, simulations were run for 5 × 1010 Monte Carlo steps, and the first 5 × 109 Monte 

Carlo steps were discarded in analysis. The heat capacity was computed for each 

temperature and density using fluctuations of the potential energy (e.g., (〈U2〉 − 〈U〉2)/

(kBT2)); uncertainty was determined using a standard error analysis.50 The maximum heat 

capacity was estimated by fitting a quadratic function to the heat capacity data in the vicinity 

of the maximum.

All simulations were run using a cubic box size of edge length 10 σ with periodic boundary 

conditions such that the volume V = 1000 σ3. The metrics for clustering only weakly depend 

on box size at this size (see comparison to a smaller box size in the SI). For consistency, the 

same box size was used for the phase separation.

C. Renormalized Mean-Field Theory

To describe our system using theory, we use a statistical associating fluid theory for variable 

range potentials (SAFT-VR)51 and subsequently apply a renormalization technique. In 

SAFT-VR, an approximate theory, the Helmholtz free energy normalized by the number of 

particles is given by
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(3)

where the subscripts id, i and p correspond to the ideal, isotropic square well and patchy 

contributions, respectively. The ideal part of the free energy is given by

(4)

where β ≡ 1/(kBT), kB is Boltzmann’s constant, T is temperature, ρ is the number density, 

and λT is de Broglie’s wavelength.

The isotropic contribution to the free energy, treated using an inverse temperature 

expansion,52,53 is described by a sum of three contributions

(5)

where βfhs is the hard sphere contribution and βfsw,1 and β2fsw,2 are the first and second 

perturbation terms. From Carnahan and Starling54, the hard sphere contribution is 

approximated as

(6)

where the packing fraction ϕ = ρσ3π/6. Following Gil-Villegas et al.,51 the two square well 

contributions are

(7)

and

(8)

where the effective volume fraction is ϕeff = 0.859413ϕ − 0.153391ϕ2 − 0.121318ϕ3 for the 

isotropic range λ = 1.15.

The patch contribution to the free energy, estimated using Wertheim’s thermodynamic 

perturbation theory,55-57 is
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(9)

where Mp is the number of patches and X is the fraction of patches that are non-bonded,

(10)

The patch interaction strength is

(11)

Here, r12 is the distance between two particles, gsw is the reference pair correlation function, 

f(12) = e−βup − 1 is the Mayer f function,58 and 〈f(12)〉ω1,ω2 is the Mayer f function 

averaged over all orientations,

(12)

with S(r) = (δσ+σ−r)2(2δσ−σ+r)/(6σ2r).25 Note that the Mayer f function only includes the 

patch interactions, since the isotropic interactions are contained in the reference pair 

correlation function, gsw(r12), which is approximated by its value at contact, since the range 

of interaction is short. In turn, the contact value, gsw(σ), is approximated as51

(13)

Here, the first term represents the hard sphere radial distribution function and the following 

two terms together yield the  term in the free energy expansion. Note that only a n − 1 

order expansion is required for structural quantities such as g(r) in order to be consistent 

with n order expansion for thermodynamic quantities such as f.51 Using the above 

approximations, the patchy interaction strength simplifies to the form

(14)

where the bonding volume Vb = πδ4 σ3(4δ + 15)/30.

However, it is evident that this theory involves a number of approximations and thus fails to 

recover the correct “theta” temperature Tϴ, or “Boyle temperature,” defined as the 

temperature at which the second osmotic virial coefficient B2 vanishes, i.e., B2(Tϴ) = 0. This 

defect in the analytic theory can be corrected by redefining the isotropic interaction strength 
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so that the theory exactly recovers Tϴ, a basic measure of interparticle interaction. We refer 

to the resulting analytic model as the renormalized mean-field theory (RMFT). Such a 

renormalization also yields an improved estimate of B2 across the full range of temperatures 

(see SI) and should minimize errors due the inverse temperature expansion meaning that the 

main effect of deviations between RMFT and simulation will be due to the mean-field 

approximation rather than other approximations. The need for a theory whose deviations are 

primarily due to only the mean-field approximation will be apparent in Sec. III.

The first step in the renormalization procedure involves determining B2 for the exact model 

and the approximate theory. In particular, B2 can be exactly computed for our model using 

the Mayer cluster formalism59

(15)

where r12 is the distance between the center of mass of the two particles, Ωj is the 

orientation of particle j, u is the total potential energy including both isotropic and patch 

contributions. Evaluating the above quantity yields

(16)

with  representing the hard sphere virial. For the approximate liquid state theory 

described above, B2 can be computed by expanding the compressiblity factor in density and 

taking the coefficient of the first order term. Such a calculation results in the relation

(17)

The second step in the renormalization procedure involves determining the renormalized ϵi, 

 for ϵi ≠ 0. For clarity, we switch to energy and temperature scales relative to the patch 

energy ϵp. Next, we compute the exact, analytic value of Tϴ for a given ϵi. We then 

determine a renormalized value of , by requiring  exactly. Then  is 

used in place of ϵi within the theory to yield the renormalized mean-field theory (RMFT). 

This procedure ensures that the mean-field theory produces the correct theta temperature for 

our molecular model. The dependence of  on ϵi is shown in the SI.

Using the above theory, the critical point is determined by simultaneously requiring ∂3(ρf)/
∂ρ3 = 0 and ∂2(ρf)/∂ρ2 = 0. The phase coexistence is determined by minimizing the total free 

energy density of the system, i.e., ρT fT = (ρT − ρ2)/(ρ1 − ρ2)ρ1f(ρ1) + (ρT − ρ1)(ρ2 − 

ρ1)ρ2f(ρ2) with respect to ρ1 and ρ2 subject to 0 ≤ ρ1 ≤ ρT and ρT ≤ ρ2 ≤ 6/(πσ3). ρT is the 

initial concentration and always chosen to be the critical density. This procedure is a Gibbs 

Audus et al. Page 8

J Chem Phys. Author manuscript; available in PMC 2017 February 21.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



ensemble formulation60 and is equivalent to requiring that the chemical potentials and 

pressures are equal in both phases.

For conciseness, we define energy and temperature scales relative to the patch energy 

strength ϵp, and lengths relative to the hard sphere diameter σ for the remainder of the paper.

III. PHASE SEPARATION

Prior to investigating self-assembly, we determine the location of the liquid-liquid phase 

coexistence curves as a function of the isotropic interaction strength ϵi, where ϵi is in 

reduced units and thus represents the relative isotropic to directional interaction strength. In 

Fig. 2, we show the phase boundaries obtained by Monte Carlo simulation and renormalized 

mean-field theory (RMFT). In both cases, the critical density ρc and temperature Tc shift to 

smaller values with decreasing ϵi, although the shift is more pronounced for the analytic 

theory. A prior study24 on the numbers of patches in the ϵi = 0 limit found that the critical 

density decreases with decreasing number of patches and becomes zero in the two spot 

case.24 In this sense, making the number of patches large qualitatively corresponds to an 

isotropic potential, so the trend for ρc and Tc with increasing ϵi is consistent with the earlier 

work. Additionally, the non-zero critical density for patch numbers greater than two is 

fundamentally different than the two spot case where only linear chains can form. Previous 

work has attributed shift to a constant non-zero ρc in the ϵi = 0 limit to the presence of 

cooperative interactions due to competitive equilibria.61

It is apparent from Fig. 2 that the RMFT becomes an increasingly accurate description of the 

simulation data for small values of ϵi. In order to explore this further, we plot the critical 

temperatures for both simulation Tc,sim and RMFT Tc,RMFT along with the theta temperature 

Tϴ in Fig. 3a. As mentioned in Sec II, the Tϴ corresponds to the temperature at which the 

second osmotic virial coefficient B2 = 0. Examples of B2 as a function of temperature for 

different values of ϵi can be found in Fig. 3b. Due to the renormalization technique 

employed in the RMFT, the Tϴ for both the simulation and RMFT is equal, by definition 

(see Eq. 16). Due to critical fluctuation effects, which are absent in RMFT (as well as all 

analytic theories of phase separation in three dimensions), we would expect deviations 

between Tc,RMFT and Tc,sim. However, these deviations, surprisingly, almost vanish as the 

purely patchy limit is approached (i.e., small ϵi). This striking effect, that fluctuation effects 

are weak in the patchy limit, is apparent in former simulations but has not been explained 

previously.24,62 In the patchy limit, ϵi = 0, the ratio of Tϴ to Tc approaches a constant that is 

greater than 1, the limit for long permanent homopolymers.

In order to quantify the critical fluctuation effects as a function of ϵi, we plot the ratio of 

Tc,sim to Tc,RMFT (Fig. 3c). In the limit that ϵi → ∞, we expect this ratio to be less than 1 

and comparable to the corresponding estimate for the Ising model in three dimensions with a 

nearest neighbor interactions, Tc,sim/Tc,RMFT = 0.752.63,64 This ratio is nearly independent 

of lattice64 suggesting its applicability off-lattice fluids. Further, an expansion of Tc,sim/
Tc,RMFT in terms of the lattice coordination number q yields,65-67
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(18)

We can translate Eq. 18 into a corresponding result for an off-lattice fluid by calculating the 

B2 of a lattice fluid, as well as that of a square well fluid in the continuum. Direct 

correspondence implies that q in the lattice model corresponds to the dimensionless 

interaction range variable λ of the square well potential, i.e., q ∝ λ3 − 1.67-69 Thus, we have

(19)

where we take a0 to be a constant that exactly recovers the nearest-neighbor Ising result in 

the limit ϵi → ∞. For λ = 1.15, this condition implies a0 = 0.129 by consistency. Since λ3 

− 1 can be taken as the prefactor to (eβϵi − 1) in B2 (Eq. 16), B2 can also be used to 

determine an effective range parameter  ; for any ϵi by following the same principle,

(20)

We also need the temperature, which we chose to be Tc,RMFT, in order to fully specify 

. Combining this information with the value of a0 from our continuum potential model 

and Eq. 19 with the replacement of λ by  allows for a prediction of Tc,sim/Tc,RMFT, using 

only system parameters and RMFT. Fig. 3c shows the resulting prediction as a dotted line. 

There seems to be a constant shift of ≈ 0.03 between our theoretical estimates and measured 

ratios, but this discrepancy is likely due to the inherent approximations of the RMFT. Given 

these approximations, we view the similarity of the results as quite encouraging. 

Additionally, the analysis indicates that RMFT works better at smaller values of ϵi because 

the effective coordination number of the intermolecular interaction increases as ϵi decreases, 

an effect that is naturally associated with large clustering near the critical point. We 

emphasize that this prediction requires no knowledge from simulation. Thus, it can be used 

to estimate the phase boundaries with fluctuations based on only RMFT. Of course, separate 

arguments will have to be considered to estimate the correct critical density with fluctuation 

effects included.

IV. SELF-ASSEMBLY

A. Self-assembly transition lines

In addition to phase separation, due to their patchy nature, our particles form dynamic 

clusters upon cooling, where clusters are uniquely defined through associative patchy 

interactions. In our case, clusters can be defined without the introduction of a cut-off 

distance, since the patchy potential is prescribed by a square well interaction. Fig. 4 

illustrates examples of different clusters obtained from simulation. It is clear that the clusters 
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resemble highly branched polymers. They also contain multiple branch points and loops, 

and form and disintegrate in dynamic equilibrium. Prior to quantifying the cluster 

distributions and sizes of these clusters, we first consider two metrics that can be used to 

define polymerization transition lines governing the self-assembly, as opposed to the liquid-

liquid phase separation boundaries. As this process of self-assembly does not involve 

discontinuities in any of the derivatives of the free energy, these polymerization transition 

lines highlight the progress of self-assembly, rather than a phase transition proper. 

Nonetheless, it has been shown that the polymerization transition lines for linear polymers 

can be described as a line of “rounded,” thermodynamic transitions70,71 that can be 

mathematically described by an interacting spin model with an applied magnetic field 

controlling the degree of “rounding” or “cooperativity”.72 We expect that a similar situation 

is true for our branched polymeric clusters.

The first metric for describing the emergence of self-assembly is the extent of particle 

cluster formation Φ, also referred to as the extent of polymerization. Φ is defined as the 

average fraction of particles that are in clusters, as opposed to being in a monomeric state, 

which is given by 1 − Φ. This quantity represents an order parameter for the self-

assembly.40-42 Simulation results for Φ are plotted as points in Fig. 5a for ϵi = 0.1, various 

temperatures and various densities. When either the temperature is lowered or the density is 

increased, Φ, and thus the number of particles in clusters, increases. Since the predictions for 

Φ as a function of T from RMFT do not exactly overlap with the simulation data, we use the 

functional form from RMFT to obtain accurate estimates for Φ at intermediate temperatures. 

Specifically,

(21)

where X is the probability that a patch is not bonded and is given analytically by Eq. 10; 

thus 1 − X5 is the probability that there is at least one bonded patch. The exponent 5 

signifies the number of patches per particle. Combining the relation between Φ and X (Eq. 

21), the relation between X and Δ (Eq. 10), and the expression for Δ (Eq. 14) yields the 

functional form for RMFT,

(22)

with the parameters aΦ and bΦ defined exactly within RMFT given both ϵi and ρ. Since the 

theory does not match the simulations exactly, we let aΦ and bΦ become fitting parameters. 

Note that bΦ is exactly 0 for the case of ϵi = 0, and thus it is not used as a fitting parameter 

in this limit. As can be seen from Fig. 5a, this procedure provides an excellent fit to the 

simulation data.

In order to characterize the assembly process, we also identify the thermodynamic 

conditions at which percolating, or system spanning clusters become significant in our 

simulations. Following standard arguments of simple geometrical percolation theory,73 we 
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consider the probability that one or more clusters of associated particles percolate across the 

simulation box at any given time during the course of the simulation as our second metric 

for self-assembly. Note that unlike simple geometrical percolation theory, clusters are 

defined through patch interactions rather than proximity. The resulting percolation 

probability is plotted as points in Fig. 5b for ϵi = 0.1. The data at low temperatures is cut-off 

due to intersection with the phase coexistence curves. The lines are fits assuming that the 

distribution follows 1/2(1 − erf[(T − ΔT)/w] where ΔT and w are fitting parameters that are 

dependent on the density.73 As simulation box size increases, these curves in Fig. 5b should 

approach Heaviside step functions in the thermodynamic limit; however, finite size effects 

cause a rounding of this transition.73 Fortunately, the temperature at which the probability of 

percolation, pperc, equals 1/2 denoted by Tpperc=1/2 is only slightly sensitive to the simulation 

box size (see SI for details), and thus, Tpperc=1/2 can be used with minimal concern regarding 

finite size effects. Interestingly, when pperc = 1/2, Φ varies only slightly, ranging from 0.83 

to 0.89 suggesting that knowledge of Φ alone may serve as a rough criterion for describing 

the state of self-assembly. This point will be explored extensively below.

These metrics are then used to define polymerization transition lines, which in turn define 

the continuous process of particles associating into polymeric structures. For a given density 

and ϵi, the temperatures at which Φ = 1/2, ∂2Φ/∂T2 = 0 (inflection point) and pperc = 1/2 

define polymerization transition lines. These transition lines are denoted as TΦ=1/2, TΦ, infl 

and Tpperc=1/2, respectively. Fits to the simulation data, such as that in Fig. 5a, is used to 

identify the transition lines based on Φ, while linear interpolation is used for the transition 

lines based on pperc. These transition lines are represented by points in Fig. 6 for various 

values of ϵi. For comparison, estimates of the phase boundaries from simulation (see Fig. 2) 

are shown as dashed lines. Theoretical Φ based transition lines are computed with RMFT, 

since Φ = 1 − X5 with X given by Eq. 10. Interestingly, there is a cross over point in these 

transition lines for different values of ϵi at densities around 0.75. In RMFT, Φ is calculated 

directly from X, and the only dependence on ϵi occurs in the reference radial distribution 

function. At the observed crossover point in RMFT where Φ does not depend on ϵi, the 

square well contributions to the reference radial distribution function perfectly cancel such 

the the radial distribution function is equal to the hard sphere radial distribution function (see 

Eq. 13 noting that the first term is the hard sphere contribution).

The maximum in the heat capacity is also used as a metric for self-assembly and is directly 

determinable via experiments. Thus, this metric is shown in Fig. 6 for both simulations and 

RMFT. For the simulations, it is difficult to determine precise values of the maximum heat 

capacity, and based on our fits, we estimate the uncertainty to be roughly twice the symbol 

size. Note that the RMFT for the maximum heat capacity deviates from the simulation data 

much more than in the case of Φ based transition lines for reasons that are not clear.

Together, the four polymerization transition lines displayed in Fig. 6 provide a 

characterization of the self-assembly present in our system. Specifically, at very high 

temperatures all of the particles are in a monomeric state. Then, as the temperature lowers, 

they start to form dynamic, branched, polymeric clusters with exactly half of the particles in 

clusters on average at TΦ=1/2. As the temperature continues to lower, the clustering speeds 

up until TΦ,infl is reached. Eventually, system spanning clusters form at Tpperc=1/2, which 
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occurs at even lower temperatures. Finally, a maximum in the heat capacity is observed at 

significantly lower temperatures assuming that phase separation did not occur first. 

Compared to the two spot model, the difference between TΦ=1/2 and TΦ,infl is much 

greater,25 which could be predicted a priori given the RMFT.

Perhaps the largest effect of ϵi is in the relative locations of the polymerization transition 

lines compared to the phase separation curves. When the patch strength is much stronger 

than the isotropic strength, the region in which clustering occurs is significantly larger and 

extends to lower densities. This trend holds regardless of the temperature reference used (see 

SI for details).

B. Entropy and energy

In addition to determining the location of relevant transition lines, we determine entropy and 

energy of association using the RMFT and values for Φ, and thus X, from simulation. 

Specifically, a rearrangement of Eq. 10 yields a chemical equilibrium form of the formation 

of bonds between two particles, which can then be used to identify an equilibrium constant 

Kb as in Ref 25.

(23)

In turn, Kb can be used to extract both the energy ΔU and entropy ΔS via the Helmholtz free 

energy ΔF for the formation of the bonds between two particles,

(24)

Using the same functional form as the RMFT (see Eq. 22), the functional form of the 

equilibrium constant is

(25)

Here aΦ and bΦ are parameters that are uniquely determined within the RMFT by ρ and ϵi. 

Assuming that e1/T >> 1, which should hold for temperatures that are low enough to observe 

self-assembly, this term can be approximated by e1/T allowing for the determination of both 

the energy and the entropy via thermodynamic definitions. The limit where aΦ >> bΦϵi/T 
permits the further approximations:

(26)
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(27)

Although this further approximation is not yet justified, its value will become apparent. By 

combining Eqs. 23, 24, 26, and 27, we find

(28)

The above expression can be simplified by recasting ln aΦ + ln ρ in terms of TΦ=1/2 (by 

plugging both T = TΦ=1/2 and X = 1 − Φ1/5 = 1 − (1/2)1/5 into Eq. 28 and solving for ln aΦ + 

ln ρ). Plugging this result back into Eq. 28 yields the simple form:

(29)

This functional form allows for the identification of both the energy and the entropy through 

the use of an Arrhenius plot (see Fig. 7). In particular, the entropy of association becomes

(30)

where TΦ=1/2 is density dependent and the ln (21/5(21/5 − 1)) term must be modified for a 

different choice of Mp. The points are simulation results determined using MpρΔ = (1 − 

X)/X2 and the line is generated using Eq. 29. Due to the quality of the fit, we can confirm 

the consistency of the approximations and that a general graph of MpρΔ versus 1/T can be 

used to extract both the energy through the negative of the slope of such a graph and the 

entropy. The implications of this scaling for the interpretation of experimental data is 

discussed in Sec. V.

C. Quantifying cluster size and shape

Having identified the entropy and energy of association and thermally reversible 

polymerization transition lines, in addition to the phase boundaries, we now focus on the 

cluster distributions, as well as the cluster sizes and shapes under different thermodynamic 

conditions from our simulations. In Fig. 8, we show the distribution p(M) of clusters of size 

M for a wide range of temperatures, densities, and ϵi for state points above the percolation 

transition line. In order to characterize these distributions, we make use of two different 

theories. The first is a scaling framework that assumes the applicability of geometrical 

percolation theory to our dynamically associating particles;73 the second is Flory-

Stockmayer74,75 mean-field theory.
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For non-percolating systems, the probability distribution for observing clusters of size M 
within geometrical percolation theory is given by

(31)

where μ represents a metric of size, and τ represents the power law associated with the 

distribution. In Eq. 31, Li is the polylogarithm function and results from normalization so 

that the sum of p(M) over all values of M equals 1. Treating τ and μ as free parameters, the 

fits using geometrical percolation theory are shown as solid lines in Fig. 8. Within 

geometrical percolation theory, the probability distribution function formally applies up to 

the percolation transition, at which point μ diverges and the probability distribution becomes 

a power law. However, this approach requires two fitting parameters and the variation of the 

fitting parameters is not known a priori, since geometrical percolation theory is based on a 

different type of percolation than observed in our system. Thus, we also consider the 

applicability of the mean-field theory of Flory and Stockmayer.74,75

Within Flory-Stockmayer theory, the probability distribution for observing clusters of size M 
is given by

(32)

This equation assumes that no loops are formed, an assumption that clearly becomes invalid 

at even moderate cluster sizes (loops can be clearly seen in Fig. 4) and that the percolation 

has not yet been reached. The later assumption is quantified within the theory by requiring X 
be larger than its value at percolation, 3/4. Since X is directly related to Φ (see Eq. 21), the 

Flory-Stockmayer cluster distributions can be generated from knowledge of Φ from the 

simulations and thus requires no fitting parameters. These predictions are shown in Fig. 8 as 

dashed lines. Despite the fact that the assumptions for Flory-Stockmayer do not apply for 

small M, the predictions are in good agreement with the simulations, suggesting that Flory-

Stockmayer theory may be used to gain further insight into the system regardless of its 

approximate nature. The highly attractive feature of Flory-Stockmayer theory is that it can 

roughly reproduce the correct distribution with minimal information. Specifically, since 

there is only one parameter, this parameter can be determined through knowledge of only the 

average cluster size 〈M〉 (see Eq. 33) meaning that a good estimate of p(M) can be 

determined from a single experimental measurement.

We also explore the shape of the branched, polymeric clusters from our simulations. We do 

not include system spanning clusters, since they are, for a periodic system, infinite clusters. 

As can be seen in Fig. 9, the radius of gyration Rg scales as M to a power near ν ≈ 1/2 for a 

wide range of conditions, including different temperatures, densities and ϵi. This means that 

the fractal dimension of the non-percolating clusters df = 1/ν ≈ 2, which is the known value 

for lattice animals,76 but distinct from geometrical percolation clusters where the fractal 
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dimension is near 2.5.73 Lattice animals are in the same universality class as branched 

polymers swollen by excluded volume interactions, while geometrical percolation clusters 

are in the same universality class as branched polymers with screened excluded volume 

interactions or at their theta point.77 This suggests that our clusters are in the swollen, 

branched polymer universality class. For comparison, the mass scaling exponent for the 

mean-field Flory-Stockmayer theory is 1/4, reflecting the mean-field nature of this model 

and the large upper critical dimension of 8, above which excluded volume interactions can 

be neglected.73 Evidently, configurational fluctuations lead to large deviations from mean-

field predictions regarding polymer size.

To further quantify the shapes of the clusters, we compute the ratios of the average values of 

the eigenvalues of the radius of gyration tensor for the same clusters, shown in Fig. 9. We 

label the eigenvalues, λi such that λ1 ≤ λ2 ≤ λ3. Note that by definition  or, 

equivalently, . The ratios are plotted in Fig. 10. For perfectly isotropic clusters both 

ratios, λ3/λ1 = λ2/λ1 = 1. Small clusters are highly anisotropic, but this is not surprising 

given that two of the eigenvalues are zero for a dimer. As the cluster size increases, the ratios 

asymptote to a result near the expected value for lattice animals, rather than geometrical 

percolation clusters.78 This finding is consistent with our analysis of the fractal dimension. 

However, for clusters with very large masses, it is reasonable to expect that the excluded 

volume interactions would be screened, implying that the scaling exponent should approach 

that of geometrical percolation clusters due to screening of excluded volume interactions. 

Finite size limitations do not permit a definite conclusion regarding such a trend.

D. Universal descriptors of cluster size

Having quantified cluster size distributions, as well as the cluster sizes and shapes from 

simulation, we investigate the average cluster size 〈M〉, which we plot as a function of 

density for various temperatures in Fig. 11a. We observe larger average cluster sizes both at 

lower temperatures and higher densities. Such trends follow intuition and qualitatively 

accord with experimental results for the average size of lysozyme clusters.21 If we plot 〈M〉 
as a function of the order parameter Φ instead of density, 〈M〉 for all densities, temperatures 

and ϵi above the percolation transition line roughly follow a master curve as can be seen in 

Fig. 11b. Using Flory-Stockmayer theory, this relationship equals79

(33)

where X is determined by Φ = 1 − X5. This relation is expected to hold for X > 3/4 or 

equivalently, Φ ≤ 0.763. As can be seen from Fig. 11b, Flory-Stockmayer theory agrees 

nearly perfectly with our simulation results within the range in which it is applicable. A 

linear plot can also be generated by plotting 1/〈M〉 versus X as shown in the SI. For larger 

values of Φ, the relation breaks down, due to both the formation of percolating clusters and 

the presence of loops.
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We now explore if we can obtain a universal description of the T dependence of 〈M〉. 
Inspired by the Arrhenius description, which clearly links 〈M〉, and thus X, to T, we plot 

〈M〉 as a function of 1/T − 1/TΦ=1/2 in Fig. 12 yielding a master curve. This master curve 

follows the expected function, shown as a black line. The function is determined by solving 

Eq. 29 for X and then plugging the result in Eq. 33. Small deviations at larger values of 1/T 
are due to the breakdown of the Flory-Stockmayer relation (Eq. 33).

Similar to the universal 1/T − 1/TΦ=1/2 dependence of 〈M〉, we consider if the characteristic 

cluster size parameter μ from percolation theory (see Eq. 31) also has a master curve (the 

inset to Fig. 12). Here the data reduction is not a true master curve, as there are small but 

systematic deviations for different interaction strengths. To provide an approximate analytic 

form for the T dependence of μ and 〈M〉 that would be valuable for describing experimental 

data, we again turn to the Flory-Stockmayer theory, since, despite its deficiencies, it is able 

to provide physical insight into the cluster size distribution and cluster size average. 

Specifically, in the large M limit Flory-Stockmayer theory reduces to the closed form:

(34)

Comparing the above equation with the probability distribution expected from geometrical 

percolation theory (see Eq. 31), one finds the Flory-Stockmayer result corresponds to τ = 5/2 

and

(35)

Although Flory-Stockmayer predicts τ = 5/2, our fits indicate that it ranges from roughly 1.7 

to 2 for T > TΦ=1/2, which is consistent with the expected range for lattice animals,78,80 but 

different from τ = 2.18, the expected value from geometric percolation theory estimate for 

randomly placed non-interacting particles.73 Thus, in our quantification of the relationship 

between μ and temperature, we consider only the functional form for μ suggested by Flory-

Stockmayer theory. Accordingly, we let ln(27/256) become a fitting parameter y and find 

that a fit of − ln(X3(1 − X)) versus 1/μ yields y = −2.146 ± 0.003, as compared to the Flory-

Stockmayer prediction of −2.249. The results of this fit, which relate μ to X can then be 

combined with the relationship between X and 1/T − 1/TΦ=1/2 to yield the black line in the 

inset of Fig. 12. This fit is due to only one fitting parameter (i.e., y). For comparison, we plot 

the Flory-Stockmayer relationship without the fitting parameter y as a dashed line. Clearly, 

the fit yields a significantly improved prediction. However, this fit will breakdown 

completely for values of μ that are much larger (Φ ≤ 0.76), since Flory-Stockmayer theory 

breaks down before the percolation transition line is reached. Nonetheless, within the range 

plotted in the inset of Fig. 12, the fit is rather impressive.

These comparisons of Flory-Stockmayer theory with geometrical percolation theory can 

provide insight into how our system relates to geometrical percolation. Overall, the 
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combination of Flory-Stockmayer theory and geometrical percolation theory allow for an 

understanding of master-like curves for two different metrics of cluster size (〈M〉 and μ). 

Additionally, we can conclude that the properties of the clusters at temperatures above the 

percolation transition line are independent of ϵi and can be quantified. Thus, the main effect 

of ϵi is to control the value of Φ for a given temperature and density, which then specifies all 

the cluster properties.

V. THEORETICAL FRAMEWORK FOR CHARACTERIZING SELF-

ASSEMBLING SYSTEMS

In the previous section, we introduced a simple form of the average cluster size 〈M〉 and 

expressions for extracting the energy and entropy of association that are applicable to 

particles exhibiting multi-functional association. We now show how this framework can be 

adapted to allow for the determination of the energy and entropy from experimental 

measurements. Specifically, an Arrhenius plot such as that in Fig. 7 can be now generated 

using the experimental molecular weight. The relationship between 〈M〉 (number average 

molecular weight) and X and between X and MpρΔ in principle allows for the generation of 

an Arrhenius plot. However, in practice, it is typically the weight averaged molecular weight 

Mw that is measured experimentally. In particular, static light scattering coupled with the 

assumption of a fractal dimension of 2 (required for consistency with our results) can be 

used to extract Mw in a dynamically associating system.81,82 However, an Arrhenius plot, 

such as that in Fig. 7 can still be generated by linking Mw to X, which is straightforward 

within Flory-Stockmayer theory. For five spots, the y-axis is defined by the relation:

(36)

which, when plotted as a function of 1/T, should be linear. However, in general the number 

of spots may not be five. Thus, the above expression can be generalized and the linearity of 

such a plot can be used to identify the effective number of spots in the system:

(37)

Once the effective number of spots is determined, the energetic and entropic parameters can 

be extracted. Specifically, the slope of the line in the Arrhenius plot yields the energy of 

association, while the intercept yields the entropy of association divided by kB. Note that the 

discussion in Sec. IV B uses simulation, rather than experimental units. The entropy can also 

be used to extract the transition temperature TΦ=1/2 using a generalization of Eq. 30 to an 

arbitrary number of spots. A full discussion of the extension of the above framework to an 

arbitrary number of spots will be the subject of a future paper. Thus, using only average 

molecular weight data for various temperatures and initial concentrations, the effective 

number of spots, the energy of association, the entropy of association as a function of 
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density, the transition temperature TΦ=1/2 as a function of density, and the rough cluster size 

distribution (assuming Flory-Stockmayer theory) can all be determined.

The above analysis hinges on the definition of clusters defined solely on basis of the patch 

interactions rather than the isotropic interaction. However, our choice is reasonable because 

the value of the structure factor at small wavevectors, which is related to the molecular 

weight, increases as the temperature drops below the transition lines. Such a change in the 

structure factor is not observed if transition lines are defined using isotropic rather than 

patch interactions, confirming the validity of our choice.

Additionally, in principle, relevant physical quantities can be extracted from the 

determination of the second osmotic virial coefficient B2 as a function of temperature. 

Specifically, the patch size, isotropic well depth ϵi and range of the isotropic interaction λ 
can be determined. However, the experimental system must be at conditions, such as high 

salt concentration, where the dominant isotropic interactions are short ranged and where 

only unassociated proteins or particles are present.

VI. CONCLUSIONS

Using both simulations and a renormalized mean-field theory (RMFT), we identify phase 

coexistence curves of five patch particles with an additional isotropic interaction for a wide 

range relative interaction strengths. Although RMFT overpredicts the critical temperature for 

larger values of isotropic interaction strength ϵi, we predict this overestimate using only 

information from the RMFT and information from the purely isotropic case. Specifically, we 

find that the effective coordination number is larger for larger values of ϵi, which explains 

why the mean-field model, RMFT, performs better in this limit. The prediction also allows 

for better estimates of phase boundaries using only RMFT. Additionally, we use three 

different metrics, the extent of clustering, percolation probability and heat capacity, to define 

polymerization transition lines that delineate the phase diagram into characteristic regions. 

We also find that the largest effect of the isotropic interactions was on the relative location of 

the phase separation boundaries relative to the clustering transition lines, with the largest 

regions of clustering occurring for the smallest values of ϵi.

We provide a method for extracting the energy and entropy of association, and we analyze 

the cluster size distributions, sizes and shapes for different densities, temperatures and 

interaction strengths. Cluster size distributions and related quantities are explored in the 

context of two different theories, Flory-Stockmayer and geometrical percolation theory, both 

of which yield different information. Using the radius of gyration tensor, we determine that 

the clusters are like lattice animals—they have a fractal dimension of two and are anisotropic 

with roughly the expected ratios of average eigenvalues for the radius of gyration tensor. 

Since lattice animals are in the same class as swollen, randomly branched polymers, the 

clusters formed can be thought of as equilibrium, swollen, branched polymers. Finally, we 

identify a master curve for average cluster size and a master-like curve for the cluster size 

parameter from geometrical percolation theory. By combining knowledge from RMFT, 

Flory-Stockmayer theory and geometrical percolation theory we quantify the curves using 

no fitting parameters for the average cluster size and a single fitting parameter for the cluster 
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size parameter from geometrical percolation theory. Consequently, cluster shape, size and 

distributions within the clustering regions are controlled primarily by the extent of 

clustering, Φ, rather than the temperature, density or interaction strength directly.

We expect that our results will provide insight into clustering phenomena in general both in 

the protein and colloidal contexts, since we provide frameworks in which to quantify 

observed clustering and, thus, make predictions about the system as discussed in detail in 

Sec. V.
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FIG. 1. 
Monomer with location of five spots shown. Lines emphasize the geometry. This image was 

made with VMD software support.47
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FIG. 2. 
Phase coexistence curves for both simulation and renormalized mean-field theory (RMFT) 

for different interaction strengths (ϵi). Simulation critical points are estimated from analysis 

of scattering data coupled with rectilinear diameters. Dashed lines are only for guidance.
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FIG. 3. 
(a) Theta temperature for the model along with critical temperatures for both simulation 

Tc,sim and renormalized mean-field theory (RMFT) Tc,RMFT. (b) The second osmotic viral 

coefficient B2 for various interaction strengths (ϵi). (c) Ratio of Tc,sim to Tc,RMFT from 

simulations. The dotted line corresponds to an estimation of the critical fluctuation effects as 

described in the text.
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FIG. 4. 
Example clusters of various sizes. This image was made with VMD software support.47
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FIG. 5. 
(a) The order parameter Φ and (b) the probability of percolation pperc as a function of 

temperature for densities ranging from 0.1 to 0.9. The interaction strength ϵi is 0.1. Points 

are simulation data, and lines are fits that are detailed in the text.

Audus et al. Page 28

J Chem Phys. Author manuscript; available in PMC 2017 February 21.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 6. 
(a) Metrics for clustering transitions for both simulation (points) and renormalized mean-

field theory (solid lines). Dashed lines represent rough estimates of phase boundaries. 

Interaction strengths considered are ϵi = 0, 0.1, 0.2, 0.3 and 0.4 with the lowest data 

representing ϵi = 0. (b) Values for only ϵi = 0 for clarity.
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FIG. 7. 
An Arrhenius plot to illustrate the ability to extract the energy and entropy of self-assembly. 

Points are simulation data, and the line is derived in the text.
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FIG. 8. 
Cluster size distributions for various parameters from simulations (points). Dashed lines are 

predictions from Flory-Stockmayer theory given the value of the order parameter and solid 

lines are fits from geometrical percolation theory.
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FIG. 9. 
Radius of gyration for various parameters (symbols are the same as Fig. 8). System spanning 

clusters were not considered and at least five samples were required for averages.
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FIG. 10. 
Ratios of average eigenvalues of the radius of gyration tensor for various parameters 

(symbols are the same as Fig. 8). The eigenvalues are sorted by magnitude such that λ1 ≤ λ2 

≤ λ3. System spanning clusters were not considered and at least five samples were required 

for averages.
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FIG. 11. 
(a) The average cluster size for various temperatures as a function of density from 

simulations. The interaction strength was chosen to be ϵi = 0.1. (b) Average cluster size as a 

function of the order parameter from simulations. The line is the prediction from Flory-

Stockmayer theory, does not include any fitting parameters. The extension of the line beyond 

its validity of Φ ≤ 0.763 is in gray.
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FIG. 12. 
(a) Average cluster size and (b) the fitting parameter μ in geometrical percolation theory as a 

function of inverse temperature minus the inverse of the Φ = 1/2 polymerization transition 

temperature for all densities, temperatures and ϵi above the percolation transition. Points 

correspond to simulation data. The solid lines describe the shape of the master and master-

like curves, while the dashed line represents the Flory-Stockmayer prediction of μ without 

any fitting parameters (see text for details). The line in gray denotes an extension of the 

curve beyond its range of validity.
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