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Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two
melatonin receptor subtypes exist - MT1 and MT2 - encoded by theMTNR1A andMTNR1B genes respectively. The current review
provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical
Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update
on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of
melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important
and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in
physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and
free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.

Abbreviations
AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; ASDs, autism spectrum disorders; fMLP, N-for-
myl-l-methionyl-l-leucyl-l-phenylalanine; FPG, fasting plasma glucose; HD, Huntington’s disease; IOP, intraocular
pressure; MS, multiple sclerosis; MTR, melatonin receptor; NREM, non-rapid eye movement; PD, Parkinson’s disease; QR2,
quinone reductase 2; REM, rapid eye movement; SCN, suprachiasmatic nucleus; T2D, type 2 diabetes
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Introduction
The hormone melatonin is mainly produced by the pineal
gland following a circadian rhythm, with high levels during
the subjective night. Melatonin can also be produced by
extra-pineal sites like the retina, the gastrointestinal tract
and the innate immune system. This hormone regulates a
variety of physiological and neuroendocrine functions in
mammals through activation of two GPCRs, the MT1 and
MT2 receptors. Both receptors are typically coupled to Gi/o-
type proteins and the MT1 receptor is coupled, in addition,
to Gq-type proteins. In humans, the MTNR1A gene encoding
MT1 is located on chromosome 4q35.1 and theMTNR1B gene
encoding MT2 on chromosome 11q21-q22.

This article will review and discuss recent updates by the
melatonin receptor subcommittee of the International Union
of Basic and Clinical Pharmacology (IUPHAR) database (http://
www.guidetopharmacology.org/GRAC/FamilyDisplayForward?
familyId=39), which include the development of new MT
receptor ligands, radioligands and structural perspectives of
the MT receptors. The discovery of MT receptor dimers with
physiological function in vivo aswell as genetic variants andmu-
tants of MT receptors will be discussed as they provide a new di-
mension to understand MT receptor pharmacology and
function. An update on the latest results obtained with MT
receptor knockout (KO)mousemodels will be provided. Among
the many physiological effects of MT receptors, we chose to
focus on those of the immune system and the CNS. At the end
of the review, MT receptor-independent effects, including

antioxidant and free radical scavenger properties of melatonin,
will be critically addressed.

For more complete or other specific aspects of MT recep-
tors, the reader is referred to other recent expert reviews
(Jockers et al., 2008; Dubocovich et al., 2010; Markus et al.,
2013; Tosini et al., 2014; Zlotos et al., 2014; Liu et al., 2016).

MT receptor ligands
MT1 and MT2 receptors share a high degree of sequence
homology and bind both the natural ligand, melatonin, with
high affinity. Important progress has been made in the devel-
opment of synthetic MT receptor antagonists and agonists
and subtype-selective ligands by diversifying the chemical
scaffolds. Indeed, MT receptor ligands from different struc-
tural classes show distinct structure–activity relationships
on native and recombinant MT receptors (Dubocovich et al.,
1997; Dubocovich et al., 2010; Zlotos, 2012; Zlotos et al.,
2014). The methoxy group and the acetamido side chain of
melatonin determine the intrinsic activity and the binding
affinity, respectively, at both hMT1 and hMT2 receptors
(Dubocovich et al., 1997; Browning et al., 2000; Audinot
et al., 2003). Replacement of the amidemethyl group by ethyl
and propyl substituents enhances affinity (Sugden et al.,
1995). Exchange of the indole ring by various aromatic scaf-
folds maintains high binding and agonist potency.

Substitutions at the two-position with a halogen or a
phenyl group generate agonists with ~10-fold increased bind-
ing affinity. The majority of non-selective MT1–MT2 receptor
ligands, including drugs used in humans, for example,
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ramelteon [Rozerem®, (Kato et al., 2005; Mini et al., 2007;
Rawashdeh et al., 2011)], agomelatine [Valdoxan®,
(de Bodinat et al., 2010)] and tasimelteon [Hetlioz®,
(Rajaratnam et al., 2009; Lavedan et al., 2015)], are agonists
(Figure 1). Ramelteon and tasimelteon are MT receptor selec-
tive, while agomelatine is also an antagonist at the 5-HT2C

receptors, a pharmacological property believed to contribute
to its antidepressant action. The therapeutic effects of
approved drugs acting on hMT1 and/or hMT2 receptors as
agonists were recently reviewed (Liu et al., 2016).
Other non-selective MT receptor agonists include
6-chloromelatonin, 6-hydroxymelatonin, 2-iodomelatonin,
GR 196429 (Dubocovich et al., 1997; Browning et al., 2000;

Audinot et al., 2003), UCM 793 (Rivara et al., 2007) and
2-methoxy-α,β-didehydro-agomelatine (Morellato et al.,
2013). This latter ligand shows the highest affinity for hMT1

(Ki = 0.03 nM) and hMT2 (Ki = 0.07 nM) receptors and
~3500-fold greater potency than melatonin in the melano-
phore aggregation assay. TIK 301 (Mulchahey et al., 2004) acts
also as an antagonist at the 5-HT2C and 5-HT2B receptors
(Landolt andWehrle, 2009). 5-HEAT has a unique pharmaco-
logical profile acting as a full agonist at the hMT1 receptor and
antagonist at the hMT2 receptor (Nonno et al., 2000).
EFPPEA, a high-affinity hMT1 (Ki = 0.062 nM) and hMT2

receptor (Ki = 0.420 nM) agonist, decreases the percentage
of wakefulness and increases the percentage of slow wave

Figure 1
Structures of non-selective MT1/MT2 receptor ligands. 5-HEAT, 5-hydroxyethoxy-N-acetyltryptamine; EFPPEA, ethyl-furo-pyrazolo-pyridine-
ethyl-acetamide.
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sleep in cats (Koike et al., 2011). The competitive MT receptor
antagonist luzindole lacks the methoxy group, which led to
the suggestion that this group is necessary for intrinsic activ-
ity (Dubocovich, 1988). Similarly, S22153 acts as a partial
agonist (Audinot et al., 2003). Luzindole, with a 15- to 25-fold
higher affinity for hMT2 than for hMT1 receptors, is widely
used for pharmacological characterization of functional MT
receptors (Dubocovich et al., 1997; Dubocovich et al., 1998;
Browning et al., 2000; Dubocovich et al., 2010).

A ligand is considered selective for a specific receptor type
when its affinity or potency is at least 100-times higher than
that for the other(s) receptor types in the family (Dubocovich
et al., 2010). This concept holds true for in vitro studies where
ligand concentrations can be easily adjusted. However, ligand
selectivitymight bemore difficult to reach in vivo, in the body
fluids reaching the receptors. Depending on ligand dose and
pharmacokinetics, concentrations could easily raise to levels
activating both receptors (e.g. MT1 and MT2 receptors). This
is particularly of concern for melatonin and synthetic MT
receptor ligands activating receptors at picomolar
concentrations (Dubocovich et al., 1997; Browning et al.,
2000; Audinot et al., 2003). Therefore, caution should be
taken when interpreting selective MT receptor activation
in vivo using MT receptor-selective ligands, unless pharmaco-
logical selectivity or lack of it, is confirmed by KO models
with deletion of each receptor type.

Numerous ligands with high selectivity for hMT2 over
hMT1 receptors have been identified (Zlotos et al., 2014).
MT2 receptors possess a lipophilic pocket close to the
N1–C2 binding region of melatonin, which is absent in MT1

receptors (Rivara et al., 2005). Accordingly, most MT2

receptor-selective ligands bear a flexible bulky hydrophobic
substituent in a position equivalent to C2 or N1 of melatonin
(Figure 2). The tetrahydroquinoline analogue UCM1014 is
the most potent MT2 receptor-selective ligand reported to
date. It shows picomolar binding affinity (Ki = 0.001 nM) at
hMT2 receptors, >10 000-fold selectivity over hMT1 receptors
and full agonist profile in the GTPγS test (Spadoni et al.,
2015). Other agonists with approximately 800-fold hMT2

receptor selectivity are BOMPPA (Hu et al., 2010; Heckman
et al., 2011; Chan et al., 2013; Hu et al., 2013) and CIFEA
(Koike et al., 2011). In imprinting control region mice, CIFEA
reentrainment effects to a new light/dark cycle indicate the
involvement of MT receptors in the regulation of
chronobiotic activity (Koike et al., 2011). The dose of CIFEAA
used in this study most likely reached micromolar concentra-
tions, which would activate both MT1 and MT2 receptors,
precluding any conclusion about the specific receptor type
involved in the regulation of chronobiotic processes. Simi-
larly, doses of the MT2 receptor-selective antagonist 4P-PDOT
(90 μg/mouse s.c.) used to block the melatonin-mediated
phase advance of circadian activity rhythms in mice
(Dubocovich et al., 1998) may have resulted in micromolar
circulating 4P-PDOT concentrations hence blocking both
MT1 and MT2 receptors.

Two moderately selective MT2 receptor ligands, the
agonist IIK7 (Faust et al., 2000) and the partial agonist UCM
765 (Rivara et al., 2007), have been used to examine the role
of each MT receptor type in the modulation of sleep architec-
ture. UCM 765 promoted non-rapid eye movement (NREM)
sleep in rodents, and this effect was blocked by the MT2

receptor antagonist 4P-PDOT (Ochoa-Sanchez et al., 2011).
In contrast, the non-selective MT1–MT2 receptor agonist
UCM793 decreased sleep onset without having an effect on
NREM sleep maintenance suggesting that dual MT1 and
MT2 receptor agonistic activity accounts for the effect on
sleep onset, whereas selectivity for MT2 receptors has an
additional effect on NREM sleep maintenance. IIK7 was also
reported to reduce NREM sleep onset latency and transiently
increase the time spent in NREM sleep in rats without altering
rapid eye movement (REM) sleep latency or the amount of
REM sleep (Fisher and Sugden, 2009).

Among the hMT2 receptor-selective partial agonists GR
128107, 5-methoxyluzindole, S 24014, S 24773 (Dubocovich
et al., 1997; Audinot et al., 2003) and isoamyl agomelatine,
the latter shows the highest affinity (Ki = 0.01 nM) and
selectivity (7200-fold) (Ettaoussi et al., 2012). 4P-PDOT, an
hMT2 receptor-selective antagonist with 300- to 1500-fold
higher affinity for hMT2 receptors, is still considered the gold
standard for pharmacological characterization of MT receptors
(Dubocovich et al., 1997). Other MT2 receptor-selective antago-
nists, such as K185 (Sugden et al., 1999; Faust et al., 2000), UCM
454 (Rivara et al., 2005) and 2-(indolin-1yl) melatonin (Zlotos
et al., 2009), display ~100-fold higher affinity for hMT2 recep-
tors. For (hydroxymethyl)phenyl agomelatine, the affinity for
hMT2 receptors is 750-times higher than for hMT1 receptors
(Poissonnier-Durieux et al., 2008).

Discovery of MT1 receptor-selective ligands remains a
challenge, and only few compounds with preference for
hMT1 receptors have been reported (Zlotos et al., 2014).
Ligands preferentially binding to these receptors reach maxi-
mally 100-fold selectivity, and, when investigated, this selec-
tivity is significantly reduced in functional in vitro studies
(Figure 3). A common structural feature conferring MT1

receptor selectivity is a bulky, hydrophobic ether replacing
the methoxy group. The first hMT1 receptor-selective agents
were obtained by connecting two agomelatine units via their
ether oxygen by (CH2)3- and (CH2)4-linker to give S 26131
(antagonist) and S 26284 (partial agonist), both displaying
~100-fold selectivity (Audinot et al., 2003; Descamps-
Francois et al., 2003). A similar approach led to the UCM
793 dimer with 100-fold hMT1 receptor selectivity and partial
agonist activity (Spadoni et al., 2011). Monomeric ligands,
such as CBOBNEA (Mesangeau et al., 2010), and AAE M PBP
amine (Rivara et al., 2012) are partial agonists showing similar
~100-fold selectivity for hMT1 receptors. N-acetyl-O-
phenoxypropyl serotonin is a full agonist obtained by
exchange of the methoxy group of melatonin with an O
(CH2)3OPh moiety. Although it shows only 10-fold binding
preference toward hMT1 receptors, its MT1–MT2 receptor
binding ratio and hMT1 receptor affinity were higher than
that for the MT1 receptor-selective reference compound S
26131 that was retested under the same experimental condi-
tions (Markl et al., 2011). A 140-fold MT1 receptor selectivity
could be attained by introduction of two fluorine atoms into
the N-acetyl group of agomelatine. The resulting
difluoroagomelatine shows high hMT1 receptor binding (Ki

= 0.03 nM) and is a non-selective MT1–MT2 receptor full
agonist (Ettaoussi et al., 2012). Very recently, tetrafluoro
S26131, the difluoroacetamide analogue of S 26131, has been
reported to show higher affinity and selectivity toward hMT1

receptors than the parent ligand (Zlotos et al., 2015).
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In summary, while numerous ligands selective for theMT2

receptor subtype are available, discovery of ligands with at
least >100-fold selectivity for MT1 receptors remains a
challenging task. None of the MT1 receptor-selective ligands
has been tested in vivo. Future progress on the elucidation of
the structure of MT receptors will hopefully foster the discov-
ery of such ligands. The MT1–MT2 non-selective receptor
antagonist luzindole and the MT2 receptor-selective antago-
nists 4P-PDOT are still considered the gold standards for
pharmacological characterization of MT receptors.

Radioligands – update
Radioactive- and fluorescent-labelled ligands are indispens-
able tools for the pharmacological characterization of GPCRs.
Amajor breakthrough in the field ofMT receptor research was
the labelling of 2-iodomelatonin with 125I at carbon 2
resulting in a high-affinity radioligand with high specific
activity (Vakkuri et al., 1984) for use in the localization
(Vanecek, 1988) and pharmacological characterization of
MT receptors in tissues (Dubocovich and Takahashi, 1987).
The radioligand, 2-[125I]iodomelatonin (2-[125I]-IMLT), has

Figure 2
Structures of MT2 receptor-selective ligands. BOMPPA, benzyloxy-methoxyphenyl-propylamide; CIFEA, cyclohexylmethyl-indenofurane-
ethylacetamide; 4P-PDOT, 4-phenyl-2-propionamidotetralin.
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been extensively used as a high-affinity radioligand for both
MT1 andMT2 receptors, and was until recently the only avail-
able radioligand for the characterization and localization of
melatonin binding sites in native tissues (Figure 4). Studies
performed with [3H]-melatonin ([3H]-MLT) established the
pharmacological profile of the human recombinant MT1

and MT2 receptors, as being identical to that established
using 2-[125I]-IMLT as a radioligand. However, due to the
rather low specific activity of this [3H]-MLT, its use to charac-
terize and/or localize melatonin sites in tissues with low MT
receptor density is limited (Browning et al., 2000).

Three new iodinated radioligands have been recently
characterized for use in the pharmacological characterization
and localization of MT receptors (Figure 4). These
radioligands are as follows: SD6 (N-[2-(5-methoxy-1Hindol-
3-yl)ethyl]iodoacetamide), S70254 (2-iodo-N-2-[5-methoxy-
2-(naphthalen-1-yl)-1H-pyrrolo[3,2-b]pyridine-3-yl])acetamide
and DIV880 2-(2-[(2-iodo-4,5-dimethoxyphenyl)methyl]-4,5-
dimethoxy phenyl) (Legros et al., 2013; Legros et al., 2016).
[125I]-SD6 has a similar pharmacological profile to that of
2-[125I]-IMLT with the same affinity for MT1 and MT2

receptors. On the contrary, the two other radioligands [125I]-
S70254 and [125I]-DIV880 show selectivity for MT2 receptors
with pKd values of 9.6 and 9.7, respectively, in the absence
of any specific binding to MT1 receptors. All radioligands are
agonists, either partial agonists ([125I]-S70254, [125I]-DIV880)
or full agonists (2-[125I]-IMLT, [125I]-SD6, [3H]-MLT), which
means that their Kd values depend not only on the affinity
of the ligand for the receptor but also on the activation of
the G protein in the ternary Ligand-Receptor-G protein
complex.

The extensive pharmacological characterization of these
three new radioligands in comparison with 2-[125I]-IMLT
and [3H]-MLT on membrane preparations from CHO-K1 cell
lines stably expressing hMT1 or hMT2 receptors showed that
[125I]-S70254 and [125I]-DIV880 mainly differ from
2-[125I]-IMLT in their dissociation kinetics, which are faster
for [125I]-S70254 and [125I]-DIV880 than for 2-[125I]-IMLT
(Legros et al., 2016). Interestingly, [125I]-SD6 labelled only
approximately half of the binding sites detected with
2-[125I]-IMLT in cells expressing hMT1 receptors while com-
parable amounts were detected in cells expressing hMT2

Figure 3
Structures of MT1 receptor-selective ligands. CBOBNEA, carboxybiphenyloxy-butoxy-naphthalene-ethylacetamide; AAE-M-PBP amine,
acetylaminoethyl-methyl-phenylbutoxyphenyl-amine.
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receptors (Legros et al., 2013). This suggests the existence of
different receptor subpopulations for hMT1 receptors of
which [125I]-SD6 labels a more restricted number than
2-[125I]-IMLT. In contrast, for hMT2 receptors, similar sub-
populations would be detectable by both radioligands. The
nature of these receptor subpopulations is currently
unknown but could be related to the differential engagement
of hMT1 receptors into complexes with different G proteins
or ß-arrestins following the binding of these agonistic
radioligands. [125I]-SD6 detected as 2-[125I]-IMLT binding
sites in sheep retinal membranes, while the MT2 receptor-
specific ligands [125I]-S70254 and [125I]-DIV880 failed to do so.

The MT2 receptor-specific [125I]-S70254 was successfully
used for autoradiography studies in rat and sheep brain and
retina slices (Legros et al., 2016). A similar labelling pattern
to 2-[125I]-IMLT (detecting MT1 and MT2 receptors) was
observed in several areas but also distinct labelling in others.
Absence of labelling by [125I]-S70254 in regions that are
labelled by 2-[125I]-IMLT can be explained by low (undetect-
able) MT2 receptor levels. Absence of 2-[125I]-IMLT labelling
in regions labelled by [125I]-S70254 could be due to the detec-
tion of different receptor complexes (see above).

Altogether, the new radioligands considerably expand the
repertoire of pharmacological tools for MT receptors with
the development of MT2 receptor-specific radioligands and
radioligands detecting distinct receptor populations reveal-
ing a previously unrecognized diversity. The availability of a
radiolabelled antagonist would largely contribute in a better
characterization of these different populations. Further
advances can be expected from the development of
fluorescent-labelled ligands.

Structural perspectives for MT receptors
Currently, crystal structures of MT1 andMT2 receptors are not
available. Despite a sequence identity lower than 30%
between MT receptors and the closest crystallized GPCRs,
several three-dimensional (3D) models have produced some
structural hypotheses for binding of (non)selective MT1

and/or MT2 receptor agonists (Table 1). According to
site-directedmutagenesis data, most of these models corrobo-
rate the importance of both serine residues 3.35 and 3.39 in
MT1 as well as His5.46 in both MT1 and MT2 receptors.

Although His5.46 seems to be an anchoring residue for polar
interactions with the methoxy or amide group of melatonin,
only a few models of MT1 receptors display a direct participa-
tion of serine residues inmelatonin binding (Chugunov et al.,
2006; Farce et al., 2008), which could be otherwise involved
in an essential bending of helix 3 for binding site plasticity.
Models take also into account several receptor–ligand interac-
tions with amino acids conserved within GPCRs and known
to play a role in aromatic switch activation (F5.47, W6.48).

Such homology modelling methods make predictions of
flexible receptor regions difficult. Although not directly
proven for MT receptors, E2 and I3 loops are known to be
key features for ligand accessibility and G protein binding of
GPCRs. Moreover, amino acid sequences of MT receptors
show several singularities like the presence of a 3.49NRY3.51

motif instead of the classical 3.49DRY3.51 motif of other
rhodopsin-like GPCRs. Another specificity is the replacement
of the proline by an alanine residue in the conserved
7.49NPXXY7.53 motif. Buried in the vicinity of the cytoplas-
mic surface, these marked differences are likely to affect
receptor activation and/or signalling specificity of MT recep-
tors rather than the ligand binding process.

Whereas 3D models of MT receptors were up to now
dedicated to the discovery and optimization of new efficient
drugs, the next generation of 3D models should be expanded
toward larger, multimeric systems and not be restricted to
receptor monomers. Computation of the energy landscape
of GPCRs by enhanced molecular dynamics simulations, to-
gether with NMR and X-ray studies, provided valuable molec-
ular insights on the dynamics of ligand recognition, receptor
activation and oligomerization (Johnston and Filizola, 2014).
Depicting free energy landscapes of MT receptors should
address biasing molecular dynamics simulations from the in-
active apoform transiting toward the active trimeric L-R-Gi or
L-R-arrestin forms of receptors (Figure 5). As ligandsmodulate
these free energy landscapes (Provasi et al., 2011; Dror et al.,
2013), in silico optimization of new efficient ligand structures
could be explored by predicting its functional selectivity
through arrestin or Gi-mediated pathways. These approaches
also open the way for the exploration of homodimers and
heterodimers, particularly MT1/MT2 and MT1/GPR50 recep-
tor complexes, as discussed in the following section.

Figure 4
Structures of radioligands used to determine binding affinity for MT1 and MT2 receptors.
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Table 1
Summary of reported MT receptor homology models

Homology model Crystal template Binding amino acid Reference

MT1-ramelteon
(non-selective agonist)

Inactive rhodopsin
(Palczewski et al., 2000)

Y175(E2), S182(E2), V5.43, H5.46 Uchikawa et al., 2002

MT1-agomelatine
(non-selective agonist)

Inactive rhodopsin
(Okada et al., 2002)

L2.46, M3.32, S3.35, S3.39, H5.46,
F5.47, P5.50

Voronkov et al., 2005

MT1-melatonin
(non-selective agonist)

Inactive rhodopsin
(Okada et al., 2002)

L2.46, M3.32, S3.35, V3.36, S3.39,
H5.46, F5.47, F6.44, W6.48, L6.51,
N6.52, N7.49

Farce et al., 2008

MT1-2phenylmelatonin
(selective agonist)

Active β2-adrenergic
(Rasmussen et al., 2011a,b)

M3.32, G3.33, Y5.38, H5.46, W6.48,
L6.51, N6.52, Y7.39, A7.42, Y7.43

Rivara et al., 2012

MT2-2iodomelatonin
(non-selective agonist)

Inactive rhodopsin
(Okada et al., 2002)

V5.42, H5.46, N6.52, L6.56, Y7.43 Mazna et al., 2004

MT2-UCM454
(selective antagonist)

Inactive rhodopsin
(Okada et al., 2004)

V3.36, I3.37, V3.40, Y183(E2), H5.46,
F5.47, P5.50, I5.51, F6.44, W6.48

Rivara et al., 2005

MT2-melatonin Inactive rhodopsin
(Okada et al., 2004)

L2.46, A2.49, S3.35, I3.37, S3.39,
V5.42, V5.43, H5.46, F5.47

Voronkov et al., 2005

MT2-melatonin Inactive rhodopsin
(Okada et al., 2002)

S3.35, V3.36, S3.39, V5.42, H5.46,
W6.48, Y7.43

Chugunov et al., 2006

MT2-melatonin Inactive rhodopsin
(Okada et al., 2002)

G3.33, V3.36, I3.37, N4.60, L4.57,
T191(E2), Y5.38, H5.46

Farce et al., 2008

MT2-melatonin Active rhodopsin
(Scheerer et al., 2008)

A3.29, V3.36, N4.60, H5.46, W6.48,
L6.51

Zefirova et al., 2011

MT2-acylaminoethyl tetralin
(selective partial agonist)

Active β2-adrenoceptor
(Rasmussen et al., 2011a,b)

M3.32, V3.36, N4.60, H5.46, W6.48,
N6.52, Y7.43

Pala et al., 2013

According to Ballesteros numbering, amino acids critical for ligand binding based on site-directed mutagenesis data (Conway et al., 2001; Gerdin et al.,
2003; Kokkola et al., 2003) are displayed in italic and bold.

Figure 5
Structures useful for the study of MT1 receptor structure–function relationships. MT1*-MLT (A) was derived from active forms of rhodopsin,
β2-adrenoceptor and A2A adenosine receptors (unpublished data, N.R.). Docking of melatonin (MLT) in the solvent-accessible cavity was achieved
by energy relaxation by 300-ns molecular dynamics simulations. The structure of the MT1*-MLT-Giα3 complex could be modelled on the basis of
the sequence homology with the β2-adrenoceptor-Gαs structure (Rasmussen et al., 2011b) and the homology between Gαs and Giα3
(Soundararajan et al., 2008) (B) whereas the structure of the MT1*-MLT-arrestin complex could be modelled based on the crystallized rhodop-
sin-arrestin complex (Kang et al., 2015) (C).
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MT receptor dimers
MT receptors are part of dynamic signalling complexes that
contain proteins involved in receptor biosynthesis, export,
signalling, desensitization, internalization and cytoskeleton
modulation (Daulat et al., 2007; Maurice et al., 2008) (IntAct
database, http://www.ebi.ac.uk/intact/search/do/search?
searchString=pubid:26514267). The core of these complexes
is often composed of receptor dimers, either homodimers of
the same receptor or heterodimers composed of two different
receptors (see Maurice et al., 2011 and Ferre et al., 2014).
Initial observations have been made in 2002 in transfected
HEK293 cells demonstrating the capacity of MT1 and MT2

receptors to form homodimers and heterodimers (Ayoub
et al., 2002) with MT1/MT2 heterodimers showing a pharma-
cological profile distinct from MT2 homodimers (Ayoub
et al., 2004). Shortly after, MT1 and MT2 receptors were
reported to form heterodimers with the orphan GPR50,
which completely abolished the function of MT1 receptors
in MT1/GPR50 heterodimers (Levoye et al., 2006a). Sporadic
reports on Western blots of endogenously expressed MT
receptors in chicken astrocyte cultures (Adachi et al., 2002)
and Xenopus tectal cells (Prada et al., 2005) further indicated
the possible existence of MT receptor homodimers. However,
the physiological relevance of these dimers remained largely
unclear (Levoye et al., 2006b) until 2013 when compelling
in vivo evidence for the functional significance of MT1/MT2

heterodimers was obtained. In retinal photoreceptor cells,
melatonin enhances the light sensitivity during the night.
The phenotype of MT1 receptor KO (MT1

�/�) and MT2 recep-
tor KOs (MT2

�/�) mice, the use of type-selective ligands and
overexpression of a dominant negative form of MT2 receptors
in photoreceptor cells of transgenic mice indicated the exclu-
sive involvement of MT1/MT2 heterodimers in this physio-
logical effect of melatonin (Baba et al., 2013). Interestingly,
this effect was dependent on the activation of the Gq/PLC
pathway by melatonin, an observation that could be
confirmed in vitro in cells co-expressing MT1 and MT2

receptors.
Whether MT receptor heterodimers could become novel

drug targets remains an open question. Recent evidence on
the antidepressant agomelatine suggests this possibility
(Kamal et al., 2015). Previous studies showed that
agomelatine is a high-affinity agonist for MT1 and MT2 recep-
tors and an antagonist with moderate affinity for 5-HT2C

receptors (Audinot et al., 2003; Millan et al., 2003). Of note,
the antidepressant effect of agomelatine involves both
pathways in a synergistic manner (Racagni et al., 2011).
Formation of MT2/5-HT2C heterodimers was demonstrated
in transfected HEK293 cells, and these heterodimers are
targeted by agomelatine (Kamal et al., 2015). Agomelatine
behaved as a biased ligand, activating the Gi/cAMP pathway
and antagonizing the Gq/PLC pathway. Whether the MT2/5-
HT2C heterodimer participates in the antidepressant effect
of agomelatine remains to be shown.

Formation of receptor dimers offers the possibility to
design dimeric ligands targeting receptor dimers. Several
dimeric ligands with two identical pharmacophores have
been synthesized for MT receptors and their binding proper-
ties have been determined (Audinot et al., 2003; Descamps-
Francois et al., 2003; Mesangeau et al., 2010; Spadoni et al.,
2011; Journe et al., 2014). Binding of the two

pharmacophores of these dimeric ligands to the two
protomers of the same receptor dimer has been only shown
in one study using a BRET approach (Journe et al., 2014).
Compounds linked through 22–24 atom spacers were able
to bind to MT1 and MT2 receptor protomers in pre-existing
homodimers and heterodimers and to induce conforma-
tional changes detected by BRET. Induction of receptor
dimerization was not observed. The functional properties of
these compounds remain to be studied. Taken together, the
existence and physiological relevance of MT receptor dimers
are increasingly recognized, but its functional role and phar-
macological exploitation are still ongoing.

Genetic variants and mutants of MT receptors
The existence of many rare variants in the human population
was discovered in recent genome sequencing programmes.
The 1000 human genome project detected 38 million vari-
ants (Abecasis et al., 2012) and 172 variants, including 46
non-synonymous variants, has been identified on average
per GPCR in a population of 14 002 individuals (Nelson
et al., 2012; Karamitri and Jockers, 2014). Numerous variants
have been identified in the MTNR1A and MTNR1B genes,
encoding MT1 and MT2 receptors respectively. Here, only
non-synonymous variants, modifying the amino acid
sequence of the receptors, will be considered (Figure 6). Vari-
ants with altered receptor function can potentially partici-
pate in disease development. Ebisawa et al. (1999) were
searching for variants in MTNR1A and MTNR1B genes in
patients with circadian disorders. Two non-synonymous
variants were identified in the MTNR1A gene (R54W,
A157V) that were threefold and twofold more frequent in
people with non-24 h sleep–wake syndrome (Table 2)
(Ebisawa et al., 1999). Due to the small sample size (N = 22),
statistical significance was not reached.

Alteration of melatonin synthesis has been reported in
autism spectrum disorders (ASDs) triggering the search for
variants in MTNR1A and MTNR1B genes in 295 patients with
ASD, 362 controls and 284 individuals from the human
genome diversity panel (Chaste et al., 2010). Six
non-synonymous mutations were identified for MTNR1A
and 10 for MTNR1B (Tables 2 and 3). The majority of these
mutants showed altered receptor function. Particularly dele-
terious mutants were MT1-I49N, which is devoid of any
melatonin binding and cell surface expression, and MT1-
G166E and MT1-I212T, which showed severely impaired cell
surface expression and biased behaviour toward the ERK1/2
pathway. No significant difference in the prevalence of these
mutations was found indicating that they do not represent
major risk factors for ASD.

Four non-synonymous mutations were identified for
MTNR1A and four for MTNR1B in a cohort of 101 individuals
with attention-deficit/hyperactivity disorder (ADHD)
(Tables 2 and 3); however, none of them was enriched in
ADHD individuals as compared with the general population
(Chaste et al., 2011). The MT1-Y170X nonsense mutation
was only detected in one ADHD patient and introduced a pre-
mature STOP codon resulting in complete loss of receptor
function.

MT receptor variants have been most extensively sought
in studies focused on type 2 diabetes (T2D) based on the
discovery of several frequent polymorphisms associated with
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increased fasting plasma glucose (FPG) and T2D risk close to
the MTNR1B gene in genome-wide association studies
(Bouatia-Naji et al., 2009; Prokopenko et al., 2009). Sequenc-
ing of the coding region of the MTNR1B gene revealed six
non-synonymous variants (G24E, L60R, V124I, R138C,
R231H and K243R) of which none was associated with T2D
risk. The common 24E variant was associated with increased
body mass and decreased FPG (Andersson et al., 2010), an
observation that was not replicated in a later study
(Bonnefond et al., 2012). Whereas only subtle changes in
the capacity of G24E and V124I to activate a GαΔ6qi4myr
chimeric G protein, the L60R variant was completely inactive
in transfected COS cells. A more extensive sequencing study
discovered 40 non-synonymous variants in the coding region

ofMTNR1B (Tables 2–4) (Bonnefond et al., 2012) of which 36
very rare mutants associated with T2D risk. Functional analy-
sis of the 40 variants revealed intact cell surface expression for
all variants. There was complete loss of melatonin binding in
four very rare cases (A42P, L60R, P95L and Y308S) and
partially and severely blunted signalling (Gαqi9 chimera
and ERK1/2 activation) in one rare case (R138C) and nine
very rare cases (W22L, A52T, A74T, R138H, R138L, L166I,
R222H, R330W and I353T). Carriers of the 13 very rare loss-
of-function variants showed increased T2D risk establishing
a functional link between MTNR1B and T2D (see Karamitri
et al., 2013).

In conclusion, the genetic variability of theMTNR1B gene
in terms of non-synonymous variants has now been well

Figure 6
Distribution of non-synonymous MT1 (A) and MT2 (B) receptor variants identified in various human populations. Positions of variants are
highlighted in light brown. Typical signatures of MT receptors such as the 3.49NRY3.51 motif and the 7.49NAXXY7.53 motif are highlighted in
red. Residues suspected to be directly involved in melatonin binding (S3.35 and S3.39 in MT1 and H5.46 in both MT1 and MT2 receptors) are
highlighted with a blue circle. The putative palmitoylation site at C314 is indicated in MT1 receptors.
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defined and an association of very rare variants with T2D risk
established. Less is known about the variability of the
MTNR1A gene in terms of non-synonymous variants.

MT receptor mouse models – update
MT1

�/� mice were created in the late 1990s followed by the
generation of MT2

�/� mice in 2003 (Liu et al., 1997; Jin et al.,
2003). Studies using these mice have provided important in-
sights on the role that MT receptors play in the modulation
of many different biological functions. In MT1

�/� mice, but
not inMT2

�/�mice, the inhibitory effect of melatonin on neu-
ronal activity in the suprachiasmatic nucleus (SCN) is
impaired suggesting the involvement of MT1 receptors. In
contrast, in SCN slices from MT1

�/� mice melatonin
(1–10 pM) phase shifts the peak of circadian rhythms of neu-
ronal firing by approximately 3 h suggesting the involvement
of MT2 receptors (Liu et al., 1997; Dubocovich et al., 2005).
Blockade of this effect using the MT2 receptor-selective 4P-
PDOT antagonist confirmed the latter conclusion shaping a
pathway where MT2 phase shifts the peak of neuronal firing
through PLC-PKC signalling pathway (Mc Arthur et al.,
1997; Hunt et al., 2001; Dubocovich et al., 2005). Liu et al.
(1997) reported that the phase shift of neuronal firing
rhythms induced by 2-iodomelatonin (10 pM) was of smaller
magnitude in the SCN slice from MT1

�/� than in wild type
(WT) mice suggesting a role for the MT1 receptors in this re-
sponse (see detailed discussion in Dubocovich, 2007). To-
gether, these findings suggest a potential role for both MT1

and MT2 receptors in the phase shift of circadian rhythms
of neuronal firing in the SCN slice in vitro. The use of MT1

�/�

mice demonstrated that the MT1 receptor is required for the
melatonin-meditated phase shift of the onset of overt circa-
dian rhythm of locomotor activity (Dubocovich et al.,

2005). An independent study demonstrated that C3H/HeN
mice (melatonin-proficient) entrained faster to a phase ad-
vance of dark onset than the C57BL/6J mice (melatonin-defi-
cient), suggesting a facilitating role of endogenous melatonin
on circadian reentrainment (Pfeffer et al., 2012). However, we
should note that faster entrainment could also result from ge-
netic differences between the two mouse strains rather than
different endogenous melatonin levels (Adamah-Biassi et al.,
2013). In a mouse strain producing endogenous melatonin,
the faster entrainment to an abrupt advance of dark onset
persisted in MT1

�/� C3H/HeN mice but was lost in MT2
�/�

and double KOs (MT1
�/�/MT2

�/�) suggesting again the involve-
ment of MT2 receptors. This apparent contradiction could be
explained by the activation of MT2 and MT1 receptors by en-
dogenous and exogenousmelatonin, respectively, at different
periods of sensitivity (subjective night vs. subjective day, re-
spectively). Changes in efficacy could also result from desen-
sitization and/or internalization of MT receptors in response
to exposure to physiological and supraphysiological melato-
nin concentrations as demonstrated by the phase shift of
the peak of neuronal firing in the SCN by physiological levels
of melatonin, which involved the desensitization of MT2

receptors (Gerdin et al., 2004).
MT receptor KOmice have been also used to elucidate the

role played by these receptors in the regulation of the
sleep/wake cycle. In MT2

�/� NREM, sleep is decreased during
the light phase (i.e. during the time that mice normally
sleep), whereas MT1

�/� mice showed an increase in the
amount of NREM sleep during the dark phase (i.e. during ac-
tive phase) (Ochoa-Sanchez et al., 2011). Further analysis of
the data indicated that MT1 receptor signalling is implicated
in the modulation of the daily rhythm of REM sleep
(Ochoa-Sanchez et al., 2011). An additional study in which

Table 2
Biologically important MT1 receptor variants

Amino acid
change Type of variant Description Reference

I49N Missense mutation Rare variant identified in autism spectrum disorder patients,
impaired cell surface expression, melatonin binding, cAMP
inhibition and ERK1/1 activation

Chaste et al., 2010

R54W Missense mutation Common variant identified in control population without
obvious functional defect

Ebisawa et al., 1999

A157V Missense mutation Common variant identified in control population without
obvious functional defect

Chaste et al., 2010;
Ebisawa et al., 1999

G166E Missense mutation Common variant identified in control population, impaired
cell surface expression, reduced cAMP inhibition and ERK1/2
activation

Chaste et al., 2010

Y170X Nonsense mutation Rare variant identified in attention-deficit hyperactivity disorder
(ADHD) patient, premature STOP codon with impaired cell surface
expression and cAMP inhibition

Chaste et al., 2011

I212T Missense mutation Common variant identified in control population, impaired cell
surface expression, cAMP inhibition and reduced ERK1/2 activation

Chaste et al., 2010

A266V Missense mutation Common variant identified in control population with reduced
ERK1/2 activation

Chaste et al., 2010

K334N Missense mutation Rare variant identified in control population with reduced cAMP
inhibition

Chaste et al., 2010

Common [minor allelic frequency (MAF) >1%], rare (MAF 0.1–1%) variants.
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Table 3
Biologically important MT2 receptor variants

Amino acid
change Type of variant Description Reference

A8S Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

A13V Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

G21S Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

W22L Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, impaired Gi protein
activation

Bonnefond et al., 2012

G24E Missense mutation Common variant, not associated with type 2 diabetes risk
but associated with prevalence of obesity and increased
BMI shown in one study but not in another

Andersson et al., 2010;
Bonnefond et al., 2012;
Chaste et al., 2010;
Ebisawa et al., 1999

A25T Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

P36S Missense mutation Very rare variant identified in type 2 diabetes patients,
without obvious functional defect

Bonnefond et al., 2012

A52T Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, impaired Gi protein
activation

Bonnefond et al., 2012

L66F Missense mutation Very rare variant identified in control population without
obvious functional defect

Ebisawa et al., 1999

A74T Missense mutation Very rare variant identified in control population and type 2
diabetes patients, associated with type 2 diabetes risk,
impaired
Gi protein activation

Bonnefond et al., 2012

G109A Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

M120V Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

M120I Missense mutation Very rare variant identified in population with impaired
fasting glucose and control population without obvious
functional defect

Bonnefond et al., 2012

S123R Missense mutation Very rare variant identified in population with impaired
fasting glucose and control population without obvious
functional defect

Bonnefond et al., 2012

V124I Missense mutation Very rare variant identified in several populations including
type 2 diabetes and ADSD without obvious functional defect
in one study and impaired ERK1/2 activation in another

Andersson et al., 2010;
Bonnefond et al., 2012;
Chaste et al., 2010

R138C Missense mutation Rare variant, not associated with type 2 diabetes risk, no Gi
and ERK1/2 activation

Andersson et al., 2010;
Bonnefond et al., 2012;
Chaste et al., 2010

R138L Missense mutation Very rare variant identified in control population, associated
with type 2 diabetes risk, impaired Gi protein activation

Bonnefond et al., 2012

R138H Missense mutation Very rare variant identified in control population, associated
with type 2 diabetes risk, impaired Gi protein activation

Bonnefond et al., 2012

Y141F Missense mutation Very rare variant identified in type 2 diabetes patients, without
obvious functional defect

Bonnefond et al., 2012

M146V Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

R154H Missense mutation Very rare variant identified in control population and type 2
diabetes patients without obvious functional defect

Bonnefond et al., 2012

(Continues)
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double KOs (MT1
�/�/MT2

�/�) were used indicated that removal
of both receptors induced an increase in wakefulness and a re-
duction in REM sleep (Comai et al., 2013). Hence, these data
seem to indicate that removal of MT receptors may affect
wakefulness rather than sleep.

The effect of MT receptor removal has been also investi-
gated in the mouse retina, where these receptors are widely
distributed (Baba et al., 2009; Baba et al., 2013). Removal of ei-
ther receptor has profound effects on photoreceptors func-
tion as it abolishes the daily rhythms in the scotopic and
photopic electroretinogram (Baba et al., 2009; Alcantara-
Contreras et al., 2011; Sengupta et al., 2011). Such a result also
indicates that MT1 and MT2 receptors form heterodimers in
mouse photoreceptors (Baba et al., 2013). Further studies
have also demonstrated that removal of MT receptors in

addition affects the viability of the photoreceptors and reti-
nal ganglion cells during aging (Baba et al., 2009; Alcantara-
Contreras et al., 2011; Gianesini et al., 2016) as well as corneal
biology (Baba et al., 2015).

As mentioned before, recent studies have also implicated
MT receptors in the pathogenesis of T2D in humans
(Bouatia-Naji et al., 2009; Lyssenko et al., 2009; Bonnefond
et al., 2012). Thus, a few studies used MT receptor KO mice
to determine the mechanisms by which these receptors con-
tribute to regulation of glucose homeostasis and insulin sen-
sitivity (Stumpf et al., 2008; Muhlbauer et al., 2009;
Contreras-Alcantara et al., 2010). Mice lacking MT1 receptors
exhibit higher mean blood glucose levels than controls
(Muhlbauer et al., 2009) and tend to be more glucose intoler-
ant and insulin resistant than WT and MT2

�/� mice

Table 3 (Continued)

Amino acid
change Type of variant Description Reference

L166I Missense mutation Very rare variant identified in control population, associated
with type 2 diabetes risk, impaired Gi protein activation

Bonnefond et al., 2012

T201M Missense mutation Very rare variant identified in type 2 diabetes patients,
without obvious functional defect

Bonnefond et al., 2012

R222H Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, impaired Gi protein
activation

Bonnefond et al., 2012

I223T Missense mutation Very rare variant identified in type 2 diabetes patients,
without obvious functional defect

Bonnefond et al., 2012

R231H Missense mutation Rare variant, not associated with type 2 diabetes risk Andersson et al., 2010;
Bonnefond et al., 2012;
Chaste et al., 2010

A234T Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

E237K Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

S238G Missense mutation Very rare variant identified in type 2 diabetes patients,
without obvious functional defect

Bonnefond et al., 2012

K243R Missense mutation Common variant, not associated with type 2 diabetes risk Bonnefond et al., 2012

D246N Missense mutation Very rare variant identified in type 2 diabetes patients,
without obvious functional defect

Bonnefond et al., 2012

F250V Missense mutation Very rare variant identified in type 2 diabetes patients with
impaired ERK1/2 activation

Bonnefond et al., 2012

R316H Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

R330W Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, impaired Gi protein
activation

Bonnefond et al., 2012

R330Q Missense mutation Very rare variant identified in control population without
obvious functional defect

Chaste et al., 2010

A342V Missense mutation Very rare variant identified in type 2 diabetes patients,
without obvious functional defect

Bonnefond et al., 2012

I353T Missense mutation Very rare variant identified in type 2 diabetes patients and
control population, associated with type 2 diabetes risk,
impaired Gi protein activation

Bonnefond et al., 2012

A359E Missense mutation Very rare variant identified in control population without
obvious functional defect

Bonnefond et al., 2012

Common [minor allelic frequency (MAF) >1%], rare (MAF 0.1–1%) and very rare (MAF < 0.1%) variants.
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(Contreras-Alcantara et al., 2010). Furthermore, removal of
MT1 or MT2 receptors abolishes the daily rhythm in blood
glucose levels (Owino et al., 2016).

Finally, it is important to mention that although the
reproductive system of mice is not sensitive to photoperiod,
the development of MT receptor KOmice provided an impor-
tant tool for dissecting the mechanisms by which melatonin
regulates reproduction in photoperiodic species. For exam-
ple, MT1 receptor signalling controls the rhythmic expression
of the clock gene Period 1 in the pituitary gland (von Gall
et al., 2002), and further studies have shown that the rhyth-
mic expression of several other clock genes (Per1, Per 2, Bmal1
and Cry 1) in the mouse Pars tuberalis depends on MT1 recep-
tor signalling as well (Jilg et al., 2005). MT1 receptor signalling
has been also reported to be crucial for the photoperiodic
response of gene expression in the ependymal cell layer and
thus for the photoperiodic regulation of gonadal activity
(Sheynzon and Korf, 2006; Yasuo et al., 2009). Finally, we
should mention that a recent study reported that MT1 recep-
tor signalling plays a key role in photoperiodic programming
of serotonergic neurons as well as depression- and anxiety-
related behaviours in mice (Green et al., 2015).

In conclusion, studies in the last 20 years using MT recep-
tor KO mice have greatly helped to understand the role(s)
played by these receptors in the regulation of many physio-
logical functions, and they have provided important insights
on the mechanisms by which melatonin signalling affects
these functions.

Functional role of MT receptors in physiology
and pathophysiology
MT receptors are involved in many physiological processes
that will however not all be covered by this review but can
be consulted in other reviews (Dubocovich et al., 2010; Tosini
et al., 2012; Karamitri et al., 2013; Tosini et al., 2014; Johnston
and Skene, 2015). Here, we have focused our attention on two
major processes, the immune system and the CNS. Important
progress has been made recently in both fields, and links to
diseases have been established justifying a review of our

current knowledge on these aspects. Finally, we will make a
critical assessment of reports of receptor-independent effects
of melatonin, such as its binding to additional binding sites
and the intrinsic antioxidant and free radical scavenger prop-
erties of this hormone.

MT receptors in the immune system
The role of melatonin as a player in immunity, first proposed
by Berman in 1926, is now well accepted (Carrillo-Vico et al.,
2013). Several reports have demonstrated that melatonin
produced by the either pineal gland or immune cells can
regulate the activation of an immune response. Melatonin
derived from activated human lymphocytes induces the
synthesis of IL-2 and IL-2 receptors (Carrillo et al., 2004;
Carrillo-Vico et al., 2013). Luzindole and targeted deletion
of the MNTR1A gene (Lardone et al., 2006; Lardone et al.,
2010) block the effect of lymphocyte-derived melatonin. In-
terestingly, daily rhythms of plasma melatonin and IL-2 are
transiently lost in non-infectious human inflammatory
conditions, and the recovery of the IL-2 rhythm follows the
restoration of the daily melatonin rhythm (Pontes et al.,
2007). In addition, the daily and seasonal variation ofmelato-
nin production contributes to the seasonality of some
diseases. In multiple sclerosis (MS), melatonin blocks the
differentiation of Th17 cells and boosts the generation of
protective type 1 regulatory T-cells by an MT1 receptor-
dependent mechanism, resulting in the seasonal variation
of MS symptoms (Farez et al., 2015). Seasonality of regular
immunity is also related to changes in the melatonin system
(Weil et al., 2015). In the spleen of several species, extended
light exposure decreases MT1 receptor expression (Maestroni,
1993; Lahiri and Haldar, 2009; Yadav and Haldar, 2013). In
healthy conditions, rolling and adhesion of neutrophils to
the endothelial cell layer are inhibited by activation of MT2

receptors and ligands binding to the putative MT3 binding
site, respectively (Lotufo et al., 2001). In contrast, other
effects of melatonin such as the inhibition of transcription
factors that mediate acute inflammation induced by LPS
(Tamura et al., 2010) or N-formyl-l-methionyl-l-leucyl-l-
phenylalanine (fMLP) (Cernysiov et al., 2015) were not

Table 4
Mutations in the MTNR1B gene associated with susceptibility to type 2 diabetes

Amino acid
change Type of variant Description Reference

A42P Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, no melatonin
binding and signalling

Bonnefond et al., 2012

L60R Missense mutation Very rare variant identified in control population and
type 2 diabetes patients, associated with type 2 diabetes
risk, no melatonin binding and signalling

Andersson et al., 2010;
Bonnefond et al., 2012

P95L Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, no melatonin binding
and signalling

Bonnefond et al., 2012

Y308S Missense mutation Very rare variant identified in type 2 diabetes patients,
associated with type 2 diabetes risk, no melatonin binding
and signalling

Bonnefond et al., 2012

Very rare (minor allelic frequency <0.1%) variants.
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blocked by luzindole suggesting a mode of action indepen-
dent of MT receptors.

MT receptors also play an important role in promoting
engulfing of bacteria, fungi and parasites. Melatonin facili-
tates the invasion of erythrocytes by Plasmodium falciparum
(Hotta et al., 2000), the invasion of macrophages by
Leishmania amazonensis (Laranjeira-Silva et al., 2015) and
the phagocytosis of zymosan by colostrum polymorphonu-
clear and mononuclear cells (Pires-Lapa et al., 2013) and the
RAW 264.7 macrophage cell line (Muxel et al., 2012). The
entrance of different microorganisms in polymorphonuclear
and mononuclear cells, including colostral and lineage-
established cell lineages, is blocked by luzindole. Indeed,
parasites, bacteria and fungi activate the NF-κB pathway in
these two cell models resulting in the expression of
arylalkyl-N-acetyltransferase and the synthesis of melatonin.
Luzindole and 4P-PDOT blocked the expression of dectin-1, a
protein that is important for phagocytosis, suggesting the
participation of MT2 receptors in this effect (Muxel et al.,
2012; Pires-Lapa et al., 2013; Muxel et al., 2016). Thus, the
evaluation of binding parameters and functional states of
MT receptors in immune-competent cells needs to consider
the masking effect of on-demand synthesized melatonin.

Although complex, the role of melatonin on the immune
system is now beginning to be understood. MT1 and MT2

receptor types appear to play different roles, with MT1 recep-
tors as the main target in acquired immune response andMT2

receptors as the target for innate immune responses.

MT receptors in the CNS
MT receptors are widely expressed throughout the CNS and
are particularly well characterized in the SCN of the hypo-
thalamus, where they are known to inhibit neuronal firing
and mediate the phase shifting effect of melatonin on circa-
dian rhythms (see above). In addition to its chronobiotic
effect, melatonin participates in the modulation of neuronal
functions, neurodevelopment at early and late stages (Kong
et al., 2008; Chen et al., 2014) and affects brain structures
underlying sleep regulation (Ochoa-Sanchez et al., 2011),
drug-related learning (Wang et al., 2005; Savaskan et al.,
2006) and reward (Hutchinson et al., 2012; Clough et al.,
2014). MT receptors mediate the melatonin-induced increase
in dendrite length, thickness and complexity of hippocampal
neurons, as these effects were partially blocked by luzindole
(Dominguez-Alonso et al., 2015). Similarly, melatonin-
induced differentiation and maturation of adult neural stem
cells were almost abolished in the presence of luzindole (de
la Fuente Revenga et al., 2015). A recent study using MT2

�/�

mice showed that MT2 receptors were essential for axogenesis
and for the formation of functional synapses (Liu et al., 2015).
MT2 receptors were also involved in melatonin-induced
protection against oxidative stress and memory impairment
in a mouse model of ageing (Shin et al., 2015). Recent
advances in the understanding of presynaptic MT receptors
and their role in neurodegenerative diseases are discussed in
the following sections.

Presynaptic MT receptors. The role of melatonin on the
regulation of calcium-dependent dopamine release from
axon terminals in brain and amacrine cells in the retina was
shown in the early 1980s (Zisapel and Laudon, 1982;

Dubocovich, 1983). However, more direct and global proof
for the presence of presynaptic melatonin heteroreceptors
(i.e. receptor for a transmitter or hormone other than the
neuron’s own neurotransmitter) capable of regulating
neurotransmitter release was still insufficient. A recent
protein interaction network analysis has established that
MT1, but not MT2 receptors, are expressed on presynaptic
axon terminal membranes in the hypothalamus, striatum,
cortex and hippocampus, where they are part of the
presynaptic protein network (Benleulmi-Chaachoua et al.,
2016). Notably, this study shows a strong physical
association between MT1 receptors and presynaptic proteins
such as synapsin, SNAP25, Munc-18 and voltage-gated
Cav2.2 channels. Interaction with the latter was responsible
for constitutive inhibition of calcium entry by MT1

receptors in a Gβγ-dependent manner (Benleulmi-
Chaachoua et al., 2016).

These recent findings provide strong support for the
involvement of MT receptors in synaptic functions, particu-
larly in neurotransmitter release as indicated by previous
studies. Indeed, activation of MT receptors has been impli-
cated in the inhibition of 3H-dopamine release from the
ventral hippocampus, medulla pons, preoptic area and hypo-
thalamus (median and posterior) (Zisapel and Laudon, 1982;
Dubocovich, 1983). This effect followed a diurnal rhythm in
the hypothalamus with a maximum and a minimum
observed at ZT 5 and ZT 13–15, respectively (Zisapel et al.,
1985). 6-Chloromelatonin-mediated modulation of
noradrenaline turnover via activation of presynaptic melato-
nin heteroreceptors was demonstrated in hypothalamus
(Fang and Dubocovich, 1990). In this model, luzindole,
applied during the night when melatonin levels are high,
accelerated noradrenaline turnover suggesting the involve-
ment of MT receptors stimulated by endogenous melatonin
(Fang and Dubocovich, 1990). The presence of presynaptic
MT heteroreceptors on retino-hypothalamic fibres innervat-
ing superficial retinorecipient layers of the avian optic tectum
has been inferred by the presence of 2-[125I]-MLT binding
sites and its decrease following transsection of the retinotec-
tal pathway (Krause et al., 1992; Krause et al., 1994). The func-
tion of these presynaptic MT receptors is currently unknown,
but a modulatory role of these receptors on the light input
pathway to visual and circadian target responses is likely. Re-
cent electrophysiological evidence suggests that melatonin
acting through presynaptic MT receptors increases gluta-
matergic neurotransmission in the habenula, an effect
blocked by luzindole (Evely et al., 2016). Finally, it is worth
mentioning in this context that MT receptors were first
shown to be involved in the inhibition of depolarization-
evoked calcium-dependent neurotransmitter (dopamine)
release from amacrine cells in the chick and rabbit retina
(Dubocovich, 1983; Dubocovich, 1985). These mammalian
functional presynaptic heteroreceptors were used to establish
the first structure–activity relationship for MT receptor li-
gands, which correlated with the pharmacological profile of
MT2 receptors (Dubocovich et al., 1997), and to identify and
pharmacologically characterize the first competitive MT re-
ceptor ligands, luzindole and 4P-PDOT (Dubocovich, 1988).

In summary, proteomic studies of the MT1 receptor inter-
actome has revived interest in the function of presynapticMT
receptors and reinforced previous functional studies
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indicating the role of presynaptic MT receptors in neuro-
transmitter release. Use of MT receptor KOmouse models will
be particularly instrumental in this context, as they will clar-
ify the respective roles of MT1 and MT2 receptors. Based on
current data, a predominant role of MT1 receptors in presyn-
aptic functions, such as neurotransmitter release, and a po-
tential role of MT2 receptors in axogenesis and synapse
formation can be postulated.

MT receptors in neurodegenerative diseases. Altered expression
of MT receptors has been frequently reported in
neurodegenerative diseases and psychiatric disorders,
including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD) and ASD. In AD patients,
MT1 receptor expression in the SCN and MT2 receptor
expression in the hippocampus are reduced compared to
control subjects in post-mortem brains (Wu et al., 2007).
Intriguingly, higher expression of MT1 receptors was
detected in hippocampal arteries of AD brains (Savaskan
et al., 2002), which might be due to a compensatory
response to the low levels of circulating melatonin in these
patients (Zhou et al., 2003). These observations suggest that
the expression of MT receptors under pathological
conditions can be differentially regulated depending on the
brain area. In PD patients, down-regulation of MT1 and MT2

receptor expression was observed in the substantia nigra
and amygdala, the two most relevant areas in PD
pathogenesis (Adi et al., 2010). Small case–control studies
accessing MT1 and MT2 receptor expression in HD patients
showed no changes in the SCN (van Wamelen et al., 2013),
while decreased expression of MT1, but not of MT2

receptors, was detected in the striatum (Wang et al., 2011).
Interestingly, the progressive loss of MT1 receptors correlates
with HD severity, also confirmed in a mouse model of HD
(Wang et al., 2011). In ASD patients, no information on MT1

and MT2 receptor expression is available, but several MT1

and MT2 receptor mutants with strongly reduced function
have been identified (Chaste et al., 2010).

Additional evidence supports the emerging concept ofMT
receptor dysfunction as a permissive condition favouring the
development and/or progression of neurodegenerative
diseases. The neuroprotective effect of endogenous and exog-
enous melatonin has been demonstrated in different systems
(see Escribano et al., 2014). In a neuroinflammatory model
induced by LPS administration, cerebellar neuronal death
was observed only in animals pretreated with luzindole
(Pinato et al., 2015). Similarly, depletion of endogenous
melatonin by pinealectomy caused spontaneous neuronal
loss in the hippocampal CA1 area, which was prevented by
treatment with agomelatine (Tchekalarova et al., 2016). The
requirement of MT receptors for the neuroprotective action
of melatonin has also been elegantly demonstrated in a series
of in vitro studies in which luzindole treatment or siRNA-
mediated knockdown of MT1 receptors enhanced neuronal
vulnerability to cell death (Wang et al., 2011). Different cell
stressor conditions such as temperature shift or treatments
with hydrogen peroxide, TNF or with the HD-related protein
huntingtin, resulted in reduced levels of MT1 receptors.
Accordingly, the AD-related neurotoxic amyloid β peptide
(Aβ) impairs the function of MT receptors (Cecon et al.,
2015), implying that these receptors and melatonin

signalling are among the primary molecular targets affected
in the course of AD.

Insights in the effects of MT receptors on cognitive func-
tions are also obtained from MT receptor KO mice. MT2

�/�

mice show impaired long-term potentiation and perfor-
mance in memory tests (Larson et al., 2006). However, the
double KOMT1

�/�/MT2
�/�mice show no clear differences from

WT mice in memory test performances and show increased
long-term potentiation responses, even though the deletion
of MT receptors negatively affected the expression of impor-
tant proteins for synaptic activity, such as phospho-synapsin
and spinophilin (O’Neal-Moffitt et al., 2014). The relevance
of MT receptors for cognitive performance was clearly shown
with an AD mouse model lacking MT1 and MT2 receptors, in
which melatonin treatment failed to improve performance
on hippocampal-dependent spatial learning tasks, as
observed in the AD mouse model in the presence of MT1

and MT2 receptors. Impressively, the lack of MT receptors
per se markedly increased the mortality in young AD mice
(O’Neal-Moffitt et al., 2015). Finally, the therapeutic use of
melatonin has been proposed and tested in a number of
murine models and clinical trials in several neurodegenera-
tive conditions, including AD (Olcese et al., 2009; Cardinali
et al., 2010; Peng et al., 2013; Wade et al., 2014; Zhang et al.,
2016), amyotrophic lateral sclerosis (Weishaupt et al., 2006;
Zhang et al., 2013), PD (Medeiros et al., 2007; Naskar et al.,
2015; Zhang et al., 2016) and HD (van Wamelen et al.,
2015). The therapeutic use of melatonin is usually associated
with sleep improvement and better alignment of circadian
parameters, and its beneficial effect on neuroprotection and
cognitive performance is starting to be recognized (Joshi
et al., 2015; Wade et al., 2014). Dysfunction or down-
regulation of MT receptors is likely to be part of the primary
pathophysiological mechanisms rather than a consequence
of advanced neurodegeneration and, thus, prophylactic
hormonal replacement and/or early stage intervention strate-
gies to restore MT receptor expression and function might
provide the most efficient result.

Taken together, the subcellular localization and role of
MT receptors in neuronal functions and their participation
in neurodegererative diseases are now starting to be under-
stood and suggest a broad modulatory role of melatonin in
neuronal function, development and plasticity.

Melatonin as antioxidant and free radical
scavenger
The IUPHAR classifies only clearly identified pharmacological
targets in mammals. However, some effects of melatonin
persist even in the absence of MT1 andMT2 receptors or upon
complete pharmacological blockade of MT receptors, indicat-
ing the existence of MT receptor-independent mechanisms,
which are still not fully understood. In addition, MT
receptor-dependent and -independent mechanisms can
participate simultaneously, as demonstrated by O’Neal-
Moffitt et al. (2015) regarding the antioxidant and
pro-cognitive effects of melatonin on AD mice models, for
example. Two main mechanisms have been put forward to
explain the antioxidant and free radical properties of melato-
nin: these are melatonin binding to the MT3 binding site
(Nosjean et al., 2000; Dubocovich et al., 2003) and to the
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cytosolic enzyme quinone reductase 2 (QR2) (Nosjean et al.,
2000; Dubocovich et al., 2003), and melatonin scavenging
of free radicals, as this hormone has been suggested to be an
electron donor (see Tan et al., 2015). Binding of melatonin
to intracellular targets is readily achieved, due to the hydro-
philic nature of this indolamine. Melatonin binds with
nanomolar affinity toMT3/QR2 binding sites but shows a phar-
macological profile distinct from MT1 and MT2 receptors. The
order of affinities for the MT3 binding site is 2-iodomelatonin
> N-acetyl-serotonin >melatonin (Dubocovich, 1995; Nosjean
et al., 2000), the order for MT1 and MT2 receptors is 2-
iodomelatonin > melatonin >>>>N-acetyl-serotonin. MCA-
NAT (5-methoxycarbonylamino-N-acetyltryptamine), prazosin
and N-acetyltryptamine are selective ligands for the membrane
MT3 binding site (Dubocovich, 1995; Molinari et al., 1996;
Nosjean et al., 2000). Nosjean et al. (2000) showed that a cyto-
solic binding site identified as QR2 has the pharmacological
characteristics of themembraneMT3 binding site. QR2 is a cyto-
solic flavin adenine dinucleotide (FAD)-dependent flavoprotein
that reducesmenadione and other quinones by usingN-ribosyl-
andN-alkyldihydronicotinamides as the co-substrates (Liao and
Williams-Ashman, 1961), thus acting as a detoxifying enzyme
to increase the antioxidant defence (Jockers et al., 2008). There
are still openquestions as towhether themelatonin binding site
on QR2 corresponds to the MT3 binding site, in particular
regarding those sites that are membrane-associated.

Several physiological effects of melatonin such as inhibition
of leukocyte adhesion to rat endothelial cell layers were
mimicked byMT3 agonists (Lotufo et al., 2001). Similar observa-
tions were made for the expression of adhesion molecules by
granulocytes (Cernysiov et al., 2015), the increase in dopamine
levels in chick retina (Sampaio Lde et al., 2014) and the reduc-
tion of intraocular pressure (IOP) in rabbits (Alarma-Estrany
et al., 2009). However, it has been questioned whether the func-
tional effects of MCA-NAT are indeed mediated by QR2, as the
lack of QR2 did not prevent the MCA-NAT-induced reduction
on IOP, and overexpression of QR2 did not promote receptor-
like responses (Vincent et al., 2010). In addition, MCA-NAT
turned out to be a partial agonist for MT1 and MT2 receptors at
submicromolar concentrations suggesting the possibility that
some of the effects of MCA-NAT might be mediated by MT1
and/or MT2 receptors (Vincent et al., 2010).

Melatonin and its metabolites, with or without open ring
structures, have been described as potent electron donors.
Cyclic-3-hydroxymelatonin, N1-acetyl-5-methoxykynuramine
(secondary metabolite) (AMK, tertiary metabolite) and
N-acetyl-N-formyl-5-methoxykynuramine (AFMK, quaternary
metabolite) scavenge free radicals neutralizing reactive oxygen
and nitrogen species (Ressmeyer et al., 2003; Tan et al., 2007;
Zavala-Oseguera et al., 2014). Hence, one melatonin molecule
and its associated metabolites could scavenge a large number
of reactive species, and thus, the overall antioxidant capacity
of melatonin is believed to be greater than that of other well-
known antioxidants, such as vitamin C and vitamin E, under
in vitro or in vivo conditions (Gitto et al., 2001; Sharma and
Haldar, 2006; Ortiz et al., 2013). However, the ability of melato-
nin in reducing oxidative stress does not only rely on donating
electrons. Indeed, by acting onMT1 andMT2 receptors, low pM
and low nM concentrations of melatonin increased the expres-
sion or activity of enzymes such as superoxide dismutase, cata-
lase and glutathione peroxidase, which are involved in oxygen

detoxification (Rosen et al., 2009). Thus, depending on the dose
of exogenous or endogenous melatonin, receptor-dependent or
-independentmechanismsmay be involved. A further complex-
ity in the interplay between receptor-dependent and -
independent processes could arise from the fact thatmelatonin,
by changing the redox state of the cell, might influence
receptor-mediated functions. Indeed, the function of several
GPCRs has been shown to be sensitive to the cellular redox
state. Whether this is also the case for MT receptors has to be
addressed in future studies. Although endogenous melatonin
levels are typically considered to range from low pM to low
nM concentrations, much higher concentrations may be
reached locally in the brain (Legros et al., 2014) and in activated
immune cells (Conti et al., 2000). In addition, melatonin can be
actively takenup through theGLUT1 glucose transporter (Hevia
et al., 2015). In conclusion, the role of the MT3 binding site is
still not fully understood and warrants further attention.
Concerning the free radical scavenging properties ofmelatonin,
it is surprising that opposing opinions are still in the literature.
Overall, the antioxidant effects of melatonin appear to
be complex, relying on a mixture of MT receptor-dependent
and -independent processes.
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