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Trypanosoma cruzi infection drives the expansion of remarkably focused CD8� T cell responses targeting epitopes encoded by
variant trans-sialidase (TS) genes. Infection of C57BL/6 mice with T. cruzi results in up to 40% of all CD8� T cells committed to
recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these
mice fail to clear T. cruzi infection and subsequently develop chronic disease. One possible reason for the failure to cure T. cruzi
infection is that immunodomination by these TS-specific T cells may interfere with alternative CD8� T cell responses more capa-
ble of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these
immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlled T. cruzi infection and developed
effector CD8� T cells that maintained an activated phenotype. Memory CD8� T cells from drug-cured TSKB-transgenic mice
rapidly responded to secondary T. cruzi infection. In the absence of the response to TSKB20 and TSKB18, immunodominance
did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific
for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8� T cell responses tightly and robustly focused on
a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to control T. cruzi infec-
tion. These data also indicate that the relative position of an epitope within a CD8� immunodominance hierarchy does not pre-
dict its importance in pathogen control.

Though eukaryotic pathogens potentially express hundreds of
thousands of antigenic peptides, in most cases, a reproducible

hierarchy of dominant and subdominant T cells recognizing spe-
cific peptides expands in response to infection in a given host.
Such immunodominance in CD8� T cell responses is commonly
observed in animal models of infection as well as humans infected
with viral, bacterial, and protozoal pathogens (1–3). The genera-
tion of immunodominance hierarchies can be attributed to nu-
merous factors (4–8), including competition for space and essen-
tial resources by dominant T cell clones (immunodomination)
(9). Immunodominance likely benefits the host since energy and
resources are invested in the most relevant antigen-specific T cells
capable of pathogen clearance while eliciting minimal immuno-
pathology. T cell recognition of epitopes located in conserved pro-
teins may place evolutionary pressure on pathogens, selecting for
mutants that are less fit and therefore more easily controlled.
However, epitope loss mutations that benefit the pathogen by
allowing escape of immune recognition may in turn evolve.
Immunodominance can also be detrimental to the host because
overzealous CD8� T cell responses can cause severe immuno-
pathology, as is the case for reinfections in hosts with highly
focused preexisting immunity or cross-reacting T cell popula-
tions (10). Persistently infecting pathogens also pose a problem,
since long-term antigen persistence can drive chronic immuno-
pathology (11, 12). Further, it is hypothesized that immunodomi-
nance of noncritical antigens may be utilized by pathogens as an
immune evasion mechanism.

In contrast to viral and bacterial models, in which immu-
nodominance has been extensively studied (1, 2), less is known
concerning immunodominant CD8� T cells and their importance
for control of intracellular protozoan parasites. Having relatively
large genomes and stage-regulated proteomes, these eukaryotic
pathogens are more complex than viral and bacterial pathogens in

terms of the array of antigens expressed by individual stages oc-
curring within the same host. Furthermore, many parasites of
medical importance infect humans chronically or can reinfect im-
mune individuals, suggesting that the immunity developed to-
ward these pathogens is “insufficient” (13). Recent studies have
described CD8� T cell immunodominance during infection with
Trypanosoma cruzi (14, 15), an obligate intracellular parasite that
often persists for the lifetime of its mammalian host (16). Though
the genome of T. cruzi contains several large gene families encod-
ing surface proteins (20 to �1,000 annotated genes per family)
(17, 18), many of which gain access to major histocompatibility
complex class I (MHC-I) presentation (19), the majority of the T.
cruzi-specific CD8� T cells generated in C57BL/6 mice target a
highly restricted set of epitopes encoded by the large, strain-vari-
ant trans-sialidase (TS) family of genes (14, 15). The dominant
TSKB20 (ANYKFTLV)-specific CD8� T cells expand to represent
20 to 30% of the CD8� population, and the subdominant TSKB18
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(ANYDFTLV)-specific population represents 4 to 10% of CD8� T
cells during the acute peak of the response (14). These parasite-
specific CD8� T cells are maintained for the lifetime of mice at
relatively high levels and exhibit robust effector functions during
the chronic phase of infection (20). Nevertheless, mice fail to com-
pletely clear T. cruzi despite these high-frequency parasite-specific
CD8� T cell populations (20).

We previously analyzed the importance of immunodominant
TS-specific CD8� T cells during T. cruzi infection and observed
that mice tolerized against either TSKB20 or TSKB74 (a cross-
reactive peptide recognized by TSKB18-specific CD8� T cells
[14]) alone, or simultaneously, exhibited modest increases in par-
asite load during the peak of acute infection, though ultimately
they were similar to control-treated mice with respect to control of
the acute infection (21). Since the TS gene family is dramatically
and selectively expanded in T. cruzi (22) and TS gene sequences
exhibit considerable intra- and interstrain variability (14, 17), it is
hypothesized that this gene family is involved in immune evasion
(21, 23–27). The observation that immune control is generated
independent of CD8� T cell recognition of the identified immu-
nodominant TS-derived epitopes indicates that the described TS-
focused CD8� responses are not necessary and may even inhibit
the generation of alternative CD8� responses more capable of
eliminating the parasite via immunodomination. To determine if
diverting the focus of parasite-specific CD8� T cells away from
these TS-encoded epitopes alters the ability of T. cruzi to persist
chronically in infected hosts, we have generated transgenic mouse
lines expressing the TSKB20 and TSKB18 epitopes as self-anti-
gens, ensuring central tolerance in the context of infection. We
find that TSKB peptide transgenic (TSKB-Tg) mice generate ef-
fective CD8� T cell responses that compensate for the absence of
the known immunodominant TS-specific responses and mediate
long-term control of persisting parasites. As expected, the nor-
mally nondominant CD8� T cells maintained an effector/effec-
tor-memory phenotype in lymphoid tissues of TSKB-Tg mice.
Furthermore, the normally nondominant CD8� T cells were re-
tained after drug-induced cure and exhibited an anamnestic re-
sponse to secondary challenge. Ultimately, T. cruzi established a
low-level chronic infection in both wild-type (WT) and TSKB-Tg
mice, demonstrating that highly focused immunodominance is
not required for, nor is correlated with, effective pathogen control.
These results also suggest that the search for effective vaccines may
need to extend beyond targets that dominate the normal response
to pathogens, particularly those with highly complex genomes.

MATERIALS AND METHODS
Generation of TSKB20 and TSKB18 transgenic mice. For transgenic ex-
pression of the TSKB20 epitope (ANYKFTLV) or TSKB18 epitope (ANY
DFTLV), a modified version of chicken ovalbumin (HA-OVA) was in-
serted into the eukaryotic expression vector pBroad3 (InvivoGen, San
Diego, CA), which contains the mouse ROSA26 promoter and the human
beta-globin gene 3= untranslated region (UTR). Briefly, OVA was cloned
from pTEX.HA-OVA (19) into pDONR-201 (Invitrogen, Carlsbad, CA).
The sequence encoding the SIINFEKL epitope was replaced with a 54-bp
oligonucleotide encoding TSKB20 or TSKB18 (including the endogenous
residues flanking SIINFEKL) between StuI and AvaII. A 591-bp fragment
of modified OVA was amplified from pDONR-201-OVA/TSKB20 or
pDONR-201-OVA/TSKB18 with a PCR using primers designed to add 5=
BglII followed by ATGGCC and 3= TGA followed either by EcoRI or by
HindIII-PvuII-XbaI. These fragments were digested and ligated into the
pBroad3 multiple cloning site between BglII and EcoRI to generate

pBroad-TSKB20 or between BglII and XbaI to generate pBroad-TSKB18.
The fidelity of transgenic TSKB20 and TSKB18 epitope expression in the
context of the ovalbumin gene fragment was validated by generating
transgenic EL4 tumor cells expressing either OVA/TSKB20 or OVA/
TSKB18. C57BL/6 mice were injected intraperitoneally (i.p.) with the
transgenic EL4 cell lines and monitored for the development of trans-
gene-specific CD8� T cell responses. Mice challenged with EL4-OVA/
TSKB20 generated TSKB20-specific CD8� T cells, and mice challenged
with EL4-OVA/TSKB18 expanded only TSKB18-specific CD8� T cells.
The 2,955-bp transgene expression cassette was liberated from the pro-
karyotic vector by double digestion with PacI and ApaLI, and the purified
TSKB20 and TSKB18 transgene constructs were independently microin-
jected into fertilized C57BL/6 embryos by the MD Anderson Cancer Cen-
ter Genetically Engineered Mouse Facility (Houston, TX). Transgene-
positive founders were identified by PCR amplification of a 937-bp
product using a forward primer located in the ROSA26 promoter (GGG
AGAAGGGAGCGGAAAAG) and a reverse primer located in the human
beta-globin 3= UTR (ATTAGGCAGAATCCAGATGC). Founder mice
were mated with C57BL/6 mice obtained from the National Cancer Insti-
tute at Frederick (Frederick, MD) and kept under specific-pathogen-free
conditions at the Coverdell Center animal facility (University of Georgia,
Athens, GA). Further identification of TSKB20- and/or TSKB18-specific
transgenes was made using the described forward primer located in the
ROSA26 promoter and the transgene-specific reverse primer EcoRI-MscI
(TGGCCAGAATTCTCAATTGA) for TSKB20 or HindIII-PvuII (CAGC
TGAAGCTTTCAATTGA) for TSKB18 transgene identification.

Parasites and mice. For T. cruzi infections, 8- to 12-week-old mice
were infected i.p. with 1 � 103 trypomastigotes of either strain Brazil or
strain Brazil-OVA (19). When indicated, some mice were infected with
1 � 104 trypomastigotes i.p. Trypomastigotes were maintained in tissue
culture by serial passage through Vero cells (ATCC, Manassas, VA).
C57BL/6 mice obtained from the National Cancer Institute at Frederick
(Frederick, MD) and RAG1�/� OT-I TCR transgenic mice (CD45.1) were
a kind gift of Kimberly Klonowski (University of Georgia, Athens, GA).
For adoptive transfer of OT-I cells, the proportion of CD45.1� CD8� T
cells per spleen was determined by flow cytometry, spleen cell suspensions
were adjusted to 500 OT-I cells per ml, and 100 �l of this suspension was
injected intravenously (i.v.) per recipient. B6.SJL mice (CD45.1) from
Jackson Laboratory (Bar Harbor, ME) were crossed with WT littermates
(CD45.2) or TSKB-Tg (CD45.2) mice to generate WT and TSKB20/18 Tg
mice expressing both CD45.1 and CD45.2. All mice were kept under spe-
cific-pathogen-free conditions at the Coverdell Center animal facility
(University of Georgia, Athens, GA). Mice were euthanized by CO2 inha-
lation. The University of Georgia Institutional Animal Care and Use
Committee approved all animal use protocols.

T cell phenotyping. For ex vivo lymphocyte phenotyping, spleens were
removed and dissociated by rubbing between two glass slides in a medium
of hypotonic ammonium chloride to lyse red blood cells. Cell numbers
were determined on a Z2 Coulter particle count and size analyzer (Beck-
man Coulter, Fullerton, CA). For staining directly ex vivo, 5 � 106 washed
splenocytes were incubated with antibodies in phosphate-buffered saline
(PBS) with 1% bovine serum albumin and 0.05% sodium azide (PAB)
(both from Sigma). Blood was collected from the retro-orbital sinus into
a sodium citrate solution, washed in PAB, and depleted of erythrocytes as
described above. TSKB20/Kb and TSKB18/Kb tetramers were synthesized
at the Tetramer Core Facility (Emory University, Atlanta, GA) and were
labeled with streptavidin-phycoerythrin (SA-PE) or SA-allophycocyanin
(SA-APC) (Molecular Probes, Carlsbad, CA). The SIINFEKL/Kb tetramer
was prepared as described previously (28) and labeled with PE. Antibodies
used were CD8 efluor450, CD4 PE-Cy5, CD44 FITC (where FITC is flu-
orescein isothiocyanate), KLRG-1 PE-Cy7, CD127 APC-efluor780,
CD127 PE-Cy7, CD62L PerCP-Cy5.5 (eBioscience, San Diego, CA),
CD11b PE-Cy5, B220 PE-Cy5 (Caltag Laboratories, Burlingame, CA),
CD44 APC, CD11a FITC, CD45.1 FITC, and PE (the last two from BD
bioscience, San Jose, CA). Cells were stained at 4°C for 30 min, washed
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with PAB, and fixed in 2% formaldehyde. At least 5 � 105 single lympho-
cytes were collected for each sample on a Cyan ADP using Summit version
4.3 (Beckman Coulter). FlowJo Flow Cytometry Analysis Software ver-
sion 9 (Tree Star, Ashland, OR) was used for analyses, and biexponential
transformation was applied to the histogram axis.

Benznidazole treatment and adoptive transfer of memory CD8� T
cells. The trypanocidal drug benznidazole was administered to clear mice
of parasites and allow for the generation of T. cruzi-specific memory
CD8� T cell populations. Mice were treated orally with benznidazole
(Roche, Basel, Switzerland) as described previously (20). Daily treatments
(100 mg/kg body weight) were given for 40 days. For adoptive transfer of
memory CD8� T cells, we used the Dynal mouse CD8 negative isolation
kit (Invitrogen) to purify untouched CD8� T cells from cell suspensions
prepared from pooled mouse spleen and lymph nodes. Purity was con-
firmed as �88% CD8� T cells prior to cell transfer into recipient naive
mice.

Synthetic peptides. Peptides were synthesized by GenScript (Piscat-
away, NJ) and solubilized in dimethyl sulfoxide (DMSO) at 5 mM. Pep-
tides were each diluted to 1 �M for stimulation assays. Published peptide
sequences are as follows: TSKB20 (ANYKFTLV), TSKB18 (ANYDFTLV),
TSKB38 (VNYNFTLV), TSKB60 (LSHSFTLV), TSKB81 (LSHSFTLV),
TSKB92 (VGRPTTVV), TSKB388 (ANHRFTLV), ASP-1 (P14) (VNHDF
TVV), ASP-2 (P8) (VNHRFTLV), TSA-1 (Pep77.2) (VDYNFTIV), Crz5
(PSVRSSVPL), Crz9 (VPLNKCNRL), Gft16 (SVPIRLLVL), Gft17 (LGFQ
ERNVL), LYT-1p5 (ELTMYKQLL), PAR-1 (PFR-1) (YEIQYVDL),
PAR-3 (PFR-3) (RVVSFTQM), and SIINFEKL.

T cell stimulation and intracellular staining. Splenocytes (1.5 � 106)
were stimulated in 96-well round-bottom tissue culture plates (Costar,
Corning, NY) at 37°C for 5 h in the presence 1 �M peptide and brefeldin
A (Golgi Plug; BD Biosciences). For polyclonal activation, wells were
pulsed with 1.5 �g anti-mouse CD3ε (eBioscience) for 1 h at 37°C and
excess antibody was removed prior to the addition of cells. For CD107a
labeling, 2 �l CD107a FITC (0.5 mg/ml) was added to the well during
stimulation at 37°C. Cells were stained with CD8 efluor450 and CD4 on
FITC (Caltag) or PE (BD biosciences) followed by intracellular staining
with gamma interferon (IFN-�) APC (BD biosciences) and tumor necro-
sis factor alpha (TNF-�) PE-Cy7 (eBioscience) according to the Cytofix/
Cytoperm kit (BD biosciences). At least 150,000 cells were collected for
analysis.

In vivo cytotoxicity assay. Spleen cells from naive mice were incu-
bated for 1 h at 37°C with 10 �M peptide or medium alone and then
labeled with different concentrations of carboxyfluorescein succinimidyl
ester (CFSE; Molecular Probes) as described previously (14) to pro-
duce CFSE high, medium, and low populations. Equal numbers of
CFSE-labeled cells were transferred i.v. into recipients, and after 16 h,
splenocytes were isolated and CFSE-labeled cells were detected by flow
cytometry. The percentage of specific killing was determined using the
following formula: 1 � [(% CFSElo naive/% CFSEmed/hi naive)/
(% CFSElo infected/CFSEmed/hi infected)] � 100%.

Real-time PCR. Mouse hind leg muscles or inguinal fat pads were
collected, and lymph nodes were removed prior to DNA extraction as
described previously (29). Extracted DNA was analyzed by real-time PCR
essentially as described previously (29). PCRs consisted of iQ SYBR green
Supermix (Bio-Rad) and primers specific for T. cruzi or mouse genomic
DNA (gDNA) (29). An iQ5 Multi-Color real-time PCR detection system
was used with iQ5 Standard Edition Optical System Software version 2
(both from Bio-Rad). T. cruzi equivalents were calculated as the quantity
of T. cruzi satellite DNA divided by the quantity of mouse TNF-� DNA in
each sample.

Statistical analysis. Statistical significance was calculated between two
groups by two-tailed Student’s t test or between three or more groups by
1-way analysis of variance (ANOVA) with Bonferroni’s multiple-compar-
ison test using Prism 4.0 software (GraphPad Software, San Diego, CA). P
values of 	0.05 were considered significant.

RESULTS
TSKB20 and TSKB18 peptide transgenic mice exhibit immune
tolerance to TS-derived epitopes. To generate mice expressing
the TSKB20 or TSKB18 epitope as neo-self-antigen, we engi-
neered DNA sequences encoding the peptides and cloned each
into a transgene vector driven by the ubiquitously expressed
ROSA26 promoter. Since the amino acid residues flanking mini-
mal epitopes influence proteolytic cleavage and the processing of
antigenic peptides (30) and these sequences vary considerably at
the TS genes encoding TSKB20 and TSKB18 (17), we replaced the
nucleotides encoding the H-2Kb-restricted SIINFEKL epitope
from ovalbumin (OVA) with sequences encoding TSKB20 or
TSKB18. The OVA/TSKB20 and OVA/TSKB18 vectors were indi-
vidually microinjected into fertilized B6 embryos to generate
TSKB20 Tg and TSKB18 Tg mouse strains, respectively. Mice ex-
pressing both epitopes were obtained by crossing TSKB20 Tg and
TSKB18 Tg mice to produce TSKB20/18 Tg mice that can be iden-
tified using transgene-specific primers to PCR amplify either
transgene sequence (Fig. 1A and data not shown).

Ubiquitous expression of TSKB20 and TSKB18 should drive
clonal deletion of CD8� T cells recognizing these neo-self-anti-
gens. We assessed epitope-specific central tolerance by infecting
TSKB20 Tg, TSKB18 Tg, TSKB20/18 Tg, and WT littermates with
T. cruzi strain Brazil and assessing the level of TSKB20/Kb- or
TSKB18/Kb-tetramer� CD8� T cells at the peak of acute infection
(Fig. 1B). Tetramer� CD8� T cells specific for the transgene-en-
coded epitope were not detected in spleens of TSKB20 Tg, TSKB18
Tg, or TSKB20/18 Tg mice, though TSKB18/Kb- or TSKB20/Kb-
tetramer� CD8� T cells readily expanded in TSKB20 Tg and
TSKB18 Tg mice, respectively, and activated CD44� CD8� T cells
expanded normally in all T. cruzi-infected mice (Fig. 1B and data
not shown). Furthermore, in vivo cytotoxicity toward the respec-
tive transgene-encoded epitope was undetectable during acute T.
cruzi infection (Fig. 1C). Thus, transgenic expression of TSKB20
and TSKB18 results in epitope-specific central tolerance and does
not prevent the activation and expansion of alternative parasite-
specific CD8� T cells in response to T. cruzi infection.

Long-term control of T. cruzi infection by TSKB20 and
TSKB18 transgenic mice. Neither TSKB20- nor TSKB18-specific
CD8� T cells are required for acute control of T. cruzi strain Brazil
infection in mice (21). Since T. cruzi infection is persistent lifelong
in mice and other hosts, we asked if the TSKB20- or TSKB18-
specific CD8� T cells were essential for continued control of the
persistent infection or otherwise contributed to disease develop-
ment later in infection. We compared the long-term survival of
TSKB20 Tg, TSKB18 Tg, TSKB20/18 Tg, and WT littermates in-
fected with T. cruzi and observed no differences in mortality for
WT and TSKB-Tg groups up to 1 year postinfection. To determine
if infected TSKB-Tg mice maintained T. cruzi-specific immunity,
we monitored their peripheral blood for expansion of TSKB20/
Kb- or TSKB18/Kb-tetramer� CD8� T cells as well as activated
CD8� T cells that had upregulated surface expression of CD44
and KLRG-1, a marker of short-lived effector T cells (31), since we
lacked other defined epitopes or MHC tetramers to directly track
T. cruzi-specific effector CD8� T cells other than the TSKB20- and
TSKB18-specific CD8� T cells. Though infected TSKB-Tg mice
never expanded tetramer� CD8� T cells recognizing their respec-
tive transgenic epitope (Fig. 2A), they maintained expanded pop-
ulations of CD8� T cells recognizing the alternative nontolero-
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genic TSKB epitope (Fig. 2A). Furthermore, all infected groups of
mice maintained frequencies of CD8� T cells expressing CD44
and KLRG-1 comparable to that of WT mice (Fig. 2B and C),
indicative of the normally robust T cell response throughout in-
fection. During chronic T. cruzi infection, parasite persistence is
required for the maintenance of elevated numbers of epitope-
specific CD8� T cells with an effector memory phenotype (20), so
these data suggest that all groups of mice remained similarly in-
fected with T. cruzi. In contrast to mice that have fully resolved T.
cruzi infection by drug-induced cure (20), the reexpression of sur-
face CD127 on antigen-experienced CD44� CD8� T cells oc-
curred slowly in infected TSKB-Tg mice but at a rate similar to
that of the chronically infected WT mice (Fig. 2D and E) (20, 32).
The accumulation of CD127-expressing CD8� T cells indicated
that a subset of antigen-experienced CD8� T cells acquired a rest-

ing memory phenotype in both WT and TSKB-Tg groups, reflect-
ing decreased levels of parasites due to successful immune control,
but not elimination.

If immunodomination by CD8� T cells recognizing specific
TS-derived epitopes facilitates immune escape by T. cruzi, then
mice tolerized against the most dominant TS-specific responses
might be expected to develop parasite-specific CD8� T cell re-
sponses that are more capable of controlling infection and pre-
venting disease than responses in mice who have not been toler-
ized. To determine if parasite control was enhanced in the absence
of the normally immunodominant TS-specific CD8� T cells, we
measured parasite loads by quantitative PCR (qPCR) detection of
T. cruzi DNA in skeletal muscle and fat (sites of T. cruzi strain
Brazil persistence [33, 34]) of acutely infected and chronically
infected (�8 months postinfection) TSKB-Tg and WT littermates

A

B

C

TSKB20 TgNaive WT TSKB18 Tg
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K

B
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K

B
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FIG 1 Transgenic expression of TS-derived peptides results in epitope-specific tolerance. (A) PCR products of the transgene construct amplified using TSKB20
or TSKB18 construct-specific primers from gDNA of transgenic founder mice but not from wild-type C57BL/6 gDNA. The primers used were located in the
ROSA26 promoter sequence and the unique OVA/TSKB20 or OVA/TSKB18 insert’s 3= restriction sites. (B) Splenocytes from naive or acute-phase T. cruzi-
infected WT, TSKB20 Tg, TSKB18 Tg, or TSKB20/18 Tg mice were stained for CD44 and TSKB20/Kb or TSKB18/Kb tetramers. Histograms are gated on CD8�

CD4�, and numbers indicate the percentages of CD44hi tetramer-positive CD8� cells. Data are from infection-matched individuals and are representative of 2
to 4 experiments per acutely infected group. (C) Naive splenocytes were pulsed with 1 �M TSKB20, 1 �M TSKB18, or no peptide and then labeled with high,
medium, or low concentrations of CFSE, respectively. At 27 days postinfection, equal numbers of each population were cotransferred i.v. into mice and detected
in the spleens after 16 h. Histograms are gated on CFSE� lymphocytes. Numbers indicate the percentages of specific lysis measured for representative individuals
compared with naive mice. Data are from two similar experiments (n 
 4 to 7 mice per infected group).
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(Fig. 3A and B). Parasite DNA was more readily detected in skel-
etal muscle during acute infection (Fig. 3A), and the acutely in-
fected WT mice had a level of parasite DNA similar to that of the
TSKB-Tg groups (the TSKB20 Tg had relatively more parasites
than did TSKB18 Tg mice [P 	 0.05]). Since our previous studies
showed that mice tolerized against both TSKB20 and TSKB18 had
a slightly higher peak parasite load in muscle than did control mice
(21), we also assessed fat tissue for parasite DNA to determine if
control in TSKB-Tg was maintained in other tissues known to
harbor T. cruzi. Unlike what was seen in muscle tissue (Fig. 3A),
we detected an increased level of parasite DNA in fat tissues of
TSKB20/18 Tg mice compared with infection-matched WT mice
(P 	 0.001) (Fig. 3B), though as previously this difference was
observed only during the acute phase (Fig. 3B). Similar low levels
of parasite DNA were detected in muscle and fat of all groups
during the chronic phase (Fig. 3A and B), and members of each
group exhibited parasite levels below the limit of quantification
(	0.32 parasites per 50 ng DNA). Furthermore, accumulation
levels of inflammatory infiltrates as a result of persisting parasites
were similar, as assessed by hematoxylin and eosin (H&E) staining
of skeletal muscle, in all chronically infected groups (Fig. 3C).

Thus, recognition of the immunodominant TSKB20 and TSKB18
epitopes is not required for long-term immune control of T. cruzi,
and persistent parasite load was not significantly altered in the
absence of these responses.

Effector phenotype CD8� T cells compensate for the absence
of TSKB20 and TSKB18 immunodominance. On average,
TSKB20 Tg mice had a significantly increased number of the nor-
mally subdominant TSKB18-specific CD8� T cells in their spleens
at the peak of infection (1.5-fold more than WT [P 	 0.01]) (Fig.
4A), yet the TSKB18 response rarely expanded to the extent of the
TSKB20-specific CD8� T cells in WT or TSKB18 Tg mice (2.4-
fold more TSKB20/Kb� than TSKB18/Kb� CD8� T cells in WT
spleens) (Fig. 4A). Furthermore, the TSKB18 response was not
significantly enhanced in TSKB20 Tg mice during the chronic
phase of infection (Fig. 4A, WT versus TSKB20 Tg, P 
 0.85).
Therefore, normally nondominant CD8� T cells likely expand
and perform critical effector functions that mediate effective par-
asite control in the absence of the described immunodominant
CD8� T cells.

If normally nondominant CD8� T cells indeed compensate for
the absence of the TSKB20 and TSKB18 responses, then T. cruzi-

FIG 2 Long-term immunity to T. cruzi by TSKB-peptide Tg mice. (A) TSKB20/Kb� or TSKB18/Kb� CD8� T cells were measured longitudinally in peripheral
blood of naive or T. cruzi-infected WT, TSKB20 Tg, TSKB18 Tg, or TSKB20/18 Tg mice as described foe Fig. 1B. (B) CD44hi KLRG-1� CD8� T cells detected in
blood of naive or T. cruzi-infected TSKB20/18 Tg and WT littermates at 21 days postinfection. Histograms are gated on CD8� CD4� lymphocytes, and numbers
indicate the proportions of cells within gates. (C) CD44hi KLRG-1� CD8� T cells measured longitudinally in blood of mice analyzed as in panel B. (D) CD127
staining on peripheral blood CD44hi-gated CD8� T cells (black line) compared with CD127 staining on total CD8� T cells from a naive individual (dashed line).
Filled gray histograms are CD44hi-gated CD8� T cells not stained for CD127. Numbers indicate the proportions of CD44hi-gated CD8� T gated cells expressing
low (left) or high (right) levels of CD127 at 220 days postinfection. Data in panels B and D are representative of 2 identical experiments (n 
 4 to 8 per infected
group). (E) Proportion of CD44hi-gated CD8� T cells stained positive for CD127 measured longitudinally in blood of mice analyzed as in panel D. Data in panels
A, C, and E are means � standard deviations (SD) (n 
 3 to 11 per infected group) from one experiment (black squares are WT, up triangles are TSKB20 Tg, down
triangles are TSKB18 Tg, diamonds are TSKB20/18 Tg, and circles are uninfected naive mice) and are representative of two similar longitudinal experiments.
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infected TSKB-Tg mice should maintain effector CD8� T cell
populations with numbers similar to or greater than those of WT
mice during the acute and chronic phases. Compared with in-
fected WT mice, the TSKB-Tg groups had similar proportions of
CD8� T cells expressing the markers of previous antigen encoun-
ter, CD44 and CD11a (Fig. 4B), and the total number of antigen-
experienced CD8� T cells per spleen was not different between
groups during the acute and chronic phases of infection (Fig. 4C).
Interestingly, a greater proportion of CD44hi CD11ahi CD8� T
cells expressed CD127 in spleens of TSKB20/18 Tg mice (Fig. 4E)
(P 	 0.01 than in WT and TSKB18 Tg groups), though no differ-
ences in CD62L expression were observed (Fig. 4E), suggesting
that the antigen-experienced CD8� T cells may encounter antigen
slightly less frequently in chronically infected TSKB20/18 Tg mice.

To determine if CD8� T cells suffer increased evidence of im-
mune exhaustion in the absence of control by the immunodomi-
nant TSKB20 and TSKB18 responses, we stimulated T cell recep-
tors (TCRs) of spleen-derived CD8� T cells from chronically
infected TSKB20/18 Tg and WT mice and measured the produc-
tion of the cytokines IFN-� and TNF-� (Fig. 4F, top) and the

release of cytotoxic granule contents as indicated by surface
CD107a staining (Fig. 4F, bottom). Interestingly, despite accumu-
lating numbers of effector CD8� T cells that were otherwise sim-
ilar to those of WT mice during the acute phase of infection (see
Fig. S1 in the supplemental material), the TSKB20/18 Tg mice had
fewer CD8� T cells producing IFN-� alone (P 	 0.01) or both
IFN-� and TNF-� simultaneously (P 	 0.01) than did WT mice
during chronic infection (Fig. 4G), possibly due to the contraction
of the effector CD8� T cells in response to antigen clearance. Im-
portantly, chronically infected WT and TSKB-Tg groups main-
tained similar proportions of multifunctional IFN-�-producing
CD8� T cells that also produced TNF-� or degranulated in re-
sponse to in vitro stimulation (Fig. 4H). Collectively, these data
demonstrate that the compensating effector CD8� T cells re-
sponding to undefined subdominant epitopes in TSKB20/18 Tg
mice appear functionally equivalent to the immunodominant
TSKB20- and TSKB18-specifc CD8� T cells in WT mice.

Memory CD8� T cells respond to challenge with T. cruzi in
the absence of the TSKB20- and TSKB18-specific responses. An
important property of pathogen-specific T cells is the develop-
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FIG 3 Control of persistent T. cruzi infection by TSKB-peptide Tg mice. (A, B) The quantity of T. cruzi DNA in skeletal muscle (A) and fat (B) was detected by
real-time PCR in mice during the acute phase (18 to 21 days postinfection) and chronic phase (238 to 337 days postinfection). Data points are individual mice
(squares are WT, up triangles are TSKB20 Tg, down triangles are TSKB18 Tg, diamonds are TSKB20/18 Tg, and circles are uninfected naive mice) and bars are
means from 4 cumulative acute-phase experiments (n 
 11 to 21 per infected group) and 5 cumulative chronic-phase experiments (n 
 14 to 23 per infected
group). LOQ refers to the limit of detectable quantification based on serially diluted T. cruzi-spiked tissue DNA standards (0.32 parasite equivalents per 50 ng
DNA). (C) Representative hematoxylin and eosin-stained skeletal muscle sections from naive or infected WT and TSKB20/18 Tg mice at 337 days postinfection.
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FIG 4 Effector CD8� T cell populations expand and exhibit an effector-memory phenotype in the absence of TSKB20 and TSKB18 immunodominance. (A) The
total number of TSKB20/Kb� or TSKB18/Kb� CD8� T cells per spleen of naive or T. cruzi-infected WT, TSKB20 Tg, TSKB18 Tg, or TSKB20/18 Tg mice at 18
to 21 days postinfection (left) or 238 to 337 days postinfection (right). (B) Representative staining for CD44 and CD11a expression during acute (day 18) and
chronic (day 238) phases of infection. Histograms are gated on CD8� CD4� events, and numbers represent percentages of gated events. (C) The total number
of CD44hi CD11ahi CD8� T cells per spleen of age-matched naive or T. cruzi-infected WT, TSKB20 Tg, TSKB18 Tg, or TSKB20/18 Tg mice. (D) Representative
staining for CD127 and CD62L expression during acute (day 18) and chronic (day 238) phases of infection. Histograms are gated on CD8� CD4� for
age-matched naive mice and further gated on CD44hi CD11ahi antigen-experienced cells for infected WT and TSKB20/18 Tg mice. (E) Proportion of CD44hi

CD11ahi-gated CD8� splenocytes that expressed the indicated marker during the chronic phase (238 to 337 days postinfection). Data points in panels A, C, and
E are individual mice (squares are WT, up triangles are TSKB20 Tg, down triangles are TSKB18 Tg, diamonds are TSKB20/18 Tg, and circles are uninfected naive
mice), and bars are means from 4 cumulative experiments in the acute phase (n 
 11 to 21 per infected group) and 5 cumulative experiments in the chronic phase
(n 
 14 to 23 per infected group). (F) Representative intracellular staining of IFN-� and TNF-� (top) or surface accumulation of CD107a (bottom) after 5 h of
stimulation with plate bound anti-CD3. Histograms are gated on CD8� CD4� events, and numbers indicate the proportions of events within the gated quadrant.
Data are from 338 days postinfection. (G) Cumulative data presented in panel F. Data are from 4 cumulative experiments in the chronic phase (238 to 337 days
postinfection) (n 
 14 to 24 per infected group). (H) Data are from 3 cumulative experiments in the chronic phase (238 to 337 days postinfection) (n 
 11 to
17 per infected group). Filled black bars are WT, forward-slashed bars are TSKB20 Tg, vertical-slashed bars are TSKB18 Tg, open bars are TSKB20/18 Tg, and
filled gray bars are uninfected naive mice). Data are means � standard errors of the means (SEM). *, P 	 0.05; **, P 	 0.01.
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ment of immunological memory after antigen clearance. Patho-
gen-specific memory cells proliferate and rapidly acquire effector
functions that enhance control upon subsequent pathogen reen-
counter. To test the memory capacity of the normally subdomi-
nant CD8� T cells maintained in TSKB20/18 Tg mice after T. cruzi
clearance, we induced immunological memory via an infection
and drug treatment/cure protocol (20) and used these mice as a
source of memory CD8� T cells for transfer into naive congenic
recipients. As expected, the majority of CD8� T cells isolated from
drug-cured WT and TSKB20/18 Tg mice �200 days posttreat-
ment expressed the memory markers CD127 and CD62L (Fig. 5A,
left), and relatively few expressed the short-lived effector marker
KLRG-1 (Fig. 5A, left). Following cell transfer and T. cruzi chal-
lenge, the majority of these CD8� T cells rapidly lost expression of
both CD127 and CD62L (Fig. 5A, right) and acquired a KLRG-1�

phenotype (Fig. 5A, right) in the peripheral blood. By 21 days
postchallenge, spleens of WT and TSKB20/18 Tg mice accumu-
lated expanded numbers of donor-derived CD8� T cells (Fig. 5B).

Immunodominance does not shift to CD8� T cells recogniz-
ing previously identified parasite-derived epitopes. To deter-
mine if compensating effector CD8� T cells that develop in in-
fected TSKB20/18 Tg mice recognize previously identified
parasite-derived epitopes, we incubated spleen cells from acutely
or chronically infected WT and TSKB20/18 Tg mice with H-2Kb-
restricted peptides and assessed specific responsiveness by intra-
cellular staining for IFN-�. The assay included epitopes encoded
by the TS vaccine candidates TSA-1 (Pep77.2) (35, 36), ASP-1
(P14), and ASP-2 (P8) (37, 38) as well as variant TS peptides
encoded at homologous (TSKB60, TSKB81, TSKB38, TSKB388)
and nonhomologous (TSKB92) positions of TS genes (14). We
also assessed responsiveness to non-TS epitopes encoded by cru-
zipain (Crz5 and Crz9) and �-galactofuranosyl transferase (Gft16
and Gft17) gene family members (14, 32, 39), LYT-1 (LYT-1p5)
(40), and T. cruzi’s paraflagellar rod proteins (PAR-1-derived
PFR-1 and PAR-3-derived PFR-3) (41). The irrelevant H-2Kb-
restricted epitope, SIINFEKL, was used as a negative control. Pep-
tide-induced IFN-� production was observed in CD8� T cells

from infected WT mice but not TSKB20/18 Tg mice at both acute
(Fig. 6A) and chronic (Fig. 6B) time points. We also considered
that unknown epitopes encoded by PAR-1, PAR-3, LYT-1, or the
recently described KMP-11 (42) might be targets of effector CD8�

T cells in TSKB20/18 Tg mice, but in vitro coculture with C57BL/
6-derived cell lines transfected with the open reading frames
(ORFs) encoding these proteins failed to elicit cytokine produc-
tion by CD8� T cells from infected TSKB20/18 Tg mice (see Fig.
S2 in the supplemental material). Thus, in the absence of the im-
munodominant TSKB20 and TSKB18 responses, the main focus
of the responding CD8� T cells cannot be attributed to these
tested parasite-derived epitopes.

Parasite-specific CD8� T cells recognize an engineered dom-
inant epitope in the absence of the TSKB20 and TSKB18 re-
sponse. Though our observations supported the hypothesis that
effector CD8� T cells control T. cruzi in the absence of the de-
scribed immunodominant responses (Fig. 2 to 4), we lacked con-
clusive evidence of their specificity for bona fide parasite-derived
epitopes (Fig. 6). To confirm that the effector CD8� T cells gen-
erated by infected TSKB20/18 Tg mice are specific for parasite
antigen, we infected WT and TSKB-Tg mice with T. cruzi strain
Brazil parasites stably transfected with the model antigen
ovalbumin (Brazil-OVA) (43), allowing us to track parasite-
specific CD8� T cells recognizing the OVA-derived SIINFEKL
epitope. Both WT and TSKB-Tg groups expanded SIINFEKL/Kb-
tetramer� CD44hi CD8� T cells (Fig. 7A), and similar numbers of
SIINFEKL-specific CD8� T cells were observed in spleens of all
groups infected with Brazil-OVA (Fig. 7B). Since the T cells that
survive thymic selection differ between WT and mice transgeni-
cally expressing TSKB20 and TSKB18, we considered that this
altered TCR repertoire might impact the ability of the endogenous
SIINFEKL-specific CD8� T cells to respond in the TSKB peptide-
tolerant mice. However, transferred TCR transgenic OT-I cells
specific for SIINFEKL expanded to the same extent in the Brazil-
OVA-infected WT and TSKB-Tg mice (Fig. 7C). Similar propor-
tions of responding OT-I cells produced cytokines and degranu-
lated when incubated with SIINFEKL (Fig. 7D) in the WT and the
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TSKB-Tg mice. These data demonstrate that in the absence of T
cells responding to immunodominant epitopes, alternative para-
site-derived epitopes are targeted by effector CD8� T cells. How-
ever, these neoimmunodominant T cells do not necessarily ex-
pand more or function better in the absence of TSKB20 and
TSKB18 immunodomination.

DISCUSSION

How critical for control of infection are CD8� T cells specific for
only a few of the thousands of potential pathogen-derived
epitopes? Despite numerous studies on immunodominant CD8�

T cells, surprisingly few have attempted to elucidate the relation-
ship between immunodominance and protective immunity (2, 4,
44, 45). This is especially true for parasitic diseases, for which
relatively few studies have been conducted to determine the mech-
anisms accounting for immunodominance (3, 13–15, 46, 47) and
the roles of these parasite-specific CD8� T cells in controlling
infection (21, 48–50). Some suggest that narrow responses favor
establishment of chronic infections (4, 51), whereas broadly fo-
cused responses are more capable of long-term control (27, 51).

We addressed the importance of CD8� T cells recognizing the
described immunodominant epitopes encoded by T. cruzi’s TS
gene family by preventing the generation of these responses using
tolerizing protocols (reference 21 and this study). We find that
immune control of T. cruzi is generated independent of recogni-
tion of the dominant TSKB20 and TSKB18 epitopes since TSKB20
and TSKB18 transgenic mice, as well as TSKB20/18 double trans-
genic mice, produce potent CD8� T cell responses and survive up
to 1 year after T. cruzi infection. Chronic T. cruzi infection drives
disease development over long periods; altering the CD8� T cell
immunodominance hierarchies by tolerized mice could result in
subtle differences in parasite control that over time may result in
altered disease progression. However, chronically infected WT
and TSKB Tg mice exhibited similarly low levels of disease in
persistently infected tissues. The TSKB20-specific response partic-
ularly stands out as one of the most dominant of the CD8� T cell
responses observed in any pathogen infection. Yet this unusually
strong immunodominant response is quite dispensable with re-
spect to control of the infection. Thus, the quality, frequency, or
phenotype of highly dominant pathogen-specific T cells may not
always provide a reliable measure of the overall quality of immune
control (as shown in this study and recently reviewed by Tscharke
et al. [52]).

Vaccines that boost CD8� T cells recognizing TS-derived
epitopes can enhance control of T. cruzi (21, 38, 53, 54), but only
to a limited degree, as TS-based immunizations fail to provide
sterilizing protection from infection (55). Given this less-than-
stellar protective capacity of current vaccines targeted for TS fam-
ily molecules, identification of normally subdominant CD8� T
cells that could be expanded by vaccination and that may provide
better protection is of significant interest. However, identifying
the antigen specificity of these subdominant T cell populations is
hampered by their low frequency during infection. The
TSKB20/18 double-transgenic mice offered the opportunity to
elevate some of these normally subdominant responses, and the
demonstration that mice lacking TSKB20 showed modestly in-
creased numbers of the normally subdominant TSKB18-specific
CD8� T cells was encouraging for this approach. However, we
ruled out a number of predicted “next-best” subdominant T.
cruzi-derived epitopes and in fact found that many of the previ-
ously characterized epitope-specific responses are substantially
reduced in the infected TSKB20/18 Tg mice, suggesting that these
responses might be attributable to cross-reactive recognition by
the promiscuous TCRs of TSKB20- and TSKB18-specific CD8� T
cells (14). Alternatively, the TSKB20- and TSKB18-specific effec-
tor CD8� T cells may help the priming and/or maintenance of
CD8� T cells recognizing these otherwise cryptic epitopes by
chemokine-dependent recruitment of polyclonal naive T cells to
dendritic cells copresenting both dominant and subdominant
epitopes (56). Clearly, parasite-specific CD8� T cells of unknown
specificity expand and compensate to provide TSKB20/18 Tg mice
with a highly functional effector T cell pool. Future experiments to
identify the specificity of T cells that control infection in TSKB-Tg
mice should focus on nonvariant antigens that are surface ex-
pressed and predicted to be released by the parasite, thus making
them available for recognition during infection with diverse
strains of T. cruzi (19). A recent study (57) showing that T. cruzi’s
flagellum is shed early during host cell invasion and is a source of
protective T cell epitopes demonstrates the potential utility of as-
sessing the biological relevance of a pathogen’s antigenic mole-

FIG 6 Subdominant parasite-derived epitopes are not recognized by CD8� T
cells in infected TSKB20/18 Tg mice. (A, B) Cumulative data from peptide-
stimulated splenocytes from naive and acutely (A) or naive and chronically
infected (B) WT or TSKB20/18 Tg mice. CD8� CD4� gated events were as-
sessed for IFN-� staining after 5 h of incubation with 1 �M indicated peptide
alone or indicated combined peptide pool. Data are representative of 5 acute-
phase experiments at 18 to 21 days postinfection (n 
 11 to 17 mice per
infected group) and 4 chronic-phase experiments at 238 to 338 days postin-
fection (n 
 11 to 13 mice per infected group). Filled gray bars are uninfected
naive mice, filled black bars are WT, and open bars are TSKB20/18 Tg. Data are
means �SEM.
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cules, rather than simply relying on what the immune system nor-
mally focuses on, in the design of antipathogen vaccines.

T. cruzi’s TS family exhibits considerable intra- and interstrain
variability in sequence (17, 58–60) and expression patterns (25),
which impacts the generation of CD8� immunodominance hier-
archies (14, 15). We and others (21, 23–27, 61) hypothesize that
variant TS genes function as a means of immune evasion, and it
has been suggested that immunodominance by TS epitope-spe-
cific CD8� T cells could limit the generation of potentially more
effective parasite-focused responses capable of complete parasite
eradication (21, 27, 62). If immunodomination by TSKB20- and
TSKB18-specific CD8� T cells inhibits development of other po-
tentially more protective CD8� responses, one would predict that
TSKB20/TSKB18 Tg mice should exhibit better long-term control
of T. cruzi than their WT counterparts. However, this is not what
we found. There are a number of reasons why this approach did
not yield these expected outcomes. T. cruzi’s genome contains
thousands of variant TS genes (17, 18), as well as other gene fam-
ilies of surface-expressed proteins that encode variant MHC-I-
restricted epitopes (14). Since our manipulations have deleted
CD8� T cells recognizing only a few of these TS-encoded epitopes,
it is likely that other TS-encoded epitopes or other large gene
family member-encoded epitopes replaced TSKB18 and TSKB20
as the main, but not sufficiently protective, targets of the anti-T.
cruzi CD8� T cells in the TS18/20 Tg mice. Additionally, simply
the vast number and the quantity of potentially competing TS may
serve as a “smoke screen,” thus obscuring the less abundant non-
variant epitopes that may be better targets for immune elimina-
tion among the milieu of evolving antigenic variants. A test of this
hypothesis will require ablating the TS genes from T. cruzi’s ge-
nome, a challenging endeavor given the thousands of TS genes.
However, recent developments in the clustered regularly inter-
spaced short palindromic repeat(s) (CRISPR)/Cas9 genome-edit-

ing technology may provide us with this opportunity in the near
future (63).

Development of T cell-based vaccines has focused on enhanc-
ing immunodominant T cells prior to pathogen encounter,
though boosting subdominant or cryptic responses has also been
suggested as an important goal for vaccines (62, 64). Induction of
broadly focused T cell responses might be particularly important
for therapeutic vaccines that enhance control of chronically in-
fecting pathogens for which the immunodominant response has
already proven ineffective at establishing an immunological cure.
In agreement with other studies (65), our data suggest that TS-
based vaccination strategies will fail when applied in the field, in
part because T. cruzi strains express unique versions of TS genes
(14) and also because even under controlled experimental condi-
tions, the recognition of immunodominant TS-derived epitopes is
neither necessary nor sufficient for protection.
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FIG 7 Engineered immunodominant SIINFEKL-specific response in the absence of TSKB20 and TSKB18 immunodominance. (A) Representative SIINFEKL/
Kb-tetramer staining of splenocytes from naive or WT, TSKB20 Tg, TSKB18 Tg, or TSKB20/18 Tg mice infected with T. cruzi Brazil-OVA at 22 days postinfection.
Histograms are gated on CD8� CD4�, and the numbers indicate percentages of CD44hi SIINFEKL/Kb� of CD8� cells. (B) The total number of SIINFEKL/Kb�
CD8� T cells from spleens of naive or Brazil-OVA infected WT, TSKB20 Tg, TSKB18 Tg, and TSKB20/18 Tg mice at 21 to 22 days postinfection. Data are
cumulative results from 2 experiments (n 
 4 to 6 per infected group). (C) Total number of CD45.1� OT-I cells from spleens of naive or Brazil-OVA-infected
WT, TSKB20 Tg, TSKB18 Tg, and TSKB20/18 Tg mice at 21 days postinfection. All mice received 50 OT-I cells i.v. prior to infection. Several infected individuals
did not have detectable OT-I cells and were omitted from the analysis. Data points in panels B, C, and E represent individual mice (squares are WT, up triangles
are TSKB20 Tg, down triangles are TSKB18 Tg, diamonds are TSKB20/18 Tg, and circles are uninfected naive mice), and bars are means. (D) Proportion of OT-I
(CD45.1�) CD8� T cells stained positive for the indicated marker in response to 5 h SIINFEKL peptide stimulation from spleens of Brazil-OVA-infected mice
at 21 days postinfection. Filled black bars are results for WT, forward-slashed bars for TSKB20 Tg, vertical-slashed bars for TSKB18 Tg, and open bars for
TSKB20/18 Tg mice. Data in panels C and D are cumulative results for 2 experiments (n 
 8 to 13 per infected group).
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