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Abstract

RNA therapeutics refers to the use of oligonucleotides to target primarily ribonucleic acids (RNA)
for therapeutic efforts or in research studies to elucidate functions of genes. Oligonucleotides are
distinct from other pharmacological modalities, such as small molecules and antibodies that target
mainly proteins, due to their mechanisms of action and chemical properties. Nucleic acids come in
two forms: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). Although DNA is more
stable, RNA offers more structural variety ranging from messenger RNA (mRNA) that codes for
protein to non-coding RNAs, microRNA (miRNA), transfer RNA (tRNA), short interfering RNAs
(siRNAs), ribosomal RNA (rRNA), and long-noncoding RNAs (INcRNAS). As our understanding
of the wide variety of RNAs deepens, researchers have sought to target RNA since >80% of the
genome is estimated to be transcribed. These transcripts include non-coding RNAS such as
miRNAs and siRNAs that function in gene regulation by playing key roles in the transfer of
genetic information from DNA to protein, the final product of the central dogma in biology?.
Currently there are two main approaches used to target RNA: double stranded RNA-mediated
interference (RNAI) and antisense oligonucleotides (ASO). Both approaches are currently in
clinical trials for targeting of RNAs involved in various diseases, such as cancer and
neurodegeneration. In fact, ASOs targeting spinal muscular atrophy and amyotrophic lateral
sclerosis have shown positive results in clinical trials?. Advantages of ASOs include higher affinity
due to the development of chemical modifications that increase affinity, selectivity while
decreasing toxicity due to off-target effects. This review will highlight the major therapeutic
approaches of RNA medicine currently being applied with a focus on RNAIi and ASOs.
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Introduction

Transcription is the process by which RNA polymerase Il transcribes a gene from DNA into
messenger RNA (mRNA) in the nucleus. mRNA must then be made into protein - a key
workhorse of the cell that performs many of the functions essential for cell viability. In order
for mMRNA to be made into protein, mMRNA must first be transported from the nucleus to the
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cytoplasm via the nuclear pore complex - a huge complex composed of about 30 different
proteins - that helps direct the mRNA towards the cytoplasm, the site of protein synthesis.
Once the mRNA has reached the cytoplasm, ribosomes, which tend to associate with the
endoplasmic reticulum and are composed of proteins and small RNAs (ribosomal RNAs/
rRNAS), translate the mRNA into a polypeptide chain that folds into a protein structure. It is
this process of protein synthesis that RNA based therapeutics usually try to inhibit.

RNA medicine is the therapeutic targeting of RNA. Two major methods are employed in
RNA medicine: double stranded RNA-mediated interference (RNAI) and antisense
oligonucleotides (ASO). Broadly speaking, RNAI operates sequence specifically and post-
transcriptionally by activating ribonucleases which, along with other enzymes and
complexes, coordinately degrade the RNA after the original RNA target has been cut into
smaller pieces3. Antisense oligonucleotides bind to their target nucleic acid via Watson-
Crick base pairing, and inhibit or alter gene expression via steric hindrance, splicing
alterations, initiation of target degradation, or other events.

Conventionally, most drugs are small molecules designed to bind to proteins and often times
have toxic off-target effects*. In contrast, RNA therapeutics offer the promise of uniquely
targeting the precise nucleic acids involved in a particular disease with greater specificity,
immproved potency, and decreased toxicity. This could be particularly powerful for genetic
diseases where it is most advantageous to aim for the RNA as opposed to the protein.
Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two
examples of this which are more extensively reviewed elsewhere®. In spite of the tremendous
potential of RNA-based therapies, there are also challenges to bear in mind. For example,
RNAs are inherently unstable, and therefore difficult to deliver in high enough amounts to
the target tissue due to clearance by the renal system and degradation by nucleases in the
blood stream®.7. In addition, toxicity due to off-target effects and activation of the immune
system are also pressing concerns’-8. This review will highlight some of the methods being
developed to overcome these obstacles.

Within the scope of RNA medicine, there are several types of therapeutic approaches
categorized by their mechanism of action. This includes antisense oligonucleotides (ASOs)
that inhibit mRNA translation, oligonucleotides that function via RNA interference (RNAI)
pathway, RNA molecules that behave like enzymes (ribozymes), RNA oligonucleotides that
bind to proteins and other cellular molecules, and ASOs that bind to mMRNA and form a
structure that is recognized by RNase H resulting in cleavage of the mRNA target®. The
predominant focus of this review will be RNAi and ASOs that inhibit mMRNA translation,
including oligonucleotides that alter splicing.

RNAI is a naturally occurring process used by cells to regulate gene expression; it can
prevent genes from being translated into protein. In addition, RNAI is used in the innate
immune response of cells as a defense mechanism against foreign nucleic acids from viruses
and bacteria®. RNAI was first identified in plantsl®. Even though the effects of suppressing
gene expression by the introduction of a transgene had been previously observed!112.13 it
was the landmark paper of Fire and Mello in 1998 that documented a clear mechanism of
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action whereby double strand RNA (dsRNA) most effectively silenced mRNA in
Caenorhabditis elegans (C.elegans)3-14. Normally triggered by endogenous dsRNA1S,
RNAI can also be activated by injection of exogenous dsRNA16:17. As mammalian cells
cannot usually cleave dsRNA into small interfering RNA (siRNA), injection of long dsSRNA
triggers an interferon response. It was later discovered however that 21 nucleotide-long
RNAs can use the RNAi machinery in mammalian cells to silence gene expression18,
allowing researchers to transfect short dsSRNA in order to silence genes in mammalian
cells!®. There are three types of small RNAs that can silence mRNA in the cytoplasm with
RNA{20.21; piwi-interacting RNAs (piRNAs), microRNA (miRNAs), and siRNAs. piRNAs
(reviewed elsewhere19:20) are small noncoding RNAs 21-24 nucleotides in length that
primarily regulate transposon activity in germline development by binding to Piwi proteins,
a subset of the Argonaute class of proteins.

A. siRNAs—siRNAs come from the family of non-coding RNAs (ncRNAs) which include
long ncRNAs (IncRNAs) broadly defined as 200 nucleotide to 100 kilobases ncRNAs20, and
small ncRNAs. Many small ncRNASs have been ascribed with precise functions in
transcriptional regulation, signaling, post-transcriptional gene silencing, and cell
communication. The most well-known small ncRNAs are siRNAs and miRNAs.

Long dsRNAs, which can be encoded in the genome or transfected into the cell in shorter
sequences, are precursors for siRNAs. In the nucleus, these long dsRNAs are cleaved by
Dicer, a dsRNA-specific ribonuclease, into 21-25 nucleotide-long double-strand siRNAs
with 2 nucleotides in their 3’ overhang and 5° phosphate groups22-23.17, siRNAs then bind to
the AGO2-RISC complex: a combination of the RNA-induced silencing complex (RISC)
and the endonuclease Argonaute 2 (AGO2)1%. Once siRNAs are bound to RISC, they are
unwound into their single-strand components: the complementary or antisense strand binds
to the target mRNA sequence and the sense strand is degraded. After siRNASs bind to the
target sequence with perfect complementarity, AGO2 cleaves the mMRNA about 10 to 11
nucleotides downstream from the 5’ end of where the antisense strand binds®. Cleavage of
the mRNA triggers its degradation by exonucleases??.

Challenges faced by siRNA-based therapeutic approaches include off-target effects, efficacy,
delivery, and immune system activation. Off- target effects arise through two hypothesized
means2>26, First, siRNAs could bind to non-targeted mRNAs with imperfect
complementarity leading to silencing of these mMRNAs. Second, siRNAs could enter
endogenous miRNA systems that tolerate imperfect binding to target mRNAS outside the
miRNA seed region, thereby silencing those targets. Addressing efficacy is challenging
because in spite of the extensive process of selecting and designing siRNAs, they can still
lack function in mammalian cells. In fact, few have been proven functional in mammalian
cells?’. Additionally, siRNAs targeting the same region can work with varying efficacies.
This may be due to a variety of reasons, including accessibility of the sequence to be
targeted, stability of the siRNA-target sequence hybrid, chemical modifications of the
siRNA, and thermodynamics of siRNA integration into the RISC complex?’. Delivery of
siRNAs to the target tissue is a challenge because siRNAs are easily filtered out by the renal
system?8, In addition, nucleases in the bloodstream can quickly degrade siRNAs, resulting in
a short half-life. Chemical modifications such as phosphorothioate (PS) modification and
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cholesterol/ligand conjugation, as well as encapsulation of siRNAs in nanoparticles have
demonstrated protection from nucleases, higher affinity, and longer half- life2%:30.31  siRNAs
have been shown to induce interferon response by activating the innate immune system and
can induce proinflammatory cytokines®:32, Chemical modifications have been identified that
prevent the siRNA from inducing this immune response®. However, caution must be taken
when designing these chemically modified siRNAs, as certain modifications can inhibit the
siRNA from properly integrating into the RISC complex, resulting in loss of mMRNA
targeting. In spite of these challenges, there have been 26 different siRNAs tested in over 50
clinical trials involving diseases such as age-related macular degeneration (AMD), diabetic
macular edema (DME), glaucoma, hypercholesterolemia and human solid tumor
(melanoma)®. There are also some companies with promising siRNA based drugs, such as
Arrowhead which is using siRNA based drug as a therapeutic for chronic Hepatitis B
infection, as well as other ailments such as cardiovascular diseases, clear cell and renal cell
carcinoma. Phase |1 clinical results for the siRNA based drug for Hepatitis B have been very
positive. Additionally, Alnylam Pharmaceuticals is another company taking advantage of
RNAI to treat genetic diseases, cardio-metabolic diseases, and hepatic infectious diseases. In
fact, two such drugs targeting Hereditary ATTR Amyloidosis have made it into Phase 111
clinical trials, suggesting their proximity to coming to market. Wittrup and Lieberman 2015
provide a detailed review of the efforts to bring siRNAs to the clinic33.

B. miRNAs—Similar to siRNAs, miRNAs silence gene expression post-transcriptionally?®,
and are thought to regulate roughly 30% of human genes?1-34, miRNA precursors are
naturally encoded in the genome, but miRNAs themselves can be artificially synthesized for
therapeutic strategies. In the cell, RNA polymerase 11 transcribes DNA into primary miRNA
(pri-miRNA). The pri-miRNA forms a hairpin structure that is cleaved by Drosha, a
ribonuclease with dsRNA specificity, into the precursor miRNA (pre- miRNA). The pre-
miRNA is generally more than 100 nucleotides long and contains a hairpin loop and a
double-strand region where the miRNA resides. Pre-miRNAs are transported by exportin 5
from the nucleus to the cytoplasm via the nuclear pore complex!9. Pre-miRNAs are then
further processed by Drosha to release the hairpinl®®. The RNAse 11l enzyme Dicer then
cleaves the loop of the hairpin in the pre-mRNAs generating the double-strand segment
known as the miRNA23:21, miRNA is then incorporated into the RISC complex by binding
to AGO219:2L The guide strand is kept, and the other strand (“the passenger™) is degraded.
Within the miRNA guide strand lies a seed sequence near the 5’-end; this seed sequence is
composed of seven bases that are crucial for the complementary binding to the target
mRNAB34, Sequences outside this seed region are less significant for binding. The guide
strand of the miRNA leads the AGO2-RISC complex to the target mMRNA3®. Generally, the
complementary sequence lies in the 3’ untranslated region (UTR) of the mRNA, but it can
also be found in the 5 UTR or coding region. The mRNA is silenced by inhibition of
translation and/or degradation by exonucleases36.

Like siRNAs, miRNAs can also be designed to target a gene of interest. However, the same
challenges of delivery, specificity, toxicity, and immune response are present. While
chemical modifications can optimize miRNAS to overcome these hurdles, they must be done
in a way that still permits the miRNA to integrate into the RISC complex. Currently,
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targeting of miRNAs with ASOs appears to be a more common and effective approach as
many genes are regulated by miRNAs. In fact, ASOs that target miRNAs have been
demonstrated to be effective and safe in mice, non-human primates, and humans37:38.39

Antisense Oligonucleotides (ASOs)

Many types of oligonucleotides have been referenced to as ASOs. Within the scope of this
review, ASOs are short oligonucleotides with RNA/DNA-based structures that can
sequence-specifically bind to RNA via Watson-Crick hybridization. ASOs must be able to
cross the cell membrane to bind to the target RNA either in the nucleus (pre-mRNA, mRNA,
noncoding RNA, etc.) or cytoplasm (miRNA, mRNA, etc.)40. ASOs are very stable without
refrigeration, highly soluble in water, and used in saline solution -attributes that bode well
for their therapeutic potential.

Antisense technology was first introduced in 1977 by Paterson et al. who used recombinant
nucleic acid molecules to inhibit translation®!. Since then, many advances such as
modifications to the backbone, sugar moieties, and base have been made to optimize the
technology for therapeutic purposes. Currently, there are three oligonucleotide drugs that
have been approved by the Federal Drug Administration (FDA) for use in the clinic:
Formivirsen (Vitravene), Mipomersen and Macugen. Formivirsen targets the immediate-
early 2 (IE2) gene for cytomegalovirus retinitis treatment in patients with AIDS (Acquired
Immunodeficiency Syndrome)’#. Mipomersen is a 20 nucleotide-long Antisense
oligonucleotide that targets apolipoprotein B (ApoB100) mMRNA in homozygous familial
hypercholesterolemia (HoFH)*42.7:43_ ApoB100 is a core protein in low-density lipoprotein
(LDL) cholesterol43. Individuals with HoFH have increased levels of LDL, a known risk
factor for atherosclerosis and cardiovascular disease, but are unable to discard excess LDL
due to genetic mutations. Treatment with Mipomersen decreases ApoB100 levels without
significant deleterious effects on high-density lipoprotein cholesterol (HDL-C), the ‘good’
cholesterol*3. Macugen is a 28-mer oligonucleotide that binds to extracellular vascular
endothelial growth factor (VEGF) to inhibit the progression of neovascular (wet) age-
related macular degeneration (AMD), a primary cause of blindness#44:4546 Macugen
binding to VEGF inhibits VEGF binding to its receptors, thereby preventing the activation of
angiogenesis and increased vascular permeability and inflammation#6:43,

ASO mechanisms of action

ASOs can work through many mechanisms depending, in part, on the region in the RNA
sequence that is targeted and ASO design/chemical properties. The mMRNA sequences
targeted by ASOs are chosen based on their binding accessibility. Terminal sequences,
sequences within internal loops, hairpins, joint sequences and bulges of 10 or more bases
have been determined to be ideal*’. The two most widely-used ASOs are double-stranded
ASOs that use the RISC complex to degrade RNA and single-stranded ASOs that silence
gene expression by a variety of mechanisms, including: 1) inhibiting 5’cap formation, 2)
steric blocking of protein translation, 3) inhibiting or altering RNA splicing, and 4)
activation of RNase H, which degrades the target mMRNA#7:48:49,
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1. Inhibition of 5’ cap formation—Formation of the 5’cap can be prevented by targeting
the ASO to sequences in the 5 UTR 4748, Oligonucleotide binding near the cap site of pre-
mRNA prevents the binding of proteins needed for cap formation, as demonstrated when
oligonucleotides designed to bind the 5’cap prevented binding of the translation initiation
factor elF-4a°0. EIF-4a binds to the 7-methyl guanosine base at the 5’end of all mMRNA
sequences and associates with elF4-G which is bound by ribosome. Ribosome bound elF4-G
association with elF4- a triggers recruitment of the translation machinery. Therefore,
inhibition of elF-4a binding prohibits 5’cap dependent translation.

2. Steric blocking of translation—Steric blocking of mRNA translation is usually
achieved by designing ASOs that bind at or near the initiation codon of the mRNA sequence
and hinder the translation machinery, such as the ribosomal subunit, from binding 4748,
These ASOs block access to pre-mRNA and mRNA and can prevent RNA folding but do not
activate degradation of the target MRNA . These ASOs tend to possess more extensive
chemical modifications than those that must be incorporated into RNAi machinery because
they are not structurally constrained by the need to integrate®. Additionally, such
oligonucleotides can work in identical fashion to splice-switching oligonucleotides,
discussed below.

3. Alteration of Splicing—After DNA is transcribed into the precursor form of mMRNA
(pre-mRNA), the pre-mRNA must be spliced to exclude non-coding introns and exclude or
include specific exons, generating the mature mRNA. This process is moderated by proteins
and small nuclear RNAs in the spliceosome®L. Conserved sequences in the splice junctions
and enhancer and silencer sequences in the introns and exons also play key roles in this
process.

Alterations in the appropriate splicing pattern can lead to disease. Duchenne muscular
dystrophy (DMD) is a clear example of this. Inappropriate deletions alter the translational
reading frame of the protein dystrophin, which is required for the integrity of the
sarcolemma membrane®. Males with DMD lose mobility within 10-12 years of birth and die
in their mid-20's due to respiratory and/or cardiac failure®. ASOs that block the splicing
machinery from inappropriately deleting certain sequences in the DMD/dystrophin pre-
MRNA have the unique ability to repair the RNA by promoting splicing that leads to the
correct RNA sequence, that is inclusion of the right exons. The correct form of the protein
can then be produced from the normal mRNA sequence, thereby potentially ameliorating the
disease.

These splice-switching oligonucleotides have been demonstrated to be effective in animal
models for the genetic diseases B-thalassaemia®223, spinal muscular atrophy (SMA)54:55:56,
and DMD?®’. In fact, oligonucleotides for DMD in phase 2 clinical trials have shown
promising results with abrogation of dystrophy observed in some patients®®:5%, SMA is a
disease where mutations or deletions of the SMN1 gene lead to loss of SMN protein, leading
to disruption of motor neuron function and controlled movement. ASOs designed to favor
inclusion of the right exon, thereby restoring the SMN protein in SMA patients, have shown
some muscle function improvement in patients60.
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4. Activation of RNase H—The most commonly used mechanism of action of ASOs is
recruitment of the enzyme RNase H which degrades the RNA in a RNA-DNA hybrid*8. Two
forms of RNase H are expressed in human cells: RNase H1 and RNase H261, ASOs that
work through RNase H recruit RNase H1 to RNA-DNA hybrids resulting in degradation of
the targeted RNA molecule. The DNA strand (or ASO in the case of ASO targeting) is
released intact. Antisense oligonucleotide recruitment of RNase H1 for mRNA cleavage can
occur both in the nucleus and cytoplasm®2. The rate-limiting step for this process is the
concentration of RNase H1 relative to the activity of the ASOs6,

ASO modifications

Some of the obstacles that have slowed the pace of bringing more RNA-based therapies to
the clinic include: 1) instability/high vulnerability of the oligonucleotides to degradation by
nucleases, 2) off-target/toxicity effects, 3) poor delivery to the right tissues or low cellular
uptake, and 4) low affinity for the target mMRNA’4>, ASOs have been extensively chemically
modified to bypass these constraints and increase stability, affinity, specificity and delivery
while decreasing the potential for off-target effects®4. Without these modifications, the
nucleic acid molecules are degraded by exo- and endonucleases in the blood stream’ and are
unable to cross the plasma membrane, since unmodified ASOs carry a net negative charge’.

The chemical madifications of ASOs are generally classified as first generation, second
generation, and third generation. First generation modifications include changes made to the
phosphodiester backbone, heterocyclic nucleobase and sugar moiety to increase affinity and
specificity of the ASO%. The predominant type of first generation modification is
phosphorothioate (PS) bond introduction, which helps protect the oligonucleotide from
degradation by nucleases®. Additionally, by modifying the charge of the ASO, PS increases
the amount of ASO available to reach the target tissue by increasing binding to receptor sites
and plasma proteins*0. Appropriate binding by plasma proteins decreases rapid filtration
from the blood by the renal system, facilitating optimal distribution®?. Vitravene, the first
ASO-based drug approved by the FDA for use in the clinic is a first generation PS-ASO. In
fact, most of the ASO-based drugs that have made it to Phase I clinical trials are based on PS
modifications (Table 1).

Although first generation modifications improve nuclease resistance and bioavailability, PS-
ASOs generally bind poorly to the target RNA, have low specificity, and low cellular uptake.
These limitations are addressed by second generation modifications that modify the sugar
moiety of the nucleobase (pyrimidine, purine) thereby increasing binding affinity to the
target RNA%. Other modifications to the heterocyclic portion of the nucleobase that improve
the base-stacking capabilities also increase affinity and specificity. Modifications such as
conjugation to cell-penetrating peptides also increase delivery to the cells62,

2’-0O-Methyl (2’-OMe), 2’-O-methoxyethyl (2°- OMOE), and Locked Nucleic Acids (LNAs)
are the most prominent types of second generation modifications*. The leading company for
2’-OME chemistry is lonis pharmaceuticals whose chemical developments have enabled
drugs to resemble RNAs thereby increasing affinity and protecting from nuclease
degradation. Other chemistries have been developed by lonis which improve delivery,
potency, and distribution to tissues. lonis pharmaceuticals currently has antisense based
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drugs in phase Il clinical trials for TTR amyloid cardiomyopathy, promising results from a
phase |1 study for Type 2 Diabetes, an early stage oral delivery antisense drug for
gastrointestinal autoimmune disease, and other diseases.

The LNA chemistry has the 2’ oxygen and 4’carbon of the RNA ribose sugar locked in a
ring structure. This modification increases specificity, affinity, and half-life allowing
effective delivery to tissues of interest with lower toxicity. Additionally, the chemistry does
not interfere with the ability of RNA molecules that contain LNA to incorporate into the
RNAI machinery.

LNA is one of the most promising chemistry for overcoming the challenges of tissue
delivery and efficacy faced by antisense therapeutics. Currently, there are a number of
companies attempting to bring LNA oligonucleotides to the clinic. These include Santaris
Pharma, miRagen which is using LNAs to target miRNAs in cardiovascular disease, Shire
which is attempting to target rare genetic disorders, Pfizer that is targeting multiple diseases
including cancer, GlaxoSmithKline which is targeting viral diseases, and Enzon which is
targeting cancer. In fact, Santaris Pharma, recently purchased by Roche, exclusively makes
LNA based drug design and currently has an LNA drug that has shown promise in Phase Ila
clinical trials for Hepatitis C. RaNA is a company using LNAs to target long non-coding
RNAs involved in various diseases, such as SMA and Friedreich's Ataxia.

Third generation ASOs such as peptide nucleic acid (PNA) and phosphorodiamidate
morpholino oligomer (PMO) carry modifications to the furanose ring of the nucleotide?.
PNAs bind with greater affinity and specificity to target DNA or RNA than unmodified
oligonucleotides, and reduce protein expression by sterically inhibiting the translation
machinery®3.64.65 | jke PNAs, PMOs do not activate RNase H cleavage. Rather PMOs have
a six-member morpholino ring in place of the ribose sugar and what's called a
phosphorodiamidate linkage substitute for the phosphodiester bond®. PMOs inhibit protein
production by steric hindrance and also increase nuclease resistance.

ASO naming

ASOs are named based on the chemical modifications and how the modifications are
integrated into their structure. One increasingly popular structure is to have a DNA segment
in the middle to activate RNase H for cleavage of target mRNA. Modifications are then
added at the end of the sequence to increase affinity and stability while protecting the
internal DNA sequence from degradation. Due to the limits of this review, only a few will be
highlighted here. For example, single strand oligonucleotides that form stable three
dimensional structures able to bind with high affinity and specificity to many targets are
called aptamers®. Aptamers bind directly to the protein as opposed to RNA. Macugen,
another FDA-approved ASO drug, is a second-generation aptamer. Gapmers are ASOs with
a DNA stretch in the middle typically flanked by LNAs or other proprietary chemistries that
protect from nuclease degradation and increase affinity®’. The central DNA piece helps
trigger RNase H degradation of the target RNA. Mipomersen, the second FDA-approved
ASO drug previously mentioned, is a gapmer. Mixmers are ASOs with chemistries such as
LNAs distributed throughout the sequence8”, and are ideal for targeting miRNAs®,
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ASO delivery

ASO delivery has been previously and comprehensively reviewed9 and will only be very
briefly highlighted here. Parenteral injection, such as intravenous infusion or subcutaneous
injection, is the main method of delivery of PS modified single-stranded ASOs. These ASOs
are usually transferred from the blood to the tissues in minutes to hours, regardless of the
recipient's gender or speciation“?. Endocytosis facilitates delivery into the cells where the
ASO can reside for 2-4 weeks before degradation0.

Although ASO activity has been observed in many tissues such as lung, stomach, bladder,
and heart, ASOs predominantly accumulate in liver, kidney then bone marrow, adipocytes,
and lymph nodes#°. ASOs cannot cross the blood-brain barrier due to their size and charge.
The one exception to this is intrathecal injection of single- stranded ASOs with precise
chemical modifications into the cerebrospinal fluid (CSF), which allows ASQOs into the
central nervous system (CNS)#0. Oligonucleotide uptake into tissues such as the spinal cord
and brain within a couple hours has been observed with this approach. Delivery appears to
be enhanced most strongly by chemical modifications to the phosphate bridge in the
backbone?0.

Conclusion

This review provides a brief overview of RNA therapeutics — a field that is incredibly vast
and quickly growing. Antisense oligonucleotides are being used in therapeutic attempts for a
wide variety of diseases, especially cancers. In cancer, ASOs face the challenges of non-
specific targeting that can lead to greater clotting times and undesirable immune activation’.
ASO use in cancer is also hindered by inefficient and ineffective delivery that lend to some
cancer cells escaping treatment’. While some chemical modifications such as nanoparticle
carriers have been developed to overcome these limitations, there is still some ways to go for
ASOs to become effective cancer treatments.

Overall, RNA therapeutics has tremendous potential as a means to target genes within the
context of an individual's genetic background and lifestyle — a field known as precision
medicine. Table 1 provides a recent list of Antisense and RNA based drugs that are being
applied in clinical trials according to clinicaltrials.gov. Since the first report of antisense
inhibition of genes, new chemistries have been developed to optimize the properties of the
oligonucleotides with improvements such as enhanced delivery, specificity, affinity, and
nuclease resistance with decreased toxicity. A complete history of all the work done for each
of these is beyond the limits of one review. This summary however is intended to give a
flavor of the general challenges and advances in the field.
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