
OPG-Fc but Not Zoledronic Acid Discontinuation Reverses 
Osteonecrosis of the Jaws (ONJ) in Mice

Rafael Scaf de Molon1,2, Hiroaki Shimamoto3, Olga Bezouglaia1, Flavia Q Pirih4, Sarah M 
Dry5, Paul Kostenuik6, Rogely W Boyce7, Denise Dwyer7, Tara L Aghaloo1, and Sotirios 
Tetradis1,8

1Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA

2Department of Diagnosis and Surgery, School of Dentistry at Araraquara, S, ã, o Paulo State 
University, Araraquara, Brazil

3Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, 
Osaka, Japan

4Division of Associated Specialties, UCLA School of Dentistry, Los Angeles, CA, USA

5Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 
Los Angeles, CA, USA

6Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann 
Arbor, MI, USA

7Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, 
USA

8Molecular Biology Institute, UCLA, Los Angeles, CA, USA

Abstract

Osteonecrosis of the jaws (ONJ) is a significant complication of antiresorptive medications, such 

as bisphosphonates and denosumab. Antiresorptive discontinuation to promote healing of ONJ 

lesions remains highly controversial and understudied. Here, we investigated whether 

antiresorptive discontinuation alters ONJ features in mice, employing the potent bisphosphonate 

zoledronic acid (ZA) or the receptor activator of NF-κB ligand (RANKL) inhibitor OPG-Fc, 

utilizing previously published ONJ animal models. Mice were treated with vehicle (veh), ZA, or 

OPG-Fc for 11 weeks to induce ONJ, and antiresorptives were discontinued for 6 or 10 weeks. 

Maxillae and mandibles were examined by µCT imaging and histologically. ONJ features in ZA 

and OPG-Fc groups included periosteal bone deposition, empty osteocyte lacunae, osteonecrotic 
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areas, and bone exposure, each of which substantially resolved 10 weeks after discontinuing OPG-

Fc but not ZA. Full recovery of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclast 

numbers occurred after discontinuing OPG-Fc but not ZA. Our data provide the first experimental 

evidence demonstrating that discontinuation of a RANKL inhibitor, but not a bisphosphonate, 

reverses features of osteonecrosis in mice. It remains unclear whether antiresorptive 

discontinuation increases the risk of skeletal-related events in patients with bone metastases or 

fracture risk in osteoporosis patients, but these preclinical data may nonetheless help to inform 

discussions on the rationale for a “drug holiday” in managing the ONJ patient.
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Introduction

Antiresorptive medications, such as bisphosphonates (BPs) and the receptor activator of NF-

κB ligand (RANKL) inhibitor denosumab impede osteoclastic bone resorption and are used 

in the clinic to manage bone diseases, such as primary or metastatic bone malignancy and 

osteoporosis. These medications, studied in cancer and postmenopausal women with 

osteoporosis populations, reduce skeletal-related events (SREs), decrease tumor burden, 

reduce bone pain, decrease incidence of osteoporotic fractures, and help improve patients’ 

quality of life.(1–4) Despite their distinctly different pharmacologic mechanism of action, 

BPs and denosumab are each associated with osteonecrosis of the jaw (ONJ), an infrequent 

but serious adverse effect, particularly when administered at high doses.(5) Antiresorptive-

related ONJ is defined as exposed bone or bone that can be probed through an intraoral or 

extraoral fistula in the maxillofacial region that has persisted for more than 8 weeks in 

patients on current or previous treatment with antiresorptive agents and no history of 

radiation therapy to the jaws or obvious metastatic disease to the jaws.(6–8) The term 

medical-related ONJ (MRONJ) was recently introduced to include ONJ cases associated 

with antiangiogenic therapies.(7)

Although ONJ has been described for more than a decade,(9,10) the etiology and 

pathogenesis of the disease remain largely unknown.(5,11–13) Osteoclast inhibition and bone 

remodeling suppression, inflammation and/or infection, inhibition of angiogenesis, soft 

tissue toxicity, and altered immune cell function are among the hypotheses proposed to 

underlie ONJ development and progression.(5,11–13) Clinical observations and experimental 

findings provide support for several of these hypotheses, suggesting that ONJ is probably a 

multifactorial disease influenced by many variables.(7)

Because antiresorptive medications with distinct pharmacologic function induce similar 

incidence of ONJ, osteoclastic inhibition and bone turnover suppression appear central in 

antiresorptive-related ONJ.(5,11–13) To that effect, discontinuation of antiresorptive treatment 

before tooth extraction or other dental surgical intervention or after ONJ development has 

been proposed as potentially beneficial in improving osteoclast function recovery, which 

could, in turn, increase bone turnover and improve bone healing.(7,14–16) However, such 
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recommendations have only a theoretical basis, and clinical or experimental data supporting 

the benefit of antiresorptive drug withdrawal in preventing ONJ development or promoting 

resolution are lacking.(7,17) Furthermore, the consequences of such “drug holidays” on the 

progression of SREs in cancer patients or fragility fractures in osteoporosis patients remain 

unclear. As such, an important first step in informing treatment planning decisions is to 

understand whether discontinuation of antiresorptive treatments mitigates the risk of 

developing ONJ or fosters the resolution of established ONJ.(7,8)

Animal models recapitulating ONJ-like lesions in mice, rats, minipigs, and dogs treated with 

bisphosphonates have provided important insights into ONJ pathophysiology.(18–29) 

Moreover, utilizing OPG-Fc and RANK-Fc as surrogates for denosumab,(30) we reported for 

the first time ONJ-like lesions in the presence of periapical disease or spontaneous 

periradicular inflammation in mice treated with the RANKL inhibitors,(31,32) thus 

supporting the central role of osteoclastic inhibition in ONJ pathogenesis. Similar ONJ-like 

changes were reported more recently in mice that underwent tooth extractions and were 

treated with an antibody against mouse RANKL.(33)

In this study, utilizing ONJ animal models, we explored the effects of zoledronic acid (ZA) 

or OPG-Fc discontinuation on radiographic and histologic features of established ONJ in 

mice. Our findings indicate that, within the experimental time frame, OPG-Fc but not ZA 

discontinuation reversed features of osteonecrosis in ONJ animal models.

Materials and Methods

Animal care

Mice and surgical procedures were handled according to the guidelines of the Institutional 

Animal Care and Use Committee of the University of California, Los Angeles. We followed 

a randomized, prospective, controlled, animal model design following all the 

recommendations of the ARRIVE (Animal Research: Reporting In Vivo Experiments) 

guidelines for the execution and submission of studies in animals (Kilkenny and colleagues). 

Mice were kept in the animal facilities with controlled temperature (23°C ± 2°C), humidity, 

and a 12-hour light/dark cycle. Throughout the experimental period, mice were housed in 

plastic cages, fed a standard laboratory diet, and given water ad libitum. A total of 144 10-

weekold C57BL/6J wild-type male mice (Jackson Laboratories, Bar Harbor, ME, USA) with 

average weight of 25 g were randomly divided into three experimental groups of 48 animals 

that received intraperitoneal (ip) injections of endotoxin-free saline (group veh) two times 

per week, 10 mg/kg rat OPG-Fc (composed of the RANKL-binding domains of 

osteoprotegerin linked to the Fc portion of IgG,(32,34,35) kindly provided by Amgen, Inc, 

Thousand Oaks, CA, USA) twice per week (group OPG-Fc), or 200 µg/kg zoledronic acid 

(Z-5744, LKT Laboratories, St. Paul, MN, USA) twice per week (group ZA). These doses 

were used to increase the incidence of ONJ-like lesions in the mice, as described previously.

Periapical disease induction

Experimental periapical disease was performed as described.(29,32,36,37) Briefly, the crowns 

of the right mandibular 1st and 2nd molars were drilled utilizing a stainless-steel ¼ size 
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round bur in a high-speed handpiece, avoiding furcal perforation, and the root canals were 

left exposed to the oral environment, resulting in pulpal necrosis and subsequent periapical 

infection. The crowns of the left 1st and 2nd molars were kept intact.

Spontaneous naturally occurring maxillofacial abscesses

Naturally occurring, spontaneous maxillofacial abscesses have been described in mice.(38) 

Hair inserts into the gingival sulcus and results in bacterial colonization and reproducible, 

severe periradicular osteolysis.(38–40) Such diseased maxillary sites, identified by 

periradicular osteolysis by µCT imaging, were compared with sites with healthy 

dentoalveolar structures.(31)

Antiresorptive administration and serum TRACP-5b measurement

Mice were pretreated with veh, OPG-Fc, or ZA for 3 weeks, and periapical disease was 

induced. Animals continued to receive veh, OPG-Fc, and ZA for 8 additional weeks, after 

which antiresorptives were discontinued (Fig. 1A). Blood was collected via retro-orbital 

bleeding after 11 weeks of the experiment (at the end of antiresorptives treatment) and 2, 4, 

6, and 10 weeks after antiresorptive withdrawal. Serum tartrate-resistant acid phosphatase 5b 

(TRACP-5b) was measured by enzyme immunoassay (RatTRAP; JDS, Gaithersburg, MD, 

USA).

Animal euthanization and analyses

Sixteen mice from each of the veh, OPG-Fc, and ZA groups were euthanized via isoflurane 

overdose at 11 weeks (time of antiresorptive discontinuation), at 17 weeks (6 weeks after 

discontinuation), and at 21 weeks (10 weeks after antiresorptive discontinuation). The 

maxillae, mandibles, and femurs were fixed in 4% paraformaldehyde for 48 hours and stored 

in 70% ethanol.

Micro-computed tomography (µCT) scanning

Maxillae and mandibles were imaged using a µCT scanner (µCT Skyscan 1172; Skyscan, 

Kontich, Belgium) at 10µmresolution, as described.(29,32) For linear measurements, axial 

slices were converted to DICOM format and imported in the Dolphin Imaging software 

(Chatsworth, CA, USA). Periapical bone loss, lamina dura thickness, periodontal ligament 

(PDL) space width, lingual bone thickness, and cemento-enamel junction (CEJ) to alveolar 

bone crest (ABC) distance were measured as described.(29,31,32) Bone volume (BV), tissue 

volume (TV), and bone volume fraction (BV/TV) of the alveolar were measured using the 

CTAn software (Skyscan).

Femurs were imaged utilizing the µCT scanner at 12 µm resolution. Starting 100 µm 

proximal to the distal growth plate, 200 axial slices were selected. BV, TV, BV/TV, 

trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb. Sp) 

were determined using the CTAn software. The measurement terminology and units used for 

µCT analysis were those recommended by the Nomenclature Committee of the American 

Society for Bone and Mineral Research.(41)
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Histology and TRAP staining

Mandibles, maxillae, and femurs were decalcified in 14.5% EDTA for 3 weeks and paraffin 

embedded, and 5 µm sections were obtained. Hematoxylin and eosin (H&E)-stained sections 

were digitally scanned using the Aperio AT automated slide scanner (Aperio Technologies, 

Inc, Vista, CA, USA). Using the ruler tool in Aperio ImageScope software, the crestal 1 mm 

of the alveolar bone was marked and all measurements were performed in this area for 

mandible and maxilla.

The epithelium to alveolar crest distance was measured in the palatal side of the maxilla and 

in the lingual side of the mandible. The number of osteocytic lacunae and empty osteocytic 

lacunae and the total bone area and osteonecrotic area (defined as five or more contiguous 

empty osteocytic lacunae) were measured. To quantify periosteal bone thickness, the Aperio 

ruler tool was used to measure the three greatest areas of the buccal periosteal thickness that 

were then averaged.

To quantify osteoclast number, sections of the mandible, maxilla, and femur were stained 

using the leukocyte acid phosphatase kit (Sigma-Aldrich, St. Louis, MO, USA) and TRAP+ 

cells adjacent to the bone surface were counted. TRAP+ cells were measured for 8 mice per 

group. All histology and digital imaging were performed at the Translational Pathology Core 

Laboratory (TPCL) at UCLA.

Statistics

Analyses were performed using GraphPad Prism Software (Graph-Pad Software, Inc, La 

Jolla, CA, USA). Group measures were expressed as mean ± the standard error of the mean 

(SEM). Statistical significance was assessed using one-way analysis of variance (ANOVA) 

followed by post hoc Tukey’s test for multiple comparisons among groups. Data between 

groups (healthy versus diseased) were compared using the Student’s t test. Categorical data 

(Table 1) were analyzed using the Fisher’s exact test.

Results

Serum TRACP-5b levels increased after OPG-Fc but not after ZA discontinuation

Serum TRACP-5b levels were measured at the end of antiresorptive treatment (0 weeks: 

immediately after the last injection and 11 weeks after the beginning of the experiment), and 

2, 4, 6, and 10 weeks after drug discontinuation (13, 15, 17, and 21 weeks after the 

beginning of the experiment). For the veh group, serum TRACP-5b levels remained 

relatively steady with a slight decline over time. After 11 weeks of treatment, ZA or OPG-Fc 

significantly decreased serum TRACP-5b levels in all animals, confirming the inhibition of 

osteoclastic function and absence of neutralizing antibody production to OPG-Fc.(42) These 

TRACP-5b levels remained unchanged for all groups 2 weeks after antiresorptive 

discontinuation. Interestingly, by 4 to 6 weeks post-OPG-Fc discontinuation, TRACP-5b 

rose above baseline and then returned to baseline by 10 weeks. TRACP-5b post-ZA 

discontinuation remained at reduced levels for 4 to 6 weeks and progressively returned to 

baseline by 10 weeks (Fig. 1B).
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OPG-Fc but not ZA discontinuation reversed radiographic features of ONJ

The effect of antiresorptives and drug discontinuation on maxilla, mandible, and femur was 

assessed by µCT. Healthy maxillae in all groups showed normal alveolar crest extending 

immediately below the cemento-enamel junction (CEJ), covering most of the root and the 

1st and 2nd molar root furcation and absence of bone resorption and/or bone expansion (Fig. 

2A–C; Supplemental Fig. S1A–C). In contrast, diseased veh-treated mice showed altered 

alveolar bone morphology with large loss of alveolar crest height; bone loss covering the 1st, 

2nd, and 3rd molars that in the majority of animals extended almost to the root apex 

surrounding the entire root; and significant buccal and palatal bone expansion of the alveolar 

ridge. These changes were similar for all time points (Fig. 2D, G, J; Supplemental Fig. S1D, 
G, J). In the diseased site of OPG-Fc- and ZA-treated mice, bone loss was also present. 

However, the extent of bone loss was significantly decreased and was associated with large 

areas of periosteal bone apposition in the buccal and palatal side of the maxillae that resulted 

in substantial bone expansion (Fig. 2E, F; Supplemental Fig. S1E, F). Discontinuation for 6 

or 10 weeks of OPG-Fc but not ZA reversed these effects, such that the OPG-Fc and veh 

groups appeared similar and distinct from the ZA group (Fig. 2H, I, K, L; Supplemental Fig. 

S1H, I, K, L). Similar findings were observed for the mandibular alveolar ridge in nondrilled 

and drilled sites of veh, OPG-Fc-, and ZA-treated animals (Supplemental Fig. S2).

We then quantified radiographic changes among the various groups.(29,32) In the nondrilled 

side of all animals, a short apex to bone distance was observed (Fig. 3A–C). Significant 

distance was observed for the drilled site of veh animals at 11 weeks that continued to 

increase over time (Fig. 3D, G, J, M, arrowheads). As expected, OPG-Fc and ZA at 11 

weeks reduced periapical bone loss, reflected by shorter apex to bone distance (Fig. 3E, F, 
M). Discontinuation of OPG-Fc reversed this effect, evidenced by a significant increase of 

the apex to bone distance at 17 and 21 weeks (Fig. 3H, K, N, O, arrowheads). On the other 

hand, ZA discontinuation had no effect in periapical bone loss (Fig. 3I, L, N, O). Similar 

observations were found in maxillae with spontaneous periradicular bone loss. Both 

antiresorptive treatments attenuated alveolar bone loss at 11 weeks. Six and 10 weeks of 

OPG-Fc, but not ZA, discontinuation reversed the protection of alveolar bone loss that was 

similar to veh-treated mice (Supplemental Fig. S3).

Next, we examined changes of the PDL space width and lamina dura thickness at the 

furcation area of the mandibular molars.(29,32) In nondrilled teeth of veh-, OPG-Fc-, and ZA-

treated animals, a continuous PDL space and uniform lamina dura that increased in 

thickness with antiresorptive treatment were present (Fig. 4A–C, thin arrows and 

arrowheads). In the drilled side of veh-treated mice, there was increased width of the PDL 

space and loss of lamina dura that progressed over time (Fig. 4D, G, J, thin arrows and 

arrowheads, and Fig. 4M, P). Both antiresorptive treatments preserved PDL space width and 

thickened lamina dura at 11 weeks (Fig. 4E, F, M–R). OPG-Fc versus ZA discontinuation 

resulted in a significant reduction in the thickness of lamina dura and increase in PDL space 

width at 17 and 21 weeks (Fig. 4H, K, N, O, Q, R, thin arrows and arrowheads). ZA 

discontinuation had no effect compared with the week 11 measurements (Fig. 4I, L, N, O, Q, 
R).
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The bone changes appeared to extend beyond the confines of the periodontal area to the 

adjacent alveolar bone (Fig. 5). Significant osteolysis with exuberant expansion of the 

alveolar bone that increased over the time was noted in the diseased versus healthy site of 

veh mice (Fig. 5A, D, G, J, M–O, thin arrows). As previously reported,(29,32) antiresorptive 

treatment inhibited bone osteolysis at 11 weeks (Fig. 5B, C, E, F, M), with an associated 

exuberant bone deposition on the buccal and palatal side of the alveolar ridge (Fig. 5B, C, E, 
F, M, arrowheads). Importantly, 6 and 10 weeks of OPG-Fc discontinuation reduced bone 

buccal and palatal thickness to levels similar to the veh group (Fig. 5). In contrast, ZA 

discontinuation had no effect on alveolar bone structure compared with the 

prediscontinuation levels (Fig. 5H, I, K, L, N, O). Similar findings were observed at the 

mandibular alveolar ridge (Supplemental Fig. S4).

Periapical disease decreased BV and BV/TV compared with the healthy site, and 

antiresorptives significantly increased BV and BV/TV compared with the veh group at 11 

weeks. Significant increase in BV and BV/TV was observed between diseased versus 

healthy sites in OPG-Fc and ZA mice (Fig. 6A, B). OPG-Fc discontinuation decreased BV 

and BV/TV in the drilled site that returned to values similar to the veh group (Fig. 6C–F). In 

contrast, ZA discontinuation at 6 and 10 weeks had no effect on the BV and BV/TV levels 

(Fig. 6C–F). Similar observations were made for the BV and BV/TV values of the maxillae 

(Supplemental Fig. S5).

OPG-Fc but not ZA discontinuation reverses histologic features of ONJ

As reported,(29,31,32) histologically healthy sites in all experimental groups and time points 

showed normal marginal epithelium (Fig. 7A–C; Fig. 8A–C, red arrows), PDL and alveolar 

bone (Fig. 7A–C; Fig. 8A–C, turquoise arrows). Abundant inflammatory infiltrate of the 

gingival and connective tissue (Fig. 7D, G, J, black arrows), severe destruction of the 

periradicular bone (Fig. 7D, G, J, turquoise arrows), migration of the marginal epithelium 

(Fig. 7D, G, J, red arrows), and bone expansion (Fig. 7D, G, J, blue arrows) were observed 

in the diseased site of veh-treated animals at all time points. Intense infiltration of 

inflammatory cells was noted in the diseased site of OPG-Fc- and ZA-treated mice at 11 

weeks of treatment (Fig. 7E, F; Fig. 8E, F, black arrows); bone loss was present but 

appeared less compared with the veh animals (Fig. 7E, F; Fig. 8E, F, turquoise arrows). 

Empty osteocytic lacunae, areas of osteonecrosis (Fig. 7E, F; Fig. 8E, F, yellow arrows), and 

abundant periosteal bone formation (Fig. 7E, F; Fig. 8E, F, blue arrows) were found for both 

OPG-Fc and ZA mice. In several animals, necrotic bone was not covered by epithelium and 

was exposed to the oral cavity (Fig. 7E, F; Fig. 8E–F, green arrows; Table 1).

After OPG-Fc discontinuation, extensive osteolysis was noted in the maxillae, similar to the 

veh-treated animals (Fig. 7H, K; Fig. 8H, K). Importantly, areas of osteonecrosis and bone 

exposed to the oral cavity significantly decreased by 6 weeks and were almost completely 

absent by 10 weeks of OPG-Fc discontinuation. Significant bone resorption and decreased 

areas of necrosis were associated with epithelial migration to areas of vital bone and with 

decreased number of animals with bone exposure (Fig. 7H, K; Fig. 8H, K; Table 1). In 

contrast, 6 and 10 weeks after ZA discontinuation did not alter these histologic features (Fig. 
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7I, L; Fig. 8I, L). Similar observations were made for healthy and drilled sites of the 

mandible for all experimental groups (Supplemental Fig. S6A–L).

In maxillae, increased marginal epithelium to alveolar bone crest (ABC) distance for 

diseased sites of veh animals at 11 weeks that continued to increase over time was found. As 

reported,(29,31,32) antiresorptive treatment significantly decreased this distance because of 

reduced bone resorption (Fig. 9A–C). After OPG-Fc discontinuation, the epithelium to ABC 

distance progressively increased, as a result of increased bone resorption, and was 

statistically different compared with healthy sites or ZA-treated diseased sites (Fig. 9B). Six 

weeks after ZA discontinuation, the epithelium to ABC distance remained low and 

significantly different from the other groups (Fig. 9B). At 10 weeks after ZA 

discontinuation, an increase in the epithelium to ABC distance was noted but remained 

statistically different compared with the other groups (Fig. 9C). Similar results were found 

for the nondrilled and drilled sites of the mandible (Supplemental Fig. S7A–C). A 

significant increase in periosteal thickness was noted in the diseased versus healthy side for 

all treatment groups at all experimental time points. No consistent effects were noted by 

antiresorptive treatment or drug discontinuation (Fig. 9A–C).

The number of empty osteocytic lacunae (Fig. 9G–I) and osteonecrotic surface area (Fig. 

9J–L) were measured in the maxilla. No statistically significant presence of empty 

osteocytic lacunae was detected in healthy or diseased sites of veh mice or healthy sites of 

OPG-Fc or ZA mice at any time point. As previously reported,(29,31,32) significant increases 

in empty osteocytic lacunae (Fig. 9G–I) and osteonecrotic area (Fig. 9J–L) were present in 

the diseased sites of mice on antiresorptive treatment at 11 weeks. Six and 10 weeks after 

OPG-Fc discontinuation, a significant reduction of empty osteocytic lacunae and 

osteonecrotic area was noted, to levels statistically similar to those of healthy sites and 

significantly lower than the diseased site of the ZA group. Interestingly, at 6 and 10 weeks 

after ZA discontinuation, significant increases in empty osteocytic lacunae number and 

osteonecrotic areas were observed. Comparable findings were observed for nondrilled and 

drilled sites of the mandible (Supplemental Fig. S7D–I).

Few TRAP+ cells were found at the healthy site of veh animals but were significantly 

increased at the diseased site of veh animals at all time points (Fig. 10A, D). TRAP+ cells 

were absent in OPG-Fc-treated animals in both healthy and diseased sites at 11 weeks (Fig. 

10B, E, M). As previously reported,(29,31,32) at 11 weeks TRAP+ cells in the diseased sites 

of ZA mice increased but demonstrated round morphology, with pyknotic nuclei, and were 

detached from the bone surface (Fig. 10C, F, M). After OPG-Fc discontinuation, TRAP+ 

cells in the diseased sites increased to higher levels than all other groups at 17 weeks and 

higher than the healthy sites of OPG-Fc animals at 21 weeks (Fig. 10H, K, N, O). A slight 

significant increase in TRAP+ cell number was found in the diseased sites after ZA 

discontinuation. Similar results were found for the nondrilled and drilled sites of the 

mandible (Supplemental Fig. S8A–O).

Table 1 summarizes radiographic and histologic findings. Disease prevalence, which 

included periradicular and periapical disease, ranged from 47% to 64%, with no statistical 

differences among treatment groups or time points. Small areas of osteonecrosis were found 
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in 2 veh-treated mice at 17 weeks and 1 at 21 weeks. Osteonecrosis was present in 75% of 

OPG-Fc and 63.4% of ZA animals at 11 weeks with no difference between antiresorptive 

groups but statistically different compared with veh. Bone exposure was observed only in 

animals on antiresorptives, ranging from 40.6% of the OPG-Fc and 52.6% of ZA-treated 

mice, respectively. After OPG-Fc discontinuation, areas of osteonecrosis and bone exposure 

were markedly diminished. Osteonecrosis incidence decreased to 42.1% and to 32.5% at 6 

and 10 weeks after OPG-Fc discontinuation, respectively. Bone exposure decreased to 7.9% 

at 6 weeks after discontinuation. Importantly, at 10 weeks after OPG-Fc discontinuation, no 

animal with bone exposure was found. In contrast, 6 and 10 weeks of discontinuation in ZA-

treated mice had no effect on incidence of osteonecrosis or bone exposure compared with 

prediscontinuation levels at 11 weeks.

To assess effects of antiresorptive discontinuation in other bones, we investigated 

radiographic changes in the femur of all groups and time points. As expected, after 11 weeks 

of treatment, antiresorptives caused an increase in all bone radiographic indices including 

BV, BV/TV, trabecular number, and trabecular thickness. OPG-Fc induced a slightly higher 

trabecular thickness and smaller trabecular number compared with ZA. OPG-Fc 

discontinuation resulted in a progressive decrease in all measurements to veh levels. 

However, ZA discontinuation showed little effect and all radiographic indices remained high 

at both the 17- and 21-week time points (Fig. 11A–M).

To explore the effects of various treatments on osteoclast inhibition in femurs, TRAP+ cells 

were measured in the proximal femur. The number of TRAP+ cells in veh mice did not 

change over time (Fig. 11N, Q, T). At 11 weeks, no TRAP+ cells were observed in OPG-Fc 

mice (Fig. 11O), whereas increased TRAP+ cell numbers were found in ZA mice. However, 

in ZA mice, the osteoclasts had a round shape and were detached from the bone surface 

(Fig. 11P), with similar morphologic features as observed in the maxilla (Fig. 10) and 

mandible (Supplemental Fig. S8). At 6 and 10 weeks after OPG-Fc discontinuation, the 

number of TRAP+ cells significantly increased compared with the veh group (Fig. 11R, U, 
W). ZA discontinuation had no effect on TRAP+ cell numbers.

Discussion

BPs are antiresorptive agents widely used in bone diseases with elevated osteoclastic 

activity, such as osteoporosis, cancer metastases to bone, multiple myeloma, and 

hypercalcemia of malignancy. Recently, the US FDA approved denosumab, an anti-RANKL 

monoclonal antibody, for the prevention of skeletal-related events in patients with bone 

metastases from solid tumors, for the management of unresectable giant cell tumors, for 

increasing bone mass in nonmetastatic prostate patients with androgen deprivation therapy, 

breast cancer patients receiving adjuvant aromatase inhibitor therapy, and men with 

osteoporosis, and for the treatment of postmenopausal and male osteoporosis.(43–45) 

Although both BPs and denosumab target the osteoclast, their mechanism of function is 

distinctly different.

BPs have high affinity to bone surfaces, where they remain inactive until they are released 

during osteoclastic bone resorption.(46–50) Because they target bones with high turnover, BP 
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skeletal distribution is not homogeneous. The availability of exposed hydroxyapatite, blood 

supply, and the ratio of bone surface to bone volume are parameters that may contribute to 

this uneven distribution.(51) On the other hand, denosumab, a high-affinity, highly specific 

monoclonal antibody for human RANKL, inhibits osteoclastic formation, function, and 

survival.(52,53) Upon subcutaneous injection, denosumab is absorbed via the lymphatic 

system, with subsequent drainage into the vasculature. Three phases of drug distribution are 

described: a prolonged absorption phase with maximum serum concentration at 5 to 21 days, 

a long duration phase with a 32-day maximum half-life, and a rapid terminal phase when 

serum concentrations reach levels below 1000 ng/mL.(54,55)

Given their distinct biodistribution and mechanism of action, BP versus denosumab 

inhibition of osteoclastic function has distinct temporal dynamics. Because of their 

incorporation in the bone mineral, BPs can exert their anti-osteoclastic effects long after 

their administration.(46) In contrast, denosumab does not require binding to bone mineral to 

exert its anti-osteoclastic activity(30) and demonstrates rapid reversibility of its antiresorptive 

effects.(43)

Here, we investigated osteoclast recovery by measuring serum TRACP-5b levels before and 

at various times after antiresorptive discontinuation. As expected, ZA treatment significantly 

attenuated TRACP-5b levels. After ZA discontinuation, TRACP-5b levels gradually returned 

to baseline, remaining lower than the veh group for up to 6 weeks and reaching veh group 

levels by 10 weeks after drug withdrawal. These findings resemble data from the FLEX 

randomized trial showing that in osteoporotic patients receiving alendronate for 5 years, BP 

discontinuation results in a gradual increase of serum bone resorption and formation markers 

measured at 3 and 5 years after discontinuation.(56) A faster recovery of bone turnover 

markers is reported at 1 year after BP discontinuation in osteoporotic patients receiving 

risedronate for 3 years.(57) The HORIZON-Pivotal Fracture Trial (PFT) reported that annual 

ZA infusions are efficacious in decreasing bone turnover and reducing fracture risk in 

postmenopausal women with osteoporosis.(58) Interestingly, in the HORIZON extension, 

discontinuation of iv ZA infusions for a period of 36 months showed that bone turnover 

markers increase only slightly compared with controls continuing to receive ZA.(59) These 

variations in resolution of bone turnover indices after BP discontinuation could reflect 

differences in BP biodistribution, bone mineral affinity, and mode of administration.

The RANKL inhibitor OPG-Fc was used as a surrogate to denosumab because the latter 

does not recognize the mouse RANKL.(30) OPG-Fc treatment significantly reduced serum 

TRACP-5b levels that declined to levels lower than veh- or ZA-treated animals. 

Interestingly, at 4 and 6 weeks after OPG-Fc discontinuation, TRACP-5b levels rose above 

those in the veh-treated group and declined to baseline by 10 weeks. These results parallel 

observations from studies in postmenopausal patients with osteoporosis, wherein denosumab 

discontinuation led to recovery of bone resorption markers that transiently exceeded 

pretreatment levels before recovering to normal.(60) At the tissue level, denosumab treatment 

reduces bone turnover, including eroded surfaces and tetracycline labeling.(61,62) After 

denosumab cessation, bone histomorphometry indices return to pretreatment levels, 

indicating that the effects of denosumab on bone turnover are fully reversible.(63)
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Given the great importance of osteoclasts in bone healing and in periapical and periodontal 

disease progression(64–67) and the central role of bone remodeling suppression in ONJ 

pathophysiology,(5,11,12) discontinuation of oral bisphosphonates in patients with low bone 

turnover marker values was recommended to allow recovery of osteoclastic function before 

dental surgical procedures.(68) However, such recommendations have been questioned, and 

the significance of oral bisphosphonate discontinuation in the management of the ONJ 

patient remains controversial.(69)

Recommendations for discontinuation of antiresorptive medication by professional 

organizations are cautious and based on theoretical assumptions. For osteoporotic patients, 

the American Dental Association (ADA) Council on Scientific Affairs recommends that 

before a dental procedure, “discontinuation of antiresorptive therapy should be a medical 

decision based primarily on the risk of experiencing SRE secondary to low bone density, not 

the potential risk of developing ARONJ.”(15) The AAOMS position paper reports that a 

theoretical benefit might exist for patients with history of prolonged bisphosphonate 

treatment (>4 years),(7) whereas the International Task Force opines that “it may be 

advisable to stop antiresorptive therapy if it is possible to do so without adverse 

consequences for bone health.”(8) Similarly, recommendations for patients receiving 

oncologic doses of antiresorptives on drug discontinuation before surgical dental procedures 

are inconclusive. For patients who have developed ONJ, discontinuation of antiresorptive 

medication until closure of the soft tissue defect with well-epithelialized mucosa may be 

considered, depending on the systemic disease status. A potentially greater rate of ONJ 

resolution upon discontinuation of denosumab (40.4%) versus ZA (29.7%) in cancer patients 

with bone metastases has been reported.(70) However, the benefit of such drug 

discontinuation in ONJ healing is unclear. All reports uniformly describe the lack of 

evidence to support or contradict utilization of drug withdrawal in the management of 

patients on antiresorptives and emphasize the great importance of studies that would inform 

such clinical decisions.(7,8,70)

To address this void in our understanding of ONJ management as it pertains to drug holidays 

for resolution of existing ONJ lesions, we treated mice with high-dose OPG-Fc to inhibit 

RANKL-RANK signaling or with ZA to develop ONJ lesions and then discontinued drug 

administration for 6 or 10 weeks. Qualitative and quantitative radiographic and histologic 

analysis of mandibles and maxillae revealed that both antiresorptive treatments successfully 

induced ONJ-like lesions in mice, similar to our previous observations.(29,31,32) Upon 

discontinuation of OPG-Fc, radiographic indices of alveolar bone loss, such as PDL space 

width, lamina dura loss, and alveolar BV and BV/TV, were similar to the veh-treated 

animals. However, ZA cessation did not significantly alter radiographic appearance within 

the experimental time frame. Importantly, OPG-Fc discontinuation progressively decreased 

histologic features of ONJ, including number of empty osteocytic lacunae, osteonecrotic 

area, and presence of exposed bone. In contrast, for both time points of ZA, all histologic 

indices of ONJ remained similar to the prewithdrawal levels and different than both the veh 

and OPG-Fc groups. An interesting caveat that our studies did not address is whether ONJ 

incidence and severity would have progressed if antiresorptives were continuously present 

for the 21 weeks of the experiment. Thus, although it remained the same pre- and post-ZA 
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withdrawal, ONJ burden could have potentially worsened if ZA were continuously present. 

If that were true, ZA withdrawal would have ablated this increased burden.

The reversal of ONJ radiographic and histologic findings after OPG-Fc discontinuation was 

paralleled by a robust recovery of osteoclastic function, indicated by the increased serum 

TRACP-5b levels and the increased osteoclast numbers in the femur and the diseased sites of 

the mandible and maxillae. Because OPG-Fc withdrawal was associated with bone loss that 

progressively reached similar levels to that of veh animals and with increased osteoclast 

numbers and activity, the reduction in osteonecrotic areas appears to be mainly attributable 

to removal of the necrotic bone by the recovered osteoclasts. Increased bone remodeling, 

although probably present in areas of inflammation, appeared less likely to play a significant 

role in the reduced bone necrosis and exposure.

The close association of osteoclastic recovery to ONJ burden points to the central 

involvement of osteoclastic function, not only for ONJ pathogenesis but also, importantly, 

for ONJ resolution. Our data collectively demonstrate that OPG-Fc, but not ZA, 

discontinuation reversed radiographic and histologic features of osteonecrosis and support 

theoretical predictions based on antiresorptive pharmacokinetics and mode of action 

hypothesizing that denosumab withdrawal leads to higher recovery rates of ONJ compared 

with ZA because of denosumab’s reversible inhibition of osteoclastic activity.(70,71) 

Although our findings are potentially instructive for other settings of drug holidays, such as 

before tooth extractions or oral surgical interventions, future studies that directly address 

these scenarios would provide valuable insight into usefulness of antiresorptive withdrawal 

to prevent ONJ development.

In conclusion, we report that antiresorptive treatment discontinuation alters radiographic and 

histologic findings of ONJ in mice differently, depending on the type of antiresorptive agent. 

To the best of our knowledge, this is the first experimental study to illustrate and quantify 

such differences. Our findings provide a rationale that informs clinical decisions for drug 

holidays in the management of the ONJ patient. Indeed, if our findings remain translatable to 

the clinical setting, they would suggest that for patients receiving high-dose antiresorptives 

for the management of malignancy, denosumab discontinuation would offer faster and more 

complete resolution of ONJ compared with BPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Serum TRACP-5b levels increase after OPG-Fc but not after ZA discontinuation. 

TRACP-5b serum levels were measured at the end of treatment (0 weeks) and 2, 4, 6, and 10 

weeks after drug discontinuation (13, 15, 17, and 21 weeks after the first injection) (n = 16/

group per period). +Statistically significantly different from indicated groups, p < 0.0001. 

**Statistically significantly different from indicated groups, p < 0.001. *Statistically 

significantly different from indicated groups, p < 0.05.
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Fig. 2. 
Three-dimensional µCT reconstructed images of maxilla. (A–C) Healthy site in veh, OPG-

Fc, and ZA, respectively. (D, E) Diseased site after 11 weeks of treatment. (G–L) Diseased 

site at 6 and 10 weeks after drug discontinuation. Blue arrows point to normal alveolar bone 

crest in the interproximal area between the distal root of the first molar and mesial root of 

the second molar. Red arrows point to periodontal bone loss and areas of osteolysis in the 

diseased site of OPG-Fc- and veh-treated mice. Yellow arrows point to increased bone 

deposition.
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Fig. 3. 
µCT cross sections of the periapical area of first molars from animals treated with veh, OPG-

Fc, and ZA followed by drug discontinuation. (A–C) Nondrilled molars at 11 weeks. (D–F) 

Drilled molars at 11 weeks. (G–I) Drilled molars 6 weeks after drug discontinuation. (J–L) 

Drilled molars 10 weeks after drug discontinuation (n = 16/group per period). Thin arrows 

point to normal PDL space. Arrowheads point to periapical bone loss. (M–O) Quantification 

of periapical bone loss at the distal root of the first molar and mesial root of the second 

molar. #Statistically significantly different compared with all other groups, p < 

0.0001. +Statistically significantly different from indicated groups, p < 0.0001. 

**Statistically significantly different from indicated groups, p < 0.001.
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Fig. 4. 
Sagittal µCT sections through the furcational periodontium of veh-, OPG-Fc-, and ZA-

treated animals. (A–C) Nondrilled molars at 11 weeks. (D–F) Drilled molars at 11 weeks. 

(G–I) Drilled molars 6 weeks after drug discontinuation. (J–L) Drilled molars 10 weeks after 

drug discontinuation (n = 16/group per period). Thin arrows point to lamina dura and 

arrowheads point to PDL space. (M–R) Quantification of changes in the furcational 

periodontium was performed measuring the thickness of lamina dura and width of the PDL 

space. $Statistically significantly different compared with healthy mice, p < 

0.0001. &Statistically significantly different compared with diseased mice, p < 

0.0001. +Statistically significantly different from indicated groups, p < 0.0001. 

**Statistically significantly different from indicated groups, p < 0.001. *Statistically 

significantly different from indicated groups, p < 0.05.
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Fig. 5. 
Axial µCT sections through the maxillary alveolar ridge. (A–C) Healthy maxillae at 11 

weeks. (D–F) Diseased maxillae at 11 weeks. (G–I) Diseased maxillae 6 weeks after drug 

discontinuation. (J–L) Diseased maxillae 10 weeks after drug discontinuation (n = 16/group 

per period). Thin arrows point to areas of osteolysis. Arrowheads point to bone deposition 

and bone expansion. (M–O) Quantification of buccal bone thickness. &Statistically 

significantly different compared with diseased mice, p < 0.0001. +Statistically significantly 

different from indicated groups, p < 0.0001. **Statistically significantly different from 

indicated groups, p < 0.001. *Statistically significantly different from indicated groups, p < 

0.05.
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Fig. 6. 
Quantification of BV and BV/TV in the mandible of all mice. Eleven weeks of treatment (A, 
B) and 6 weeks (C, D) and 10 weeks (E, F) after drug discontinuation (n = 16/group per 

period). $Statistically significantly different compared with healthy mice, p < 

0.0001. &Statistically significantly different compared with diseased mice, p < 

0.0001. +Statistically significantly different from indicated groups, p < 0.0001. 

**Statistically significantly different from indicated groups, p < 0.001. *Statistically 

significantly different from indicated groups, p < 0.05.
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Fig. 7. 
Representative H&E-stained images from maxilla of all groups. (A–C) Healthy site of veh, 

OPG-Fc, and ZA animals. (D–F) Diseased site at 11 weeks at the end of antiresorptive 

treatment. (G–I) Diseased site of veh, OPG-Fc, and ZA 6 weeks after antiresorptive 

discontinuation. (J–L) Diseased site of veh, OPG-Fc, and ZA 10 weeks after antiresorptive 

discontinuation. Red arrows point to marginal gingival epithelium, turquoise arrows to 

alveolar crest, black arrows to areas of inflammation, blue arrows to periosteal bone 

deposition, yellow arrows to osteonecrotic areas, and green arrows to areas of bone 

exposure. Original magnification ×5.
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Fig. 8. 
Histologic appearance of periodontal and alveolar crest area of maxillae (A–C) Healthy site 

of veh, OPG-Fc, and ZA animals. (D–F) Diseased site at 11 weeks at the end of 

antiresorptive treatment. (G–I) Diseased site of veh, OPG-Fc, and ZA 6 weeks after 

antiresorptive discontinuation. (J–L) Diseased site of veh, OPG-Fc, and ZA 10 weeks after 

antiresorptive discontinuation. Turquoise arrows point to alveolar crest, black arrows to 

areas of inflammation, blue arrows to periosteal bone deposition, yellow arrows to 

osteonecrotic areas, and green arrows to areas of bone exposure. Original magnification ×10.
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Fig. 9. 
Quantification of histologic findings. (A–C) The shortest epithelial-crest distance was 

determined. (D–F) Thickness of periosteum at the buccal side was measured. (G–I) 
Osteocytic lacunae were measured and empty lacunae were expressed as percent of total. (J–

L) Area of osteonecrosis was measured and expressed as percent of total bone area (n = 16/

group per period). +Statistically significantly different from indicated groups, p < 0.0001. 

**Statistically significantly different from indicated groups, p < 0.001. *Statistically 

significantly different from indicated groups, p < 0.05.
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Fig. 10. 
Representative sections of the maxilla stained for TRAP+ cells (original magnification ×5). 

Insets are magnified views of individual TRAP+ cells (original magnification ×20). (A–C) 

Healthy site of veh, OPG-Fc, and ZA animals. (D–F) Diseased site at 11 weeks at the end of 

antiresorptive treatment. (G–I) Diseased site of veh, OPG-Fc, and ZA 6 weeks after 

antiresorptive discontinuation. (J–L) Diseased site of veh, OPG-Fc, and ZA 10 weeks after 

antiresorptive discontinuation. (M–O) Quantification of TRAP+ cell number (n = 8/group 

per period). +Statistically significantly different from indicated groups, p < 0.0001. 

**Statistically significantly different from indicated groups, p < 0.001. *Statistically 

significantly different from indicated groups, p < 0.05.
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Fig. 11. 
Representative sagittal µCT slices of femurs. (A–I) Veh, OPG-Fc, and ZA at the end of 

treatment and after drug discontinuation. (J–M) Quantification of BV, BV/TV, Tb.N, and 

Tb.Th (n = 16/group per period). Representative sections of TRAP-stained sections from 

femurs (original magnification ×5). Insets are magnified views of individual TRAP+ cells 

(original magnification ×20). (N–P) Veh, OPG-Fc, and ZA animals at 11 weeks, (Q–S) 6 

weeks after drug discontinuation, and (T–V) 10 weeks after drug discontinuation. (W) 

Quantification of TRAP+ cell number (n = 8/group per period). &Statistically significantly 

different compared with diseased mice, p < 0.0001. +Statistically significantly different from 

indicated groups, p < 0.0001. **Statistically significantly different from indicated groups, p 
< 0.001. *Statistically significantly different from indicated groups, p < 0.05.
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