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Abstract

Background: Vitamin D receptor (VDR) gene polymorphisms affect the risk of prostate cancer. However, studies
investigating the relationship between VDR gene polymorphisms (Cdx2 and ApaI) and prostate cancer risk are
equivocal. Therefore, we conducted a meta-analysis of all the studies to review the evidence available.

Methods: A comprehensive search of PubMed, EMBASE, and ISI Web of Science for studies published until
September 2015 was conducted. Odds ratios (ORs) and 95 % confidence intervals (CIs) were analyzed to
determine the association between VDR Cdx2 and ApaI polymorphisms, and prostate cancer risk.

Results: The meta-analysis included 10 studies involving 4979 cases and 4380 controls to analyze the VDR
Cdx2 polymorphism. An additional 11 studies involving 2837 cases and 2884 controls were analyzed for the
VDR ApaI polymorphism. Evidence failed to support the role of VDR Cdx2 and ApaI polymorphisms in prostate
cancer. For Cdx2, the pooled OR was 1.11 (95 % CI = 0.93–1.33) for AA vs. GG genotypes, 0.97 (95 % CI = 0.88–1.06) for
GA vs. AA genotypes, 0.99 (95 % CI = 0.91–1.08) for AA + GA vs. GG, and 1.12 (95 % CI = 0.95–1.31) for AA vs. GA + GG.
No significant relationship was observed in any subgroup analysis based on ethnicity, controls, and Hardy–Weinberg
equilibrium (HWE). ORs for the ApaI polymorphism were similar.

Conclusions: VDR Cdx2 and ApaI polymorphisms are not associated with prostate cancer. Additional evidence is
required to confirm this conclusion.

Abbreviations: VDR, Vitamin D receptor; HPC1, Hereditary prostate cancer gene 1; HWE, Hardy–Weinberg equilibrium;
PCR-RFLP, Polymerase chain reaction - restriction fragment length polymorphism; SNP, Single nucleotide
polymorphism; OR, Odds ratio; CI, Confidence interval; HB, Hospital–based studies; PB, Population-based studies

Background
Prostate cancer ranks second among cancers diagnosed
worldwide and sixth among cancer-related deaths in
males. In 2012, more than 1.1 million cases were newly
diagnosed worldwide. Prostate cancer accounts for 15 %
of all cancers in men, and nearly 759,000 are reported in
developed countries. In 2012, prostate cancer ranked
fifth among cancer-related deaths in men, accounting
for nearly 307,000 deaths or 6.6 % of all cancer-induced
deaths in males [1]. Furthermore, the number of prostate
cancers newly diagnosed annually is expected to climb

to 1,853,391 worldwide by 2030, resulting in almost
544,209 deaths [2]. Studies suggest that ethnicity, diet,
aging, and genetic factors mediate the pathophysiology
of prostate cancer [3–5]. Therefore, the prevalence of
prostate cancer among African-Americans, Caucasians,
and Asians varies [6].
The role of genetics in prostate cancer has been the

focus of research attention in recent years. BRCA1
and BRCA2 mutations increase the risk for ovarian
and breast cancer as well as prostate cancer [7]. Her-
editary prostate cancer gene 1 (HPC1), androgen and
vitamin D receptors have been linked to prostate
cancer [8]. Genome-wide association studies [9, 10]
reported several SNPs substantially increasing the risk
of prostate cancer.
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The role of testosterone and vitamin D in prostate
cancer is mediated via vitamin D receptor (VDR).
The hormonally active form of vitamin D1, 25-
dihydroxyvitamin D, inhibits cancer progression [11].
Vitamin D lowers the risk of several types of cancer,
including prostate [12]. VDR is encoded by a large
gene (>100 kb) mapped to chromosome 12q12-14. Its
14 exons spanning approximately 75 kb [13, 14] ex-
hibit a high degree of polymorphism, with at least
618 reported variants, most of which are either un-
detectable or occur at a low frequency in the general
population. Among the known VDR polymorphisms,
the most common SNPs, influencing the VDR expres-
sion in prostate cancer include FokI, BsmI, ApaI,
Cdx2, and TaqI [15–18]. However, these associations
between SNPs and prostate cancer are not proven.
The role of BsmI, TaqI, and FokI polymorphisms in
prostate cancer is not established [19, 20]. Similarly,
ApaI and Cdx2 polymorphisms in prostate cancer risk
are not validated [15, 16, 21–28]. For example, a
case-controlled study showed a two-fold higher risk
in Caucasian homozygous aa carriers for the variant
ApaI compared with homozygous AA carriers [28].
Torkko reported that the Cdx2 polymorphism signifi-
cantly increased the prostate cancer risk among Hispanic
populations carrying the SRD5A2 V89L VV genotype [27].
However, a study conducted by Rowland found no rela-
tionship between prostate cancer and ApaI and Cdx2
SNPs [29].
The discrepancies may be attributed partly to statis-

tical weakness, heterogeneity, population diversity, min-
imal effect of polymorphisms, and publication bias. We,
therefore, investigated the role of VDR Cdx2 and ApaI
polymorphisms in prostate cancer risk by conducting a
meta-analysis of all the eligible case-controlled studies.

Methods
Study selection
We searched PubMed, EMBASE, and ISI Web of
Science databases for genetic association studies involv-
ing VDR ApaI and Cdx2 polymorphisms and prostate
cancer susceptibility, published through September
2015. We used combinations of the following keywords:
‘prostate cancer’, ‘VDR’ or ‘vitamin D receptor’, ‘ApaI’ or
‘rs7975232’, ‘Cdx2’ or ‘rs11568820’, and ‘polymorphism’,
‘variant’, or ‘mutation’. Two independent investigators
(Kewei Wang and Guosheng Wu) performed the search.
Additional articles were retrieved via manual searches of
reference lists in the studies identified initially. Our
search was not restricted by publication date or lan-
guage. Selected articles are listed in Table 1 with the fol-
lowing data: the first author, publication year, country,
ethnicity, source of controls, number of cases and con-
trols, polymorphisms, and Hardy-Weinberg equilibrium

(HWE) (P value). Other eligible studies were retrieved
for additional review and data extraction. All the investi-
gators were qualified and trained in literature search,
statistical analysis, and evidence-based medicine.

Inclusion and exclusion criteria
The inclusion criteria were: (1) studies evaluating VDR
Cdx2 and ApaI polymorphisms and prostate cancer risk;
(2) clinical studies; (3) case–control studies; (4) studies
investigating diseases confirmed histologically, patho-
logically and/or radiologically; (5) adequate genotype dis-
tributions to facilitate estimation of OR with 95 % CI;
and (6) most recent or complete studies. The exclusion
criteria were:: (1) studies containing overlapping data;
(2) missing genotype or allele frequencies; (3) absence of
case controls; (4) studies not analyzing VDR Cdx2 and
ApaI polymorphisms in prostate cancer susceptibility;
(5) studies investigating progression, severity, pheno-
type modification, response to treatment, or survival;
(6) inadequate data extraction; or (7) missing geno-
type frequencies.

Meta-analysis
ORs with 95 % CIs were used to measure the relation-
ship between VDR Cdx2 and ApaI polymorphisms, and
prostate cancer risk. The Z test was used to evaluate the
significance of pooled OR. P value less than 0.05 was
deemed significant. Homozygote, heterozygote, recessive
and dominant models were used to determine the asso-
ciation of Cdx2 and ApaI polymorphisms with prostate
cancer risk.
Statistical heterogeneity was evaluated using chi-square-

based Q-statistic [30] and I2 statistic [31]. P < 0.10 or
I2 > 50 % suggested statistically significant heterogen-
eity. A random effects model was used to calculate
the pooled OR estimates. In other cases, a fixed effect
model was used [32].
Sensitivity and subgroup analyses were used to explore

the sources of heterogeneity among studies. Sequential
exclusion of individual studies facilitated the evaluation
of stability and sensitivity of the results. Subgroup ana-
lyses were based on ethnicity, controls and HWE.
Begg’s funnel plots were used to determine publication

bias in studies. Linear regression asymmetry was tested
using the procedure described by Egger et al. [33]. An
asymmetric plot suggested possible publication bias. P
value less than 0.05 in Egger’s test indicated significant
publication bias.
The statistical tests were conducted using STATA stat-

istical software (version 12.0 STATA Corp., College
Station, TX). All P values were two-sided. The reli-
ability and accuracy of the results were ensured by
two authors independently evaluating the data with
the same software.
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Results
Eligible studies
The search terms returned 292 publications. We ex-
cluded 266 studies unrelated to Vitamin D receptor
(VDR) gene polymorphism, three studies unrelated to
prostate cancer [34–36], and three reviews [37–39].
The remaining 20 studies were included in the meta-
analysis. We excluded two meta-analyses [20, 40], and
two other studies [41, 42], which lacked genotype fre-
quencies. No additional studies were retrieved follow-
ing manual search of references in the published
studies. Therefore, a total of 16 relevant studies were
eligible for inclusion in the meta-analysis (Table 1).
Three of the eligible studies reporting data involving
two different ethnic groups were treated independ-
ently [25, 27]. Therefore, the final meta-analysis in-
cluded a total of 19 case-controlled studies as shown
in Table 1. Seven studies involved 4979 cases and
4380 controls related to VDR Cdx2 polymorphism
and prostate cancer risk, and 11 studies involved
2837 cases and 2884 controls related to VDR ApaI
polymorphism.

The sample size ranged from 28 to 1117 individuals.
Six of the eligible studies involved Caucasians and four
were conducted in other ethnic groups to investigate
VDR Cdx2 polymorphism. VDR ApaI polymorphisms
were investigated in Caucasians in four studies. Six
studies involved Asians, and two involved African-
Americans. Ten studies involved population samples,
and six were hospital-based. PCR-RFLP and TaqMan as-
says were used to study the polymorphisms. The geno-
type distributions were not in HWE among the controls
in two studies investigating VDR Cdx2 [27] and VDR
ApaI [15, 16, 43].

Primary and subgroup analyses
As shown in Table 2, VDR Cdx2 polymorphism was not
significantly associated with prostate cancer risk in the
pooled meta-analysis of all the eligible studies (homozy-
gote model: AA vs. GG: OR = 1.11, 95 % CI = 0.93–
1.33, P = 0.23; heterozygote model: GA vs. AA: OR =
0.97, 95 % CI = 0.88–1.06, P = 0.53; dominant model:
AA +GA vs. GG: OR = 0.99, 95 % CI = 0.91–1.08, P = 0.80,
Fig. 1; recessive model: AA vs. GA+ GG: OR = 1.12,

Table 1 Characteristics of eligible studies

First author Year Country Ethnicity Total sample size
(case/control)

Genotyping
method

Source of
control

Study Polymorphisms P for HWE

Gilbert [18] 2015 UK Caucasian 951/898 Taqman PB NCC Cdx2 0.96

950/890 Taqman PB NCC ApaI 0.09

Jingwi [19] 2015 USA African American 446/379 TaqMan PB CC Apa1 0.89

Yousaf [43] 2014 Pakistan Asian 47/134 PCR-RFLP PB CC Apa1 <0.0001

Jin Oh [41] 2014 Korean Asian 272/173 PCR-RFLP HB CC Cdx2 ─

Rowland (A) [56] 2012 USA African American 414/223 TaqMan PB CC Cdx-2 0.07

Caucasian 1117/795 TaqMan PB CC Cdx-2 0.55

Bai [73] 2009 China Asian 122/130 PCR-RFLP HB CC ApaI 0.21

Onen [28] 2008 Turkey Caucasian 133/157 PCR-RFLP HB CC Apa1 0.41

Torkko [27] 2008 USA Hispanic White 141/273 TaqMan PB CC Cdx-2 0.05

Caucasian 444/488 TaqMan PB CC Cdx-2 0.99

Mikhak [26] 2007 USA Caucasian 688/689 TaqMan PB CC Cdx-2 0.15

Chaimuangraj [74] 2006 Thailand Asian 28/74 PCR-RFLP HB CC Apa1 0.88

Cicek [23] 2006 USA Caucasian 439/479 TaqMan PB CC Cdx2 0.26

439/478 TaqMan PB CC Apa1 0.25

John [24] 2005 USA Caucasian 417/435 TaqMan PB CC Cdx-2 0.75

Huang [15] 2004 Taiwan Asian 160/205 PCR-RFLP HB CC Apa1 0.03

Oakley-Girvan [25] 2004 USA African American 113/121 PCR-RFLP PB CC Apa1 0.16

Caucasian 232/171 PCR-RFLP PB CC Apa1 0.19

Maistro [42] 2004 Brazil mixed 165/200 PCR-RFLP PB CC Apa1 ─

Bodiwala [22] 2004 UK Caucasian 368/243 PCR-RFLP HB CC Cdx-2 0.21

Suzuki [16] 2003 Japan Asian 81/105 PCR-RFLP PB CC Apa1 0.007

Habuchi [21] 2000 Japan Asian 222/337 PCR-RFLP HB CC Apa1 0.96
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95 % CI = 0.95–1.31, P = 0.16). Subgroup analyses based
on ethnicity, source of control, and HWE in controls,
revealed no significant association.
As shown in Table 3, VDR ApaI polymorphism was

not significantly correlated with prostate cancer risk in
pooled analysis of eligible studies (homozygote model:
AA vs. aa, OR = 0.97, 95 % CI: 0.76–1.25, P = 0.85;
heterozygote model: Aa vs. aa: OR = 1.00, 95 % CI:
0.88–1.13, P = 0.99; dominant model: AA + Aa vs. aa:
OR = 0.98, 95 % CI: 0.87–1.10, P = 0.79, Fig. 2; recessive
model: AA vs. Aa + aa: OR = 0.97, 95 % CI: 0.85–1.01,

P = 0.64). Subgroup analyses based on ethnicity,
source of controls, and HWE in controls, revealed the
absence of prostate cancer risk with VDR ApaI
polymorphism.

Heterogeneity analysis and sensitivity analysis
Significant heterogeneity was found in AA vs. Aa genetic
model of VDR ApaI polymorphism (P = 0.021, I2 = 51.1 %).
Sensitivity analysis was conducted by excluding individual
studies to determine heterogeneity. Sequential exclusion of
individual case-controlled study revealed similar results

Table 2 Meta-analysis of VDR Cdx2 polymorphism and prostate cancer risk

Homozygote (AA vs. GG) Heterozygote (GA vs. GG) Dominant model (AA + GA vs. GG) Recessive model (AA vs. GA + GG)

Analysis N OR (95 % CI) P I2 (%) OR (95 % CI) P I2 (%) OR (95 % CI) P I2 (%) OR (95 % CI) P I2 (%)

Overall 9 1.11 (0.93–1.33) 0.23 32.3 0.97 (0.88–1.06) 0.53 12.9 0.99 (0.91–1.08) 0.80 28.4 1.12 (0.95–1.31) 0.16 17.6

Ethnicity

Caucasian 6 1.13 (0.92–1.39) 0.23 23.0 0.93 (0.84–1.03) 0.201 0 0.96 (0.88–1.06) 0.45 4.4 1.15 (0.94–1.41) 0.15 16.7

African American 1 1.80 (0.97–3.32) 0.06 — 1.54 (0.81–2.92) 0.18 — 1.70 (0.94–3.10) 0.08 — 1.26 (0.91–1.75) 0.16 —

Hispanic White 1 0.49 (0.17–1.36) 0.17 — 0.83 (0.52–1.31) 0.43 — 0.77 (0.50–1.19) 0.24 — 0.52 (0.18–1.43) 0.20 —

Mixed 1 0.94 (0.58–1.50) 0.80 — 1.15 (0.91–1.44) 0.22 — 1.12 (0.90–1.39) 0.31 — 0.89 (0.56–1.42) 0.64 —

Source of control

PB 8 1.11 (0.92–1.33) 0.259 40.7 0.95 (0.86–1.04) 0.32 0 0.97 (0.89–1.06) 0.54 23.8 1.12 (0.95–1.32) 0.16 27.7

HB 1 1.11 (0.93–1.32) 0.686 — 1.26 (0.88–1.80) 0.19 — 1.25 (0.89–1.75) 0.19 — 1.07 (0.52–2.18) 0.85 —

HWE in controls

Yes 8 1.15 (0.95–1.40) 0.133 34.3 % 0.97 (0.89–1.07) 0.65 22.1 0.99 (0.91–1.09) 0.99 34.6 1.15 (0.97–1.36) 0.09 20.2

No 1 0.87 (0.54–1.40) 0.58 — 0.91 (0.69–1.21) 0.53 — 0.90 (0.69–1.17) 0.46 — 0.90 (0.57–1.43) 0.67 —

P P values for Z test, OR odds ratio, CI confidence intervals, HB hospital–based studies, PB population-based studies, HWE Hardy–Weinberg equilibrium
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Fig. 1 Forest plot of VDR Cdx2 polymorphism and prostate cancer risk using a fixed-effect model (dominant model AA + GA vs. GG)
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statistically, indicating the stability and sensitivity of the
meta-analysis (data not shown).
Population and subgroup analysis revealed no significant

heterogeneity in terms of VDR Cdx2 polymorphism.

Publication bias
Symmetrical Begg’s funnel plots indicated the absence of
publication bias in the overall meta-analysis (Fig. 3).
Egger’s test results revealed no publication bias in
studies investigatingVDR Cdx2 polymorphism (P = 0.67
for AA vs. GG; P = 0.24 for GA vs. GG; P = 0.34 for dom-
inant model AA +GA vs. GG; and P = 0.248 for recessive
model AA vs. GA +GG) and VDR ApaI (P = 0.80 for AA
vs. aa; P = 0.78 for Aa vs. aa; P = 0.48 for dominant

model AA + Aa vs. aa; and P = 0.14 for recessive model
AA vs. Aa + aa).

Discussion
Genetic polymorphisms play a key role in the patho-
physiology of disease. Genome-wide association studies
(GWAS) reported more than 90 common SNPs (minor
allele frequency [MAF], 5 % or greater) with established
relationship involving insignificant alterations (average
per allele odds ratios [ORs]:1.1–1.3) in prostate cancer
susceptibility [44–47]. Overall, the SNPs account for a
third of the total inherited risk of prostate cancer [44, 45].
VDR is a nuclear receptor regulating bone mineral

homeostasis, mammalian hair cycle, and compound

Table 3 Meta-analysis of VDR ApaI polymorphism and prostate cancer risk

Homozygote (AA vs. aa) Heterozygote (Aa vs. aa) Dominant model (AA + Aa vs. aa) Recessive model (AA vs. Aa + aa)

Analysis N OR (95 % CI) P I2 (%) OR (95 % CI) P I2 (%) OR (95 % CI) P I2 (%) OR (95 % CI) P I2 (%)

Overall 9 0.97 (0.76–1.25) 0.85 51.1 1.00 (0.88–1.13) 0.99 28.8 0.98 (0.87–1.10) 0.79 0 0.97 (0.85–1.01) 0.64 0

Ethnicity

Caucasian 4 0.81 (0.66–1.01) 0.06 11.0 1.01 (0.85–1.19) 0.91 20.8 0.94 (0.81–1.10) 0.46 20.8 0.92 (0.78–1.06) 0.25 0

African American 2 1.54 (0.74–3.19) 0.24 57.9 1.16 (0.84–1.60) 0.35 0 1.27 (0.94–1.72) 0.12 0 0.92 (0.65–1.29) 0.63 0

Asian 6 1.05 (0.69–1.58) 0.82 36.2 0.90 (0.71–1.14) 0.40 49.0 0.93 (0.76–1.16) 0.56 0 1.24 (0.92–1.66) 0.14 0

Source of control

PB 8 1.03 (0.77–1.38) 0.82 60.1 1.05 (0.91–1.20) 0.52 42.9 1.02 (0.90–1.16) 0.72 0 0.97 (0.85–1.11) 0.64 17.8

HB 4 0.82 (0.50–1.34) 0.43 29.3 0.83 (0.63–1.10) 0.20 0 0.84 (0.65–1.09) 0.18 0 0.98 (0.69–1.38) 0.92 0

HWE in controls

Yes 10 0.96 (0.76–1.21) 0.733 36.6 1.01 (0.89–1.15) 0.90 0 0.99 (0.87–1.12) 0.86 0 0.93 (0.82–1.06) 0.29 0

No 2 0.86 (0.19–3.86) 0.84 86.7 0.91 (0.59–1.40) 0.66 85.6 0.98 (0.88–1.10) 0.74 0 1.56 (0.99–2.46) 0.05 0

P P values for Z test, OR odds ratio, CI confidence intervals, HB hospital–based studies, PB population-based studies, HWE Hardy–Weinberg equilibrium, NR not reported
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Fig. 2 Forest plot of VDR ApaI polymorphism and prostate cancer risk using a fixed-effect model (dominant model AA + Aa vs. aa). OR, odds ratio;
CI, confidence interval

Wang et al. BMC Cancer  (2016) 16:674 Page 5 of 9



detoxification. It has recently been found to prevent
tumorigenesis by inhibiting cell proliferation and differ-
entiation, and inducing apoptosis. Previous studies dem-
onstrated that VDR gene polymorphisms, which include
FokI, BsmI, ApaI, TaqI, and Cdx2, are associated with
ovarian [48], skin [49], breast [50], and colorectal can-
cers [51].
The G-to-A polymorphism involving a Cdx2-binding

site in the 1e promoter region, mediates VDR transcrip-
tion in intestine [52]. The strong binding of A allele with
the Cdx2 transcription factor enhances transcriptional
activity [53]. Thus, Cdx2 regulates cellular proliferation
and differentiation. The A allele frequencies varied in
different ethnic groups: 74 % in Africans, 43 % in Asians,
and 19 % in Caucasians [54].
Cdx2 polymorphism prevents osteoporosis [53]. The

ApaI polymorphisms (in intron 8) at the 3′ untranslated
region (UTR) are in strong linkage disequilibrium (LD)

[54]. Nonetheless, the polymorphism does not alter the
predicted amino acid sequence of the VDR, and often af-
fects mRNA stability and the efficiency of protein trans-
lation [55]. Several studies investigated the role of VDR
Cdx2 and ApaI polymorphisms in prostate cancer risk,
with inconclusive results. Therefore, we conducted a
meta-analysis to establish the association between VDR
Cdx2 and ApaI polymorphisms, and prostate cancer
risk.
Our meta-analysis, including 6427 cases and 6039 con-

trols from 16 case-controlled studies, evaluated the asso-
ciation between Cdx2 and ApaI polymorphisms, and
prostate cancer risk. Our results suggest that these poly-
morphisms do not increase the risk of prostate risk in
genetic models, which was consistent with a previous
meta-analysis [20]. However, our current meta-analysis
included 6427 cases and 6039 controls from 16 case-
controlled studies to obtain comprehensive results.

Begg's funnel plot with pseudo 95% confidence limits
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Fig. 3 Funnel plot analysis for detection of publication bias. Each point represents a separate study for the indicated association. a Funnel plot:
dominant model AA + GA vs. GG of VDR Cdx2 polymorphism in overall analysis (P = 0.67) and (b) Funnel plot: dominant model AA + Aa vs. aa of
VDR ApaI polymorphism in overall analysis (P = 0.48)
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Subgroup analysis based on ethnicity, source of control,
and HWE in controls, showed no significant relationship
between Cdx2 and ApaI polymorphisms, and prostate
cancer risk in any comparative studies.
The role of VDR Cdx2 and ApaI polymorphisms in

prostate cancer was unclear due to ethnic variation in
genotypes, controls and subjects, and genotyping tech-
niques [16]. The VDR Cdx2 AA genotype is most fre-
quently found in African-Americans (58.9 %) [56], while
the GG genotype occurs most frequently in Hispanic
Whites (65.7 %) [27].
The VDR ApaI genotype AA is the most prevalent in

African-Americans (40.2 %) [25], while the aa genotype
is most frequently found in Asians (67.9 %) [43]. How-
ever, the African study sample included three studies
involving African-Americans, preventing statistical inter-
pretation with confidence. A larger sample size is needed
for subgroup analysis of various ethnic populations.
Furthermore, a few hospital-based studies did not sup-

port the association of increased risk with VDR polymor-
phisms compared with normal controls [57, 58], in
contrast to other investigations [21, 59]. In subgroup
analyses by source of control, we selected 16 studies
(eight studies related to VDR Cdx2 polymorphism and
eight involving VDR ApaI polymorphism) which in-
cluded subjects from more representative populations to
determine potential gene association in tumorigenesis.
The relationship between VDR Cdx2 and ApaI poly-

morphisms, and prostate cancer risk in previous studies
is attributed to differences in lifestyle and disease preva-
lence as well as limited sample size [60–62]. Further,
prostate size, cancer stage, and depth of invasion were
not considered, in determining the genotypic distribu-
tion. Prostate cancer is a complex and multifactorial dis-
ease mediated by genetic and environmental factors in
different populations [60].
However, the risk factors underlying prostate cancer

are related to each other. Similar gene polymorphisms
may still result in different phenotypes, because the
penetrance of the mutation depends on the interaction
with other polymorphisms and exposure to specific
environment.
Genetic heterogeneity in meta-analysis of studies in-

vestigating genetic polymorphisms and various diseases
is not surprising. However, no heterogeneity was ob-
served among studies investigating the VDR Cdx2
polymorphism in our meta-analysis. Different genotype
distributions and population stratification may also alter
genotype-phenotype associations.
Furthermore, a number of factors affect heterogeneity.

Different studies select subjects for control groups based
on different definitions, resulting in heterogeneity ob-
served in our meta-analysis. We investigated whether
the heterogeneity might be explained by potential

confounding factors such as age, smoking, drinking,
androgen levels, and other clinical characteristics.
However, no reliable results were available due to lack
of access to individual data involving these variables.
Similar heterogeneity was observed with the VDR
ApaI polymorphism.
Cancer is a complex disease, and is triggered by

genetic factors as well as environmental impact (UV
exposure), gene interactions, and lifestyle (e.g., smoking,
drinking alcohol, and diet) [63–71]. Interaction between
environmental factors and VDR gene is also a possibility
[70, 72]. Further large studies investigating the different
types of VDR Cdx2 and ApaI polymorphisms are needed
to facilitate subgroup analyses. Environmental inter-
action with VDR Cdx2 and ApaI polymorphisms and its
role in prostate cancer risk needs to be validated.
The study limitations of our meta-analysis are as fol-

lows. First, in subgroup analyses based on ethnicity, the
population sample size was comparatively small, which
may affect the statistical power in determining the sig-
nificance of the relationship. Second, our results were
not adjusted for variables such as age, smoking, drink-
ing, obesity, gene-gene interactions, and environmental
factors, due to lack of access to the original study data.
Finally, most studies investigating the VDR Cdx2 poly-
morphism in prostate cancer risk involved Caucasian
population. Therefore, evidence based on large con-
trolled studies involving a wide range of ethnic and
population groups is needed to re-evaluate the associ-
ation between specific SNPs and prostate cancer risk.

Conclusions
Our findings suggest that VDR Cdx2 and ApaI polymor-
phisms are not linked to prostate cancer susceptibility in
the overall population. Epidemiological studies with
large sample sizes including a wide range of ethnic
populations and functional parameters are needed to
reinforce our findings.
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