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Abstract

Speech contains patterns that can be altered by the mood of an individual. There is an increasing 

focus on automated and distributed methods to collect and monitor speech from large groups of 

patients suffering from mental health disorders. However, as the scope of these collections 

increases, the variability in the data also increases. This variability is due in part to the range in the 

quality of the devices, which in turn affects the quality of the recorded data, negatively impacting 

the accuracy of automatic assessment. It is necessary to mitigate variability effects in order to 

expand the impact of these technologies. This paper explores speech collected from phone 

recordings for analysis of mood in individuals with bipolar disorder. Two different phones with 

varying amounts of clipping, loudness, and noise are employed. We describe methodologies for 

use during preprocessing, feature extraction, and data modeling to correct these differences and 

make the devices more comparable. The results demonstrate that these pipeline modifications 

result in statistically significantly higher performance, which highlights the potential of distributed 

mental health systems.

Keywords

Bipolar Disorder; Mood Modeling; Mobile Health; Speech Analysis

1. INTRODUCTION

Bipolar disorder (BP) is characterized by swings in mood between mania, or heightened 

mood, and depression, or lowered mood. BP is pervasive, affecting 4% of people in the 

United States [1]. Both mania and depression profoundly impact the behavior of affected 

individuals, resulting in potentially devastating economic, social, and professional 

consequences. The current treatment paradigm involves routine monitoring of individuals 

through regular clinical visits. However, there are insufficient resources to ensure that all 

individuals with BP have access to this type of care [2]. This scarcity of available care points 

to the need for novel approaches to regular mood monitoring and the potential of 

computational approaches to serve as auxiliary methods. In this paper, we present an 

investigation into automatic speech analysis using mobile phone conversations as a way to 

predict mood, as well as the complications that arise from the diversity of real world 

recordings.
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Research has demonstrated that speech patterns are affected by mood and contribute to 

accurate clinical assessments [3]. For example, both the Hamilton Depression Scale 

(HAMD) [4] and Young Mania Rating Scale (YMRS) [5] use clinical observations of speech 

to determine the severity of depression or mania [4, 5]. There is an opportunity to discover 

how speech cues can be automatically processed to augment objective measures available in 

clinical assessments. Mobile phones provide an effective platform for naturally monitoring 

these speech cues and have shown promise for BP [6, 7, 8]. However, changes in recording 

quality between different types of phones can severely decrease the predictive capabilities of 

a system. These include clipping, loudness, and background noise.

Much mood speech research has been centered around identifying speech features for 

recognizing depression. Among these, are pitch, energy, rhythm, and formants [9, 10, 11, 12, 

13, 14]. Short pauses and increased pitch have been correlated with mania [10, 12, 14, 15, 

16]. However, much of the work in identifying speech associated with mania has focused on 

differentiating it from schizophrenia and cannot be directly applied [17, 18]. Many mood 

related studies collected their speech from controlled environments [10, 12, 13] or used a 

single type of recording device [7, 8, 19] and do not necessarily reflect the variations in 

background noise and microphone quality present in real world recordings. As such, their 

models would be difficult to apply to a widely distributed mobile health system.

In this paper, we focus on one of the challenges associated with real-world distributed mood 

recognition: variability in recording. We examine the differences between the two phones 

used in this study and analyze preprocessing and modeling methods that allow us to build 

models of mood across the database as a whole. These methods include declipping [20], 

noise-robust segmentation [21], feature normalization [13], and multi-task learning [22]. We 

provide evidence that mood-related changes in speech are captured in this model using the 

structured assessment calls captured from different phone types. Please see Figure 1 for a 

system overview.

The novelty of our approach is the investigation into acoustic variations caused by recording 

with different types of phones and the preprocessing and modeling changes necessary to 

detect mood under these conditions. Our results suggest that this pipeline of methods 

including preprocessing, feature extraction, and data modeling can effectively increase the 

performance of these types of mixed device systems. The results show a significant increase 

in performance from AUCs of 0.57±0.25 and 0.64±0.14 for manic and depressed, 

respectively, to 0.72±0.20 and 0.75±0.14, highlighting the importance of proper processing 

of acoustic data from multiple sources.

2. PRIORI DATASET

The PRIORI Dataset is an ongoing collection of smartphone conversational data (reviewed 

and approved by the Institutional Review Board of the University of Michigan, 

HUM00052163). The participants are recruited from the HC Prechter Longitudinal Study of 

Bipolar Disorder at the University of Michigan [23]. The inclusion criteria are a diagnosis of 

rapid-cycling BP, type I or II. The exclusion criteria are a history of substance abuse and 

neurological illness.
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Participants are enrolled for six to twelve months and are provided with an Android 

smartphone with the secure recording application (PRIORI app) installed. The app runs in 

the background and turns on whenever a phone call is made, recording only the participant’s 

side of the dialog. The speech is encrypted in real-time, stored on the phone, and then 

uploaded to a HIPAA-compliant server.

2.1. Data Description

The recorded calls are designated into one of two groups: assessment and personal. 

Participants take part in weekly calls with our study clinicians in which the HAMD and 

YMRS interviews are conducted. The assessment calls establish a ground truth for the 

participant’s mood over the previous week. The remainder of the data are referred to as 

personal calls. The personal calls represent all calls that take place outside of the clinical 

context. These calls are not annotated to ensure patient privacy and are not used in this study.

The PRIORI Bipolar Dataset currently contains 37 participants who have made 34,830 calls 

over 2,436 hours. Each participant has been on the study for an average of 29.2 weeks with a 

standard deviation of 16.4 weeks. Additionally, there have been 780 recorded weekly 

clinical assessments. Only these structured calls are used in this study. Twenty-three of these 

assessments were transcribed with speech and silence locations to aid in the determination of 

segmentation parameters.

2.2. Label Assignment

The HAMD and YMRS scales are continuous measures of mood, ranging from a score of 0 

(not symptomatic) to 34 (highly symptomatic). In this paper, we treat the prediction problem 

as classification, binning the HAMD and YMRS into categories of symptomatic (depressed 

or manic, respectively) and asymptomatic (euthymic). Scores under a threshold of 6 on both 

scales are assigned a label of euthymic. Scores above 10 on the HAMD and below 6 on 

YMRS are assigned a label of depressed. Scores above 10 on the YMRS and below 6 on the 

HAMD are assigned a label of manic. Data in six-ten range on either scale and data with 

labels above 10 on both scales are excluded. Table 1 shows the class distribution.

The large standard deviations seen in Table 1 demonstrate the widely varying amounts of 

mood episodes between individuals with BP. Additionally, some individuals have disparities 

among the proportions of times spent in each mood. For example, one participant 

experienced 27 weeks of euthymia and two weeks of mania. Techniques to handle this 

imbalance are discussed in Section 5.

2.3. Phone Model Differences

The Samsung Galaxy series of phones, including the S3, S4, and S5 are used by participants. 

Only two of the participants were given S4s and their data are excluded from this study. The 

distribution of subjects with S3s and S5s can be seen in Table 2. The two models of phone 

include model-specific microphones and processing. One of the effects of this recording and 

processing is clipping. Clipping occurs most often in the S3, with an average of 2.74% of 

speech samples at maximum range. This sensitivity is also demonstrated by the average root 
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mean square value of 0.397 for the S3. Additionally, the noise is much more pronounced, as 

seen in the lower signal to noise ratio of 21.2 dB for the S3.

3. PREPROCESSING

The two phones used in this study have different acoustic properties. The S3, compared to 

the S5, has more clipping, higher volume, and a sensitivity to background noise. Because of 

this, it is necessary to carefully preprocess the data before feature extraction using 

declipping, audio normalization, and noise-robust segmentation in order to make calls from 

different devices more comparable.

Declipping

The declipping algorithm Regularlized Blind Amplitude Reconstruction (RBAR) [20] was 

used to approximate the original signal. This is a closed form solution approximation of an 

algorithm called Constrained Blind Amplitude Reconstruction (CBAR) [24]. Each algorithm 

extrapolates the clipped sections of audio beyond their original values, while minimizing the 

second derivative of the signal, and have been shown to improve the performance of 

automatic speech recognition [20, 24]. Both algorithms ignore unclipped regions, beneficial 

for audio recordings that have variable amounts of clipping, as seen in Table 2.

Audio Normalization

The audio signal is scaled by dividing by the maximum absolute value. This ensures that the 

signal ranges from −1 to 1, which is necessary after running declipping, as it extrapolates the 

signal beyond these bounds. It also ensures that the loudness between the two phone types, 

as seen in Table 2, is more comparable.

Segmentation

Each call is segmented using an extension of Sadjadi and Hansen’s algorithm [21], which is 

robust to variation in noise. This is necessary, given the differences in SNR between the 

phones (Table 2). The algorithm extracts five signals representative of speech likelihood, 

including: harmonicity, clarity, prediction gain, periodicity, and perceptual spectral flux. 

These are then combined using principal component analysis (PCA). The final signal is the 

largest eigenvalue. It is smoothed by a Hanning window of 25ms and normalized by 

subtracting by the 5th percentile over the call and dividing by the standard deviation. This 

ensures that signals from different calls all share a similar silence baseline. Segments of 

25ms are created wherever the combo signal exceeds a 1.8 threshold. Overlapping segments 

are merged and any silences less than 700ms are removed. These parameters were found by 

validating over the transcribed assessments for segment alignment. Segments are further 

divided into subsegments of 2s with 1s overlap. Segments less than 2s are discarded. 

Constant window sizes are used to ensure that variations in the features are not caused by 

changes in segment size [25]. The full segmentation process is shown in Figure 2.
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4. FEATURE EXTRACTION

Rhythm Features

Individuals in manic or depressed episodes exhibit changes in the rhythm of their speech 

[26]. Rhythm features are calculated for each subsegment by first extracting the voicing 

envelope. The envelope is used to calculate the spectral power ratio and spectral centroid. 

The envelope is decomposed into two intrinsic mode functions (IMF) using empirical mode 

decomposition [27]. Tilsen and Arvaniti [25] empirically demonstrated that the extracted 

IMFs are reflective of syllable- and word-level fluctuations. The IMFs are used to extract 

five segment-level features: the power ratio between the two IMFs and the mean and 

standard deviation of the instantaneous frequencies associated with each IMF.

Call-Level Statistics

The seven rhythm features are transformed into call-level features by taking the mean, 

standard deviation, skewness, kurtosis, minimum, maximum, range, and 1st, 10th, 25th, 50th, 

75th, 90th, and 99th percentiles of the subsegment measures. Additionally, the differences 

between the 50th and 25th, 75th and 50th, 75th and 25th, 90th and 10th, and 99th and 1st 

percentiles are included. This set is augmented with the percentage of the call that is above 

10%, 25%, 50%, 75%, and 90% of the range. Finally, the call-level feature trend is captured 

by fitting a linear regression model to the features extracted over each segment (R2, mean 

error, and mean squared error). This results in a total of 217 features.

Feature Normalization

Call-level features are Z-normalized either (1) globally, using the mean and standard 

deviation of all training data, or (2) by subject, using the mean and standard deviation of 

each subject’s own data. Previous research has shown that normalization by subject can 

reduce the disparity between subject feature distributions caused by speaker differences and 

aid in the detection of mood [13]. This method may also help reduce some of the differences 

in subject feature distributions due to differences in phones.

5. DATA MODELING

The classification goal is to identify if a given call is (1) from a manic or euthymic episode 

or (2) from a depressed or euthymic episode. Subjects are only included in analysis if they 

have at least six total assessments in order to ensure enough data to process features by 

subject. Additionally, subjects must contain at least two euthymic calls and two manic/

depressed calls. This ensures that there is enough data to measure test performance. With 

these restrictions, 15 subjects are used when considering mania (12 S3s and 3 S5s) and 18 

subjects are used when considering depression (11 S3s and 7 S5s).

Support Vector Machines (SVM) [28] are used to classify the speech. SVMs learn a decision 

boundary between two classes of data with an explicit goal of identifying a boundary that 

maximally separates the two classes. The classifiers are implemented using both linear and 

radial basis function (RBF) kernels. Euthymic samples are given a weight equal to the 

number of manic/depressed samples divided by the number of euthymic samples. Manic/
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depressed samples are given a weight of one. This ensures that there is no bias towards the 

mood with more samples by increasing the penalty for misclassification of minority labels. 

Multi-task SVMs [22] are also used for certain experiments. This algorithm weights the 

kernel function using a parameter rho in order to decrease the importance of data from a 

different task. In this case, the task is considered to be the phone type. On one extreme, rho 

can be selected to behave as a single-task SVM and consider the tasks to be equal. On the 

other extreme, the selected rho can consider the tasks to be completely independent.

The models are trained using leave-one-subject-out cross-validation, ensuring that there is 

no overlap between the speakers used to train and test the system. The model parameters 

include: kernel type (RBF vs. linear), gamma (RBF only), number of features with respect to 

a ranked list, cost parameter (C), and rho (multi-task only). The parameter combination is 

chosen to optimize leave-one-training-subject-out cross-validation, where the contribution of 

each training subject is proportional to his/her amount of data.

Features are ranked using a heuristic of Weighted Information Gain (WIG). The heuristic 

was chosen due to the observed subject-specific label imbalance, which may result in the 

identification of features that are tied to subject identity, rather than mood. This can result in 

a classifier learning to associate all instances with a single mood state from a biased subject. 

WIG allows for each sample to be ascribed an importance that ensures both classes 

contribute equally from each subject. This is implemented using the weighted entropy 

functions described in [29]. Each sample is given a weight equal to the total number of 

samples in its subject divided by the number of occurrences of its label in its subject. This 

ensures that minority and majority samples are given equal weight over each subject, while 

subjects are given weight proportional to their number of samples.

The system performance was measured using Area Under the Receiver Operating 

Characteristic Curve (AUC). AUC assesses the ability of a system to correctly rank pairs of 

instances from opposing classes. It has a chance rating of 0.5 and ideal rating of 1.

6. RESULTS AND DISCUSSION

In this section we demonstrate the ability to differentiate between euthymic and 

symptomatic moods, despite using two types of mobile phones with different acoustics. The 

results are presented in Table 3. In addition to reporting the combined test performance of 

both phone types, results are broken down into individual types. However, all phones from 

both types are always used to train models. A paired t-test with a significance of 0.05 is used 

to compare results to baseline performance and a significant difference is marked with an 

asterisk and bolded.

Baseline Performance

The baseline system uses global normalization and does not include declipping. The results 

in Table 3a show an AUC of 0.64±0.14 for depressed and a near chance performance of 

0.57±0.25 AUC for manic. However, the three S5s performed better than the S3s in the 

manic test with 0.78±0.31 AUC. This could indicate that even though the S5 only makes up 

20% of the phones, its higher quality recordings allow for it to perform well in testing. 
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Alternately, the speaker population that makes up those subjects using the S5s could be more 

homogeneous. The S5 continues to outperform the S3 in the rest of the manic experiments.

Evaluation of Declipping

Table 3b shows the results of declipping when using global normalization. While the 

performance of the depressed tests remain mostly unaffected, the manic test increases 

significantly to an AUC of 0.70±0.17. This is due to the improvement in the S3, where larger 

amounts of clipping occurred, as seen in Table 2. We hypothesize that the stronger 

improvement in manic tests, compared with depressed tests, is due to the fact that manic S3 

calls have significantly more clipping than euthymic and depressed S3 calls (unpaired t-test, 

p=0.05). The percent of clipping in euthymic, manic, and depressed S3 calls are 

2.73±1.25%, 3.21±1.13%, and 2.41±1.07%, respectively.

Evaluation of Segmentation

The effect of segmentation was studied by eliminating the algorithm described in Section 3. 

Instead, the 2 second subsegments were taken over the entire call - silences included. It 

performed the best of all tests with significant increases from the baselines for both moods 

(Table 3c). However, we hypothesize that this is actually due to the rhythm features 

indirectly capturing information about the assessment structure. For example, an individual 

who is euthymic would have more silence due to their brief interview answers. This 

highlights one of the potential pitfalls to avoid when working with structured calls to train a 

model to recognize acoustic aspects of mood. For this reason, it is necessary to use accurate 

segmentation to avoid these misleading results.

Evaluation of Feature Normalization

Normalization by subject significantly increased the performance of both manic and 

depressed tests from baseline, as shown in Table 3d. This method has the ability to correct 

for different feature distributions among speakers, as explained in [13]. These results 

demonstrate that this correction can also benefit systems with variable recording devices of 

different quality.

Multi-task SVM Analysis

The use of a multi-task SVM can also control for the variability in device types by giving 

lower weight to data from different phone types and higher weight to data from the same 

phone types. Table 3e shows a significant improvement in manic from baseline by selecting 

a low value for rho and treating data from across different phone types as less informative. 

Depression does not see much improvement, as a high rho value is selected, indicating that 

the data is already comparable without preprocessing. This gives further evidence to the 

reason preprocessing works well for manic speech but has little effect on depressed speech. 

Another multi-task experiment was run using the preprocessing methods that worked best 

for each mood - RBAR declipping and subject normalization for manic and subject 

normalization for depressed. These results can be seen in Table 3f, with the highest manic 

AUC of 0.72±0.20, which is significantly better than baseline.
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7. CONCLUSION

This paper presents methods to improve the comparability of data collected from across 

devices of different acoustics. This is essential for any mobile health system using speech 

that aims to be widely distributed, as the prospect of varying audio quality is unavoidable. 

Our results demonstrate that through certain preprocessing, feature extraction, and data 

modeling techniques it is possible to mitigate the effects of differing amounts of clipping, 

loudness, and noise. This is best shown by the increase in performance from the baseline 

AUCs of 0.57±0.25 for manic and 0.64±0.14 for depressed to the significantly higher AUCs 

of 0.72±0.20 and 0.75±0.14, respectively. This excludes the results without segmentation, as 

those features capture the structure of the mood interview instead of the characteristics of the 

speech. There was not a comprehensive solution for both mood types, which indicates the 

need for careful consideration of all steps along any pipeline.

The ultimate goal will be for the system to be totally passive, requiring no active input from 

the BP patient or the clinic. Current methods using structured assessments are not enough, as 

they require weekly interview calls. However, the transition to personal calls will require 

solutions to many problems, including how to control for the confounding factors of 

variations in subject symptomatology, episode patterns, and conversational styles. The 

refinement of techniques developed in this study to increase device comparability may be 

adaptable to these issues. In particular, it will be necessary to determine how to adapt the 

system to particular individuals and determine which features are indicative of mood and not 

some other misleading factor. Although, if effective, it will greatly assist in the way that 

mental health care is managed.
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Fig. 1. 
Audio pipeline divided into three stages of preprocessing (Section 3), feature extraction 

(Section 4), and data modeling (Section 5).
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Fig. 2. 
Segments of speech are found. Segments of 2 seconds or longer are divided into 

subsegments of 2 seconds in 1 second steps.
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Table 1

Distribution of assessment classes of mood. The total number of observations of each mood class is given. The 

mean and standard deviation of observations for each class per subject is shown, along with the average 

percentage of each.

Mood Total # Per Subject % Per Subject

Euthymic 275 7.9±7.7 30%

Manic 107 3.1±4.0 12%

Depressed 247 7.1±7.5 28%

Mixed 95 2.7±3.6 13%

Excluded 175 5.0±4.7 17%
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Table 2

Differences in data amounts and acoustics between the Galaxy S3 and S5. The percent clipped assessments 

(Assess.) and the mean percent of samples per call clipped are shown. Root mean square (RMS) values are 

calculated to show the loudness for each device microphone. Signal to noise ratio (SNR) is calculated as the 

relative power in the speech verses silence regions in decibels (dB).

Phone #Subjects #Assess. %Clipped RMS SNRdB

S3 18 456 2.74% 0.397 21.2

S5 17 287 0.02% 0.066 25.1

Both 35 743 1.69% 0.269 23.1
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Table 3

Classification results using various methods. Bolded* AUCs denote results significantly better than baseline 

(paired t-test, p=0.05).

Model Manic AUC Depressed AUC

S3 0.52±0.22 0.66±0.17

S5 0.78±0.31 0.62±0.09

Both 0.57±0.25 0.64±0.14

(a) No Declipping and Global
Normalization (Baseline)

Model Manic AUC Depressed AUC

S3 0.68±0.16 0.62±0.14

S5 0.79±0.21 0.69±0.18

Both 0.70±0.17* 0.65±0.15

(b) RBAR Declipping and
Global Normalization

Model Manic AUC Depressed AUC

S3 0.73±0.22 0.74±0.10

S5 0.79±0.37 0.80±0.21

Both 0.74±0.24* 0.77±0.15*

(c) No Speech Segmentation
(Silence Included)

Model Manic AUC Depressed AUC

S3 0.66±0.15 0.73±0.15

S5 0.71±0.35 0.78±0.10

Both 0.67±0.19* 0.75±0.14*

(d) No Declipping and
Subject Normalization

Model Manic AUC Depressed AUC

S3 0.67±0.20 0.67±0.21

S5 0.72±0.41 0.65±0.11

Both 0.68±0.23* 0.66±0.18

(e) Multi-Task SVM Using
Baseline Preprocessing

Model Manic AUC Depressed AUC

S3 0.71±0.19 0.66±0.14

S5 0.78±0.23 0.79±0.13

Both 0.72±0.20* 0.71±0.15

(f) Multi-Task SVM Using
Best Preprocessing
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