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Abstract

We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models 

that provides multivariate generalizations of univariate exponential family distributions. Previous 

multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the 

exponential and Poisson generalizations. However, in many real-world datasets, variables clearly 

have positive dependencies. For example, the airport delay time in New York—modeled as an 

exponential distribution—is positively related to the delay time in Boston. With this motivation, 

we give an example of our model class derived from the univariate exponential distribution that 

allows for almost arbitrary positive and negative dependencies with only a mild condition on the 

parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. 

Our Poisson generalization allows for both positive and negative dependencies without any 

constraints on the parameter values. We also develop parameter estimation methods using node-

wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. 

Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world 

dataset of airport delay times.

1. Introduction

Gaussian, binary and discrete undirected graphical models—or Markov Random Fields 

(MRF)—have become popular for compactly modeling and studying the structural 

dependencies between high-dimensional continuous, binary and categorical data respectively 

(Friedman et al., 2008; Hsieh et al., 2014; Banerjee et al., 2008; Ravikumar et al., 2010; 

Jalali et al., 2010). However, real-world data does not often fit the assumption that variables 

come from Gaussian or discrete distributions. For example, word counts in documents are 

nonnegative integers with many zero values and hence are more appropriately modeled by 

the Poisson distribution. Yet, an independent Poisson distribution would be insufficient 

because words are often either positively or negatively related to other words—e.g. the 

words “machine” and “learning” would often co-occur together in ICML papers (positive 

dependency) whereas the words “deep” and “kernel” would rarely co-occur since they 
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usually refer to different topics (negative dependency). Thus, a Poisson-like model that 

allows for dependencies between words is desirable. As another example, the delay times at 

airports are nonnegative continuous values that are more closely modeled by an exponential 

distribution than a Gaussian distribution but an independent exponential distribution is 

insufficient because delays at different airports are often related (and sometimes causally 

related)—e.g. if a flight from Los Angeles, CA (LAX) to San Francisco, CA (SFO) is 

delayed then it is likely that the return flight of the same airplane will also be delayed. Other 

examples of non-Gaussian and non-discrete data include high-throughput gene sequencing 

count data, crime statistics, website visits, survival times, call times and delay times.

Though univariate distributions for these types of data have been studied quite extensively, 

multivariate generalizations have only been given limited attention. One basic approach to 

forming dependent multivariate distributions is to assume that the marginal distributions are 

exponentially distributed (Marshall & Olkin, 1967; Embrechts et al., 2003) or Poisson 

distributed (Karlis, 2003). This idea is related to copula-based models (Bickel et al., 2009) in 

which a probability distribution is decomposed into the univariate marginal distributions and 

a copula distribution on the unit hypercube that models the dependency between variables. 

However, the exponential model in (Marshall & Olkin, 1967; Embrechts et al., 2003) gives 

rise to a distribution that is composed of a continuous distribution and a singular distribution, 

which seems unusual and unlikely for general real-world situations. The multivariate 

Poisson distribution (Karlis, 2003) is based on the sum of independent Poisson variables and 

can only model positive dependencies. The copula versions of the multivariate Poisson 

distribution have significant issues related to non-identifiability because the Poisson 

distribution has a discrete domain (Genest & Neslehova, 2007). There has also been some 

recent work on semi-parametric graphical models (Liu et al., 2009) that use Gaussian 

copulas to relax the assumption of Gaussianity but these models are not parametric and only 

consider continuous real-valued data.

Another line of work assumes that the node conditional distributions—i.e. one variable given 

the values of all the other variables—are univariate exponential families1 and determines 

under what conditions a joint distribution exists that is consistent with these node 

conditional distributions. Besag (1974) developed this multivariate distribution for pairwise 

dependencies, and Yang et al. (2015) extended this model to n-wise dependencies. Yang et 

al. (2015) also developed and analyzed an M-estimator based on ℓ1 regularized node-wise 

regressions to recover the graphical model structure with high probability. Unfortunately, 

these models only allowed negative dependencies in the case of the exponential and Poisson 

distributions. Yang et al. (2013) proposed three modifications to the original Poisson model 

to allow positive dependencies but these modifications alter the Poisson base distribution or 

require the specification of unintuitive hyperparameters. Allen & Liu (2013) allowed 

positive dependencies by only requiring the Local Markov property rather than a consistent 

joint distribution that would have Global Markov properties. In a different approach, Inouye 

et al. (2015) altered the Poisson generalization by assuming the length of the vector is fixed 

or known similar to the multinomial distribution in which the number of trials is known. 

1See (Wainwright & Jordan, 2008) for an introduction to exponential families.
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This allows a joint distribution that is decomposed into the marginal distribution of vector 

length and the distribution of the vector direction given the length. While the model in 

(Inouye et al., 2015) allowed for both positive and negative dependencies, the joint 

distribution needed to be modified by an ad hoc scalar weighting function to avoid very low 

likelihood values for vectors of long length—i.e. documents with many words.

Therefore, we develop a novel parametric generalization of univariate exponential family 

distributions with non-negative sufficient statistics—e.g. Gaussian, Poisson and exponential

—that allows for both positive and negative dependencies. We call this novel class of 

multivariate distributions Square Root Graphical Models (SQR) because the square root 

function is fundamentally important as will be described in future sections. SQR models 

have a simple parametric form without needing to specify any hyperparameters and can be 

fit using ℓ1-regularized node-wise regressions similar to previous work (Yang et al., 2015). 

The independent model—e.g. independent Poisson or exponential—is merely a special case 

of this class unlike in (Yang et al., 2013). We show that the normalizability of the 

distribution puts little to no restriction on the values of the parameters, and thus SQR models 

give a very flexible multivariate generalization of well-known univariate distributions.

Notation

Let p and n denote the number of dimensions and number data instances respectively. We 

will generally use uppercase letters for matrices (e.g. Φ, X), boldface lowercase letters for 

vectors (i.e x, ϕ) and lowercase letters for scalar values (i.e. x, ϕ). Let ℝ+ denote the set of 

nonnegative real numbers and ℤ+ denote the set of nonnegative integers.

2. Background

To motivate the form of our model class, we present a brief background on the graphical 

model class as in (Besag, 1974; Yang et al., 2015; 2013). Let T(x) and B(x) be the sufficient 

statistics and log base measure respectively of the base univariate exponential family and let 

 be the domain of the random vector. We will denote T(x): ℝp → ℝp to be the 

entry-wise application of the sufficient statistic function to each entry in the vector x. With 

this notation, the previous class of graphical models can be defined as (Yang et al., 2015):

(1)

(2)

where A(θ, Φ) is the log partition function (i.e. log normalization constant) which is 

required for probability normalization, Φ ∈ ℝp×p is symmetric with zeros along the diagonal 

and μ is either the standard Lebesgue measure or the counting measure depending on 

whether the domain  is continuous or discrete. The only difference from a fully 

independent model is the quadratic interaction term T(x)TΦT(x)—i.e. O(T(x)2)—which is 
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why the exponential and Poisson cases do not admit positive dependencies as will be 

described in later sections.

We will review the exponential instantiation of this previous graphical model in which the 

domain , T(x) = x and B(x) = 0. Suppose there is even one positive entry in Φ 
denoted ϕst. Then as x → ∞ the positive quadratic term xsϕstxt will dominate the linear 

term θTx and thus the log partition function will diverge (i.e. A(θ, Φ) → ∞). Thus, Φst ≤ 0 

is required for a consistent joint distribution. Similarly, in the case of the Poisson distribution 

where the domain , T(x) = x and B(x) = −ln(x!), suppose there is even one positive 

entry ϕst. The quadratic term xsϕstxt will dominate the linear term and the log base measure 

term which is O(xln(x)); thus, Φst ≤ 0 is also required for the Poisson distribution.

In an attempt to allow positive dependencies for the Poisson distribution, Yang et al. (2013) 

developed three variants of the Poisson graphical model defined above. First, they developed 

a Truncated Poisson Graphical Model (TPGM) that kept the same parametric form but 

merely truncated the usual infinite domain to the finite domain . 

However, a user must a priori specify the truncation value R and thus TPGM is unnatural for 

normal count data that could be infinite. In addition, because of the quadratic term, even 

though the domain is finite, the quadratic term can dominate and push most of the mass near 

the boundary of the domain (Yang et al., 2013). The second proposal was to change the base 

measure from ln(x!) to x2. This proposal, however, gives the distribution Gaussian-like 

quadratic tails rather than the thicker tails of the Poisson distribution. Finally, the last 

proposal modified the sufficient statistic T(x) to decrease from linear to constant as x 
increases. Similar to TPGM, this third proposal requires the a priori specification of two 

cutoff parameters (R1, R2) and behaves similarly to TPGM after the second cutoff point 

because the base measure of −ln(x!) will quickly make the probability approach 0 once the 

sufficient statistics become constant.

In a somewhat different direction, Inouye et al. (2015) proposed a variant called Fixed-

Length Poisson MRF (LPMRF) that modifies the domain of the distribution assuming the 

length of the vector L = ‖x‖1 is fixed, i.e. . Because the domain is 

finite as in TPGM, the distribution is normalizable even with positive dependencies. 

However, as with TPGM, the quadratic term in the parametric form dominates the 

distribution if L is large, and thus Inouye et al. (2015) modify the distribution by introducing 

a weighting function that decreases the quadratic term as L increases. All of these variants of 

the Poisson graphical model attempt to deal with the quadratic interaction term in different 

ways but all of them significantly change the distribution/domain and often require the 

specification of new unintuitive hyperparameters to allow for positive dependencies. Also, 

according to the authors’ best knowledge, no variants of the exponential graphical model 

have been proposed to allow for positive dependencies. Therefore, we propose a novel 

graphical model class that alleviates the problem with the quadratic interaction term and 

provides both exponential and Poisson graphical models that allow positive and negative 
dependencies.
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3. Square Root Graphical Model

The amazingly simple yet helpful change from the previous graphical model class in Eqn. 1 

is that we take the square root of the sufficient statistics in the interaction term. Essentially, 

this makes the interaction term linear in the sufficient statistics O(T(x)) rather than quadratic 

O(T(x)2) as in Eqn. 1. This change avoids the problem of the quadratic term overcoming the 

other terms while allowing both positive and negative dependencies. More formally, given 

any univariate exponential family with nonnegative sufficient statistics T(x) ≥ 0, we can 

define the Square Root Graphical Model (SQR) class as follows:

(3)

(4)

where  is an entry-wise square root except when T(x) = x2 in which case 

.2 Figure 1 shows examples of the exponential and Poisson SQR distributions 

for no dependency, positive dependency and negative dependency. If θ = 0 and Φ is a 

diagonal matrix, then we recover an independent joint distribution so the SQR class of 

models can be seen as a direct relaxation of the independence assumption, similar to 

previous graphical models. In the next sections, we analyze some of the properties of SQR 

models including their conditional distributions.

3.1. SQR Conditional Distributions

We analyze two types of univariate conditional distributions of the SQR graphical models. 

The first is the standard node conditional distribution, i.e. the conditional distribution of one 

variable given the values for all other variables (see Fig. 2). The second is what we will call 

the radial conditional distribution in which the unit direction is fixed but the length of the 

vector is unknown (see Fig. 2). The node conditional distribution is helpful for parameter 

estimation as described more fully in Sec. 3.3. The radial conditional distribution is 

important for understanding the form of the SQR distribution as well as providing a means 

to succinctly prove that the normalization constant is finite (i.e. the distribution is valid) as 

described in Sec. 3.2.

Node Conditional Distribution—The probability distribution of one variable xs given all 

other variables x−s = [x1, x2, …, xs−1, xs+1, …, xp] is as follows:

2This nuance is important for the Gaussian SQR in Sec. 4.
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where ϕ−s ∈ ℝp−1 is the s-th column of Φ with the s-th entry removed. This conditional 

distribution can be reformulated as a new two parameter exponential family:

(5)

(6)

where η1 = ϕss, ,  and . Note that this 

reduces to the base exponential family only if η2 = 0 unlike the model in Eqn. 1 which, by 

construction, has node conditionals in the base exponential family. Examples of node 

conditional distributions for the exponential and Poisson SQR can be seen in Fig. 3. While 

these node conditionals are different from the base exponential family and hence slightly 

more difficult to use for parameter estimation as described later in Sec. 3.3, the benefit of 

almost arbitrary positive and negative dependencies significantly outweighs the cost of using 

SQR over previous graphical models.

Radial Conditional Distribution—For simplicity, let us assume w.l.o.g. that T(x) = x.3 

Suppose we condition on the unit direction  of the sufficient statistics but the 

scaling of this unit direction  is unknown. We call this the radial conditional 

distribution:

The radial conditional distribution can be rewritten as a univariate exponential family:

(7)

3If T is not linear than we can merely reparameterize the distribution so that this is the case.
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(8)

where ,  and . Note that if the log base measure 

of the base exponential family is zero B(x) = 0, then the radial conditional is the same as the 

node conditional distribution because the modified base measure is also zero . If 

both θ = 0 and B(x) = 0, this actually reduces to the base exponential family. For example, 

the exponential distribution has B(x) = 0, and thus if we set θ = 0, the radial conditional of 

an exponential SQR is merely the exponential distribution. Other examples with a log base 

measure of zero include the Beta distribution and the gamma distribution with a known 

shape. For distributions in which the log base measure is not zero, the distribution will 

deviate from the node conditional distribution based on the relative difference between B(x) 

and . However, the important point even for distributions with nonzero log base 

measures is that the terms in the exponent grow at the same rate as the base exponential 

family—i.e. O(z) + O(B(z)). This helps to ensure that the radial conditional distribution is 

normalizable even as z → ∞ since the base exponential family was normalizable. As an 

example, the Poisson distribution has the log base measure B(x) = −ln(x!) and thus  is 

O(−xlnx) whereas the other terms  are only O(z). This provides the intuition of 

why the Poisson SQR radial distribution is normalizable as will be explained in Sec. 4.2.

3.2. Normalization

Normalization of the distribution was the reason for the negative-only parameter restrictions 

of the exponential and Poisson distributions in the previous graphical models (Besag, 1974; 

Yang et al., 2015) as defined in Eqn. 1. However, we show that in the case of SQR models, 

normalization is much simpler to achieve and generally puts little to no restriction on the 

value of the parameters—thus allowing both positive and negative dependencies. For our 

derivations, let  be the set of unit vectors in the positive orthant. 

The SQR log partition function A(Φ) can be decomposed into nested integrals over the unit 

direction and the one dimensional integral over scaling, denoted z:

(9)

(10)

where , and μ and  are defined as in Eqn. 2. Because  is 

bounded, we merely need that the radial conditional distribution is normalizable (i.e. 
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 from Eqn. 8) for the joint distribution to be normalizable. As suggested in Sec. 

3.1, the radial conditional distribution is similar to the base exponential family and thus 

likely only has similar restrictions on parameter values as the base exponential family. In 

Sec. 4, we give examples for the exponential SQR and Poisson SQR distributions showing 

that this condition can be achieved with little or no restriction on the parameter values.

3.3. Parameter Estimation

For estimating the parameters Φ and θ, we follow the basic approach of (Ravikumar et al., 

2010; Yang et al., 2015; 2013) and fit p ℓ1-regularized node-wise regressions using the node 

conditional distributions described in Sec. 3.1. Thus, given a data matrix X ∈ ℝp×n we 

attempt to optimize the following convex function:

(11)

where η1si = ϕs,s, ,  is the ℓ1-norm on the off 

diagonal elements and λ is a regularization parameter. Note that this can be trivially 

parallelized into p independent sub problems which allows for significantly faster 

computation as in (Inouye et al., 2015). Unlike previous graphical models (Yang et al., 2015) 

that were known to have closed-form solutions to the node conditional log partition function, 

the main difficulty for SQR graphical models is that the node conditional log partition 

function Anode(η) is not known to have a closed form in general.

For the particular case of exponential SQR models, there is a closed-form solution for Anode 

using the error function as will be seen in Sec. 4.1 on exponential SQR models. More 

generally, because Anode is merely a one dimensional summation or integral, standard 

numerical approximations such as Gaussian quadrature could be used. Similarly, the 

gradient of ∇Anode could be numerically approximated by:

(12)

where ε is a small step such as 0.001. Notice that to compute the function value and the 

gradient, only three 1D numerical integrations are needed. Another significant speedup that 

could be explored in future work would be to use a Newton-like method as in (Hsieh et al., 

2014; Inouye et al., 2015), which optimize a quadratic approximation around the current 

iterate. Because these Newton-like methods only need a small number of Newton iterations 

to converge, the number of numerical integrations could be reduced significantly compared 

to gradient descent which often require thousands of iterations to converge.

3.4. Likelihood Approximation

We use Annealed Importance Sampling (AIS) (Neal, 2001) similar to the sampling used in 

(Inouye et al., 2015) for likelihood approximation. In particular, we need to approximate the 
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SQR log partition function A(θ, Φ) as in Eqn. 4. First, we derive a slice sample for the node 

conditionals in which the bounds for the slice can be computed in closed form. Second, we 

use the slice sampler to develop a Gibbs sampler for SQR models. Finally, we derive an 

annealed importance sampler (Neal, 2001) using the Gibbs sampler as the intermediate 

sampler by linearly combining the off-diagonal part of the parameter matrix Φoff with the 

diagonal part Φdiag—i.e. . We also modify  similarly. For each 

successive distribution, we linearly change γ from 0 to 1. Thus, we start by sampling from 

the base exponential family independent distribution  and 

slowly move towards the final SQR distribution Pr(x|θ, Φ). We maintain the sample weights 

as defined in (Neal, 2001) and from these weights, we can compute an approximation to the 

log partition function (Neal, 2001).

4. Examples from Various Exponential Families

We give several examples of SQR graphical models in the following sections (however, it 

should be noted that we have been developing a class of graphical models for any univariate 

exponential family with nonnegative sufficient statistics). The main analysis for each case is 

determining what conditions on the parameter matrix Φ allow the joint distribution to be 

normalized. As described in Sec. 3.2, for SQR models, this merely reduces to determining 

when the radial conditional distribution is normalizable. We analyze the exponential and 

Poisson cases in later sections but first we give examples of the discrete and Gaussian SQR 

graphical models.

The discrete SQR graphical model—including the binary Ising model—is equivalent to the 

standard discrete graphical model because the sufficient statistics are indicator functions 

Ts(x) = I(x = s), ∀s ≠ p and the square root of an indicator function is merely the indicator 

function. Thus, in the discrete case, the discrete graphical model in (Ravikumar et al., 2010; 

Yang et al., 2015) is equivalent to the discrete SQR graphical model. For the Gaussian 

distribution, we can use the nonnegative Gaussian sufficient statistic T(x) = x2. Thus, the 

Gaussian SQR graphical model is merely Pr(x|Φ) ∝ exp(θTx + xTΦx), which by inspection 

is clearly the standard Gaussian distribution where θ = Σ−1μ and  is required to 

be negative definite.4 Thus, the Gaussian graphical model can be seen as a special case of 

SQR graphical models.

4.1. Exponential SQR Graphical Model

We consider what are the required conditions on the parameters θ and Φ for the exponential 

SQR graphical model. If  is positive, the log partition function will diverge because even 

the end point . On the other hand, if  is negative, then the radial 

conditional distribution is similar in form to the exponential distribution and thus the log 

partition function will be finite because the negative linear term  dominates in the 

exponent as z → ∞.5 See appendix for proof. Thus, the basic condition on Φ is:

4This is by the slightly nuanced definition of the square root operator in Eqn. 3 and 4 such that  rather than |x|.
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(13)

Note that this allows both positive and negative dependencies. A sufficient condition is that 

Φ be negative definite—as is the case for Gaussian graphical models. However, negative 

definiteness is far from necessary because we only need negativity of the interaction term for 

vectors in the positive orthant. It may even be possible for Φ to positive definite but Eqn. 13 

be satisfied; however, we have not explored this idea.

For fitting the SQR model, the node conditional log partition function AExp(η) has a closed-

form solution:

where erf(·) is the error function. The erf function shows up because of an initial substitution 

of  to transform the exponent into a quadratic form. Note that η1 < 0 by the condition 

on ΦExp in Eqn. 13 above. The derivatives of AExp can also be computed in closed form for 

use in the parameter estimation algorithm.

4.2. Poisson SQR Graphical Model

The normalization analysis for Poisson SQR graphical model is also relatively simple but 

requires a more careful analysis than the exponential SQR graphical model. Let us consider 

the form of the Poisson radial conditional: 

. Note that the domain of z, denoted 

, is discrete. We can simplify analysis by taking a larger domain 

 of all non-negative integers and changing the log factorial to the smooth 

gamma function, i.e. . Thus, the radial conditional log 

partition function is upper bounded by:

(14)

The basic intuition is that the exponent has a linear O(z) term minus an O(zlnz) term, which 

will eventually overcome the linear term and hence the summation will converge. Note that 

we did not assume any restrictions on Φ except that all the entries are finite. Thus, for the 

5On the edge case when , the the log partition function will diverge if  and will converge if  by simple 
arguments. The normalizability condition when η2 = 0 could slightly loosen the condition on Φ in Eqn. 13 but for simplicity we did 
not include this edge case.
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Poisson distribution, Φ can have arbitrary positive and negative dependencies. A formal 

proof for Eqn. 14 is given in the appendix.

5. Experiments and Results

5.1. Synthetic Experiment

In order to show that our parameter estimation algorithm has the ability to find the correct 

dependencies, we develop a synthetic experiment on chain-like graphs. We construct Φ to be 

a k-dependent circular chain-like graph by first setting the diagonal of Φ to be 1. Then, we 

add an edge between each node and its k neighbors with a value of , i.e. the s-th node is 

connected to the (s + 1)-th, (s + 2)-th, …, (s + k)-th nodes where the indices are modulo p 
(e.g. k = 1 is the standard chain graph). This ensures that Φ is negative definite by the 

Gershgorin disc theorem. We generate samples using Gibbs sampling with 1000 Gibbs 

iterations per sample and 10 slice samples for each node conditional sample. For this 

experiment, we set p = 30, λ = 10−5, k ∈ {1, 2, 3, 4}, and n ∈ {100, 200 400, 800, 1600}. 

We calculate the edge precision for the fitted model by computing the precision for the top 

kp edges—i.e. the number of true edges in the top kp estimated edges over the total number 

of true edges. The results in Fig. 4 demonstrate that our parameter estimation algorithm is 

able to easily find the edges for small k and is even able to identify the edges for large k, 

though the problem becomes more difficult when k is large (because there are more 

parameters, which are also smaller), and thus more samples are needed. With 1,600 samples, 

our parameter estimation algorithm is able to recover at least 95% of the edges even when k 
= 4.

5.2. Airport Delay Times Experiment

In order to demonstrate that the SQR graphical model class is more suitable for real-world 

data than the graphical models in (Yang et al., 2015) (which can only model negative 
dependencies), we fit an exponential SQR model to a dataset of airport delay times at the top 

30 commercial USA airports—also known as Large Hub airports. We gathered flight data 

from the US Department of Transportation public “On-Time: On-Time Performance” 

database6 for the year 2014. We calculated the average delay time per day at each of the top 

30 airports (excluding cancellations).

For our implementation, we set λ ∈ {0.05, 0.005, 0.0005} and set a maximum of 5000 

iterations for our proximal gradient descent algorithm. For approximating the log partition 

function using the AIS sampling defined in Sec. 3.4, we sampled 1000 AIS samples with 

100 annealing distributions—i.e. γ took 100 values between 0 and 1—, 10 Gibbs steps per 

annealed distribution and 10 slice samples for every node conditional sampling. Generally, 

our algorithm with these parameter settings took roughly 35 seconds to train the model and 

about 25 seconds to compute the likelihood (i.e. AIS sampling) using MATLAB prototype 

code on the TACC Maverick cluster.7

6http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
7https://portal.tacc.utexas.edu/user-guides/maverick
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We computed the geometric mean of the relative log likelihood compared to the independent 

exponential model, i.e. exp((ℒSQR−ℒInd)/n), where ℒ is the log likelihood. These values 

can be seen in Fig. 4 (higher is better). Clearly, the exponential SQR model provides a major 

improvement in relative likelihood over the independent model suggesting that the delay 

times of airports are clearly related to one another. In Fig. 5, we visualize the non-zeros of Φ
—which correspond to the edges in the graphical model—to show that our model is 

capturing intuitive positive dependencies.

First, it should be noted that all the dependencies are positive yet positive dependencies were 

not allowed by previous graphical models (Yang et al., 2015)! Second, as would be expected 

because of weather delays, the airports in the Chicago area seems to affect the delays of 

many other airports. Similarly, a weather effect seems to be evident for the airports near New 

York City. Third, as would be expected, some dependencies seem to be geographic in nature 

as seen by the west coast dependencies, Texas dependency (i.e. DFW-IAH), and east coast 

dependencies. Note that the geographic dependencies were found even though no location 

data was given to the algorithm. Fourth, the busiest airport in Atlanta, GA (ATL) is not 

strongly dependent on other airports. This seems reasonable because Atlanta rarely has snow 

and there are few major airports geographically close to Atlanta. These qualitative results 

suggest that the exponential SQR model is able to capture multiple interesting and intuitive 

dependencies.

6. Discussion

As full probability models, SQR graphical models could be used in any situation where a 

multivariate distribution is required. For example, SQR models could be used in Bayesian 

classification by modeling the probability of each class distribution instead of the classical 

Naive Bayes assumption of independence. As another example, SQR models could be used 

as the base distribution in mixtures or admixture composite distributions as in (Inouye et al., 

2014; Inouye et al.)—similar to multivariate Gaussian mixture models. Another extension 

would be to consider mixed SQR graphical models in which the joint distribution has 

variables using different exponential families as base distributions as explored for previous 

graphical models in (Yang et al., 2014; Tansey et al., 2015).

7. Conclusion

We introduce a novel class of graphical models that creates multivariate generalizations for 

any univariate exponential family with nonnegative sufficient statistics—including Gaussian, 

discrete, exponential and Poisson distributions. We show that SQR graphical models 

generally have few restrictions on the parameters and thus can model both positive and 
negative dependencies unlike previous generalized graphical models as represented by (Yang 

et al., 2015). In particular, for the exponential SQR model, the parameter matrix Φ can have 

both positive and negative dependencies and is only constrained by a mild condition—akin 

to the positive-definiteness condition on Gaussian covariance matrices. For the Poisson 

distribution, there are no restrictions on the parameter values, and thus the Poisson SQR 

model allows for arbitrary positive and negative dependencies. We develop parameter 

estimation and likelihood approximation methods and demonstrate that the SQR model 
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indeed captures interesting and intuitive dependencies by modeling both synthetic datasets 

and a real-world dataset of airport delays. The general SQR class of distributions opens the 

way for graphical models to be effectively used with non-Gaussian and non-discrete data 

without the unintuitive restriction to negative dependencies.
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Figure 1. 
These examples of 2D exponential SQR and Poisson SQR distributions with no dependency 

(i.e. independent), positive dependency and negative dependency show the amazing 

flexibility of the SQR model class that can intuitively model positive and negative 
dependencies while having a simple parametric form. The approximate 1D marginals are 

shown along the edges of the plots.
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Figure 2. 
Node conditional distributions (left) are univariate probability distributions of one variable 

assuming the other variables are given while radial conditional distributions are univariate 

probability distributions of vector scaling assuming the vector direction is given. Both 

conditional distributions are helpful in understanding SQR graphical models.
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Figure 3. 
Examples of the node conditional distributions of exponential (left) and Poisson (right) SQR 

models for η2 = 0, η2 > 0 and η2 < 0.
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Figure 4. 
(Left) The fitted exponential SQR model improves significantly over the independent 

exponential model in terms of relative likelihood suggesting that a model with positive 

dependencies is more appropriate. (Right) The edge precision for the circular chain graph 

described in Sec. 5.1 demonstrate that our parameter estimation algorithm is able to 

effectively identify edges for small k, and if given enough samples, can also identify edges 

for larger k.
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Figure 5. 
Visualizing the top 50 edges between airports shows that SQR models can capture 

interesting and intuitive positive dependencies even though previous exponential graphical 

models (Yang et al., 2015) were restricted to negative dependencies. The delays at the 

Chicago airports seem to affect other airports as would be expected because of Chicago 

weather delays. Other dependencies are likely related to weather or geography. (For this 

visualization, we set λ = 0.0005. Width of lines is proportional to the value of the edge 

weight, i.e. a non-zero in Φ, and the size of airport abbreviation is proportional to the 

average number of passengers.)
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