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Topological phononic crystals, alike their electronic counterparts,
are characterized by a bulk–edge correspondence where the in-
terior of a material dictates the existence of stable surface or
boundary modes. In the mechanical setup, such surface modes
can be used for various applications such as wave guiding, vibra-
tion isolation, or the design of static properties such as stable
floppy modes where parts of a system move freely. Here, we
provide a classification scheme of topological phonons based
on local symmetries. We import and adapt the classification of
noninteracting electron systems and embed it into the mechan-
ical setup. Moreover, we provide an extensive set of examples
that illustrate our scheme and can be used to generate models in
unexplored symmetry classes. Our work unifies the vast recent
literature on topological phonons and paves the way to fu-
ture applications of topological surface modes in mechanical
metamaterials.
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Mechanical metamaterials derive their properties not from
their microscopic composition but rather through a clever

engineering of their structure at larger scales (1). Various design
principles have been put forward and successfully applied in the
past. Examples range from periodic modifications leading to
band gaps via Bragg scattering (2) to the use of local resonances
(3) to achieve subwavelength functionalities. Recently, the con-
cept of “band topology” emerged as a new design principle for
mechanical metamaterials (4–14). Colloquially speaking, a sys-
tem with a topological phonon band structure will possess me-
chanical modes bound to surfaces or lattice defects that are
immune to a large class of perturbations. If the targeted purpose
of a metamaterial is encoded in such a topologically protected
mode, its functioning will be largely independent of production
imperfections or environmental influences.
The introduction of topology to the field of mechanical met-

amaterials was largely motivated by its successful application to
the description of electrons in solids (15) and to photonics (16–
19). One of the key elements in the understanding of the elec-
tronic systems was the classification of different topological
phases according to their symmetry properties (20–22). Although
over the last years numerous proposals (4, 5, 23–42) and several
experiments (6–14) were put forward promoting mechanical
topological metamaterials, a complete classification of linear
topological phonons is missing to date. In this report, we intend
to fill in this gap.
At first sight, the dynamics in classical mechanics seems to be

rather different from quantum-mechanical electron systems. Our
approach is therefore to map the first to the second problem
(26). This, in principle, allows us to import the classification (20,
21) from the description of electronic systems. However, a bare
import of this classification is not doing justice to the rich structure
mechanical systems possess by themselves.
We can categorize mechanical metamaterials by two inde-

pendent properties. First, the targeted functionality can either be
at zero or at finite frequencies. Zero-frequency modes define
structural properties such as mechanisms where parts of a ma-
terial move freely (5, 8). The dual partners of freely moving parts

are states of self-stress (35), where external loads on a material
can be absorbed in the region of a topological boundary mode.
Defining such details of the load-bearing properties of a material
are relevant both for smart adaptive materials (9) as well as for
civil engineering applications. The design of finite-frequency
properties, on the other hand, constitutes a quite different field
of research. Here, the goals are to control the propagation, re-
flection, or absorption of mechanical vibrations. This includes,
for example, waveguiding, acoustic cloaking, or vibration
isolation ranging from the seismic all of the way to the radi-
ofrequency scale.
A second important separation into two distinct classes of

materials arises from the presence or absence of nonrecipro-
cal elements (43). Generically, nondissipative mechanical prop-
erties are invariant under the reversal of the arrow of time.
Nonreciprocal elements, however, transmit waves asymmet-
rically between different points in space. The absence of time-
reversal symmetry allows for a topological invariant, the Chern
number, which encodes chiral, or unidirectional wave propaga-
tion. We will see that these two attributes: static vs. dynamic
and reciprocal vs. nonreciprocal will be key to understand how
the electronic classification is naturally modified for mechani-
cal systems.
Before we embark on the development of the framework

needed for our classification, let us state our goals more pre-
cisely. Our aim is to import and adapt the classification of
noninteracting electron systems according to their local sym-
metries T , C, and S = T ○ C, that is, time reversal, charge conju-
gation, and their combination, respectively (20, 21). Clearly, we
will have to specify the role of these symmetries in mechanical
systems. Moreover, we cover only the “strong” indices, which do
not rely on any spatial symmetries. The extension to weak indices,
arising from a stacking of lower-dimensional systems carrying strong
indices, is straightforward (5). Finally, there are many recent de-
velopments dealing with topological phases stabilized by spatial
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properties (44–48) such as point group symmetries. Although such
spatial symmetries are more easily broken by disorder, the
required ingredients might be very well tailored to the me-
chanical setup (49, 50).
The remainder of this paper is organized as follows: we start

by developing a framework to map classical problems to an
equation that formally looks like a Schrödinger equation of a
quantum-mechanical problem. We then introduce the three
symmetries, T , C, and S, and discuss their appearance in me-
chanical problems before we provide the sought classification.
Finally, an extensive example section serves two purposes: we
illustrate and apply our approach. Moreover, we show a way how
to construct new symmetry classes from generic building blocks.

Models and Theoretical Framework
In this manuscript, we aim at characterizing discrete systems of
undamped, linear mechanical oscillators. Although this setup is
directly relevant for simple mass-spring systems (11) or mag-
netically coupled gyroscopes (12), the scope here is actually
considerably broader. Any system that can be reliably reduced to
a discrete linear model is amenable to our treatment. This in-
cludes 1D (40), 2D (25, 38, 39, 41), or 3D (40) systems made
from continuous media, where a targeted microstructuring en-
ables the description in terms of a discrete model. Once we deal
with a discrete model, we have a direct way to import the
methods known from electronic topological insulators. To es-
tablish this bridge, we now introduce a formal mapping of a
classical system of coupled oscillators to a tight-binding hopping
problem of electrons in solids.
We start with the equations of motion of a generalized mass-

spring model given by

x
::
iðtÞ=

XN
j=1

�
−DijxjðtÞ+Γij _xjðtÞ

�
. [1]

Here, t denotes time; xiðtÞ∈R, one of the N independent dis-
placements; and _xiðtÞ, its time derivative. The mass terms are
absorbed into the real and constant coupling elements Dij and
Γij. The entries Dij can be thought of as springs coupling different
degrees of freedom, and Γij arise from velocity-dependent forces.
Note, that a nonzero Γ implies terms formally equivalent to the
Lorentz force of charged particles in a magnetic field and hence
arise only in metamaterials with nonreciprocal elements. In ad-
dition to constant coupling elements in 1, one can also consider
periodically driven systems. Such driven system can be cast into
our framework by a suitable (Magnus) expansion of the corre-
sponding Floquet operator (37, 51, 52).
We aim at rewriting Eq. 1 in the form of a Schrödinger

equation, or rather as a Hermitian eigenvalue problem. There-
fore, we need the system to be conservative (nondissipative).
This is achieved by requiring D to be symmetric positive-definite
and Γ to be skew-symmetric.‡

An eigenvalue problem emerges from Eq. 1 via the ansatz
xiðtÞ= e−iλtxið0Þ:

λ~y= i
�

0 1
−D Γ

�
~y, ~y =

 
~xð0Þ
_~xð0Þ

!
, [2]

where we gathered the indices i in a vector notation~xðtÞ. Energy
conservation requires all eigenvalues λ to be real, but the ansatz
renders the problem complex. However, a suitable superposition

of complex eigensolutions always allows to create real solutions
with~xðtÞ∈RN.
Although Eq. 2 contains all of the information about the

eigensolutions, for the topological classification it is advanta-
geous to transform it into a Hermitian form. To this end, we
apply the transformation

T =
� ffiffiffiffi

D
p

0
0 i

�
[3]

to ~y. The square root of the matrix D is defined through its
spectral decomposition, where the positive branch of the square
root of the eigenvalues is chosen. With this, we arrive at

i
d
dt
~ψðtÞ=H~ψðtÞ, ~ψðtÞ= e−iλtT~y, H =

�
0

ffiffiffiffi
D

pffiffiffiffi
D

p
iΓ

�
. [4]

As D is symmetric positive-definite and Γ is skew-symmetric, the
matrix H is Hermitian and the differential equation for ~ψ has the
sought-after form of a Schrödinger equation.
The formulation in Eq. 4 is reminiscent of a single-particle

tight-binding problem in quantum mechanics. Therefore, the
discussion of topological properties of the eigenvectors ~ψ can be
directly carried over. Remember that the topological classifica-
tion is based on the spatial dimensionality of the problem as well
as properties of special local symmetries alone. In particular, the
topological properties do not rely on translational symmetries.
However, their discussion and definitions are most conveniently
introduced for translationally symmetric systems. In this case, the
D and Γ matrices are periodic and a spatial Fourier transform
block-diagonalizes them (one block for each wave vector ~k). It
follows that

ffiffiffiffi
D

p
becomes block diagonal as well, because it

shares its eigenvectors with D. Hence, we will discuss families
Hð~kÞ of Hamiltonians of the form 4.
Before turning our attention to the topological classification,

we comment on two more points: (i) the influence of damping
and (ii) the possibility for alternative Hermitian forms. Every
real system is prone to damping, which in turn affects the
eigensolutions in two ways. The eigenvalues acquire an imagi-
nary part and the form of the eigenvectors may change. Although
a slight change of the eigenvalues does not influence the sub-
sequent discussion, the difference in the eigenvectors may alter
the results. Whether or not it obstructs the use or observation
of a given topological effect depends on the details of the
specific system.
Now to the second point. The transformation leading to Eq. 4

is not the only way to introduce a Hermitian problem. In fact,
any decomposition of the form D=QQT, Q∈RN×M will allow
us to achieve this goal. By introducing the auxiliary variables
~ηðtÞ=QT~xðtÞ, we may express Eq. 1 as

i
d
dt

�
~ηðtÞ
i_~xðtÞ

�
=
�

0 QT

Q iΓ

��
~ηðtÞ
i_~xðtÞ

�
. [5]

The particular choice Q=
ffiffiffiffi
D

p
=QT has the advantage that (i)ffiffiffiffi

D
p

has the same eigenvectors as D, (ii) it uses only as many
auxiliary degrees of freedom as needed, (iii) it allows to directly
block-diagonalize the problem in absence of Γ, and (iv) it offers a
canonical way how to choose Q.
Nevertheless, this is not the only useful choice of Q. The

starting point for our choice was a given D and Γ, originating
from an effective model. In certain cases, however, there is a
natural choice of Q along with a physical meaning. Such cases
have been considered by Kane and Lubensky (5, 35). In their
setup the matrix Q corresponds to the equilibrium matrix of a

‡Such matrices can, for example, be obtained from a system with Lagrangian L=P
i,j _xiAij _xj + xiBij _xj − xiCijxj ,  Aij ,   Bij ,   Cij ∈R  , given that D= ðA+AT Þ−1ðC +CT Þ> 0.
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mass-spring model, where Q relates spring tensions to displace-
ments of the attached masses. This allows for a beautiful dis-
cussion of (topological) states of self-stress in isostatic lattices (5,
35). Although such states of self-stress elude our description, the
formulation of Kane and Lubensky is only applicable to the re-
stricted set of isostatic models, which makes it not the favorite
choice for the purpose of our discussion.

Symmetries
As mentioned before, the classification of electronic systems is
based on three symmetries: time-reversal symmetry T , particle-hole
symmetry C, and chiral symmetry S. In the quantum-mechanical
case, these symmetries are represented by (anti)unitary oper-
ators on the single-particle Hilbert space. For the present
context of classical mechanical systems, it is important to note
that these symmetries are merely a set of constraints on the Bloch
Hamiltonians Hð~kÞ (21). We state here the form of these con-
straints and discuss their relation to natural symmetries of me-
chanical systems below.
We call a system T symmetric if

UT H
�
~k
�
−H

�
−~k
�
UT = 0, U2

T =±1, [6]

for some antiunitary UT , which represents T . For the particle-
hole symmetry C, the respective criterion is

UCH
�
~k
�
+H

�
−~k
�
UC = 0, U2

C =±1, [7]

with UC antiunitary. Finally, the chiral symmetry S, we demand

USH
�
~k
�
+H

�
~k
�
US = 0, U2

S = 1, [8]

for a unitary US (Fig. 1).
For a generic Hilbert space H, there are no additional re-

strictions on the representations U, but here the “Hilbert space”
has additional structure. Any eigenvector ~ψ is of the form
ð
ffiffiffiffi
D

p
~xð0Þ, λ~xð0ÞÞ. Hence, after fixing the first half of the entries

of ~ψ, the remaining half is known as well. It follows that any
(anti)unitary mapping U :H→H can be written as

U =
�
W 0
0 V

�
, [9]

with V and W (anti)unitary. Let us have a closer look at the three
symmetries 6–8 within this framework.
From the definitions, it follows that H has T symmetry if and

only if we can find V, such that

VΓ
�
~k
�
+Γ
�
−~k
�
V = 0, VD

�
~k
�
−D

�
−~k
�
V = 0, [10]

with W =V . We refer to it as T symmetry, instead of “time re-
versal,” because in the setting of classical mechanics it does no
longer correspond to the reversal of time. In general, the pres-
ence of T symmetry relies on fine-tuning of parameters, whereas
in case that Γ= 0 there is a generic T symmetry:

UT =
�
1 0
0 1

�
κ, U2

T = 1, [11]

where κ is the complex conjugation operator. Note that, even
though Γ has the potential to break T symmetry, Γ≠ 0 does
not imply the absence of it.
For C symmetry, the conditions to be satisfied are

VΓ
�
~k
�
−Γ
�
−~k
�
V = 0, VD

�
~k
�
−D

�
−~k
�
V = 0, [12]

with W =−V . Therefore, for any D and Γ, we can find a particle-
hole symmetry

UC =
�
1 0
0 −1

�
κ, U2

C = 1. [13]

The existence of this omnipresent particle-hole symmetry is
nothing but the statement that, for every eigensolution, its
complex conjugate is also an eigensolution. Its presence is based
on D and Γ being real.
In case we have T and particle-hole symmetry, we can combine

the two to obtain a unitary operator US =UCUT . This unitary
operator represents a chiral symmetry. We can therefore con-
clude that, if Γ= 0, we always have a chiral symmetry

US =
�
1 0
0 −1

�
. [14]

This symmetry is nothing but classical time-reversal symmetry, as
every eigenvector is mapped to itself and the corresponding ei-
genvalue becomes minus itself.
So far, particle-hole and chiral symmetries were defined with

respect to ω= 0, meaning that an eigensolution ð~ψ , λÞ is related
to an eigensolution ð~ψ ′=U~ψ ,ω− λÞwith ω= 0 (Fig. 1). However,
for the purpose of topological indices, we can weaken this re-
quirement. A potentially~k -dependent shift in ω does not change
the form of the eigenvectors. Hence, it is sufficient to require the
right-hand side of Eqs. 7 and 8 to equal to 2ωð~kÞUC=S instead of
zero. Furthermore, particle-hole and chiral symmetries can also
exist only on parts of the band structure, which means that it is
possible to have these symmetries on a subspace of all of the
solutions only.
These two generalizations of C and S symmetries arise natu-

rally in the setting of mass-spring models.§ Assume that D, which
is a real, symmetric matrix and therefore Hermitian, has a
particle-hole symmetry with respect to ω≠ 0, and that Γ= 0.
Then, all of the eigenvectors of H with positive eigenvalue have a
particle-hole symmetry with respect to some ωð~kÞ, whereas all of
the eigenvectors of H with negative eigenvalue have one with
respect to −ωð~kÞ. The matrix Hð~kÞ can be made block-diagonal
with the two blocks ±

ffiffiffiffi
D

p
and each corresponding subspace of

solutions has a particle-hole (and chiral) symmetry with respect
to ±ωð~kÞ.

Fig. 1. Visualization of T , C, and S symmetries by three prototypical band
structures. The presence of a symmetry implies a certain symmetry in the
band structure (but not the other way around) (see text).

§Note that these generalizations are not the only ones possible. However, they emerge
naturally in our present discussion.
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After discussing the above symmetries, we have all elements
we need to establish a topological classification of generic
mechanical systems.

Classification
With the mapping of the equations of motion to a Hermitian
eigenvalue problem, we can in principle directly use the classi-
fication scheme of noninteracting electron systems (20, 21).
However, the specific properties of the local symmetries dis-
cussed above warrant a more careful discussion. To make further
progress, we highlight the most important concepts behind the
electronic classification. For a more detailed review, we refer
the reader to the excellent recent review by Chiu et al. (53). A
reader not interested in the details of the derivation might
jump straight to Tables 1–4 for a reference of possible topo-
logical phonon systems and the example section for an illus-
tration of these tables.
For noninteracting electrons, the ground state is given by a

Slater determinant of all states below the chemical potential.
The topological properties are then encoded in the projector
Pð~kÞ onto the filled bands. Moreover, one can simplify the
discussion by introducing a “flattened Hamiltonian” Qð~kÞ=
1− 2Pð~kÞ, which assumes the eigenvalues ±1 for filled (empty)
bands (53).
The topological indices are now encoded in the mappings

from the Brillouin zone to an appropriate target space induced
by Qð~kÞ. In the absence of any symmetries the target space are
the set of complex Grassmanians. In even dimensions, these
mappings are characterized by Chern numbers that lie in Z

(marked in blue in Table 1). In case that the chiral symmetry S is
present, the Qð~kÞ matrices have additional structure. This
structure can be used to block–off-diagonalize them (21, 53)

Q
�
~k
�
=

 
0 q

�
~k
�

q†
�
~k
�

0

!
, [15]

and to obtain a mapping from the Brillouin zone to the space of
unitary matrices. In odd dimensions, the homotopy group of
these maps is described by a winding number ∈Z (marked in
red in Table 1). These two types of indices are called the
primary indices.

Additional indices can be derived from the primary ones when
more symmetries are present. By constructing families of d− 1 -
and d− 2 -dimensional systems whose interpolation constitute a
d-dimensional Hamiltonian with a primary index, one can es-
tablish topologically distinct families of such lower-dimensional
band structures through descendant indices. They are marked in
light blue (light red) for descendants of the Chern (winding)
numbers. Moreover, certain symmetries restrict the primary in-
dices to even values denoted by 2Z in Table 1. Concrete formulas
for the Chern and winding numbers are given in Supporting In-
formation. For general formulas for the descendent indices, we
refer to ref. 53 and references therein. This overview concludes
our discussion of the electronic classification, which is summa-
rized in Table 1.
For mechanical systems, a few characteristics deserve special

attention. First, in a mechanical system, no Pauli principle is
available to give a band as a whole a thermodynamic relevance.
However, it is clear that the projector to a given number of
isolated bands encodes the topological properties of the (high-
frequency)¶ gap above these bands. For engineering applica-
tions in the respective frequency range, this is good enough.
Second, before we apply the topological classification of
Table 1 blindly to a generic mechanical system it is beneficial
to first structure the problems at hand by “nontopological”
considerations.
There are two natural properties that divide the mechanical

problems into four different classes: (i) a mechanical system can
either be made from “passive” building blocks, or it can in-
corporate nonreciprocal elements. In our formulation, they dis-
tinguish themselves by the absence or presence of a Γ term in the
Hamiltonian 4. (ii) The formulation of topological indices is
rather different for the case where we target the gap around
ω= 0 (relevant for thermodynamic or ground-state properties) or
a gap at finite frequencies. In the following, we discuss the dif-
ferent combinations of finite vs. zero frequency and reciprocal vs.
nonreciprocal materials separately.

High-Frequency Nonreciprocal Metamaterials. The presence of Γ≠ 0
puts the high-frequency problem of nonreciprocal metamaterials
on equal footing with the electronic problem. Therefore, no further
constraints are imposed and the full Table 1 is explorable.

High-Frequency Reciprocal Metamaterials. For reciprocal high-fre-
quency problems, one can in principle apply the classification
scheme to D rather than H, as already D is a Hermitian matrix.#

The reality of D ensures the presence of a T symmetry that
squares to +1. One can augment this T symmetry to an antiunitary

Table 2. Indices for high-frequency reciprocal metamaterials
with Γ=0

There is always a T symmetry squaring to +1, which can be augmented to
T p squaring to −1.

Table 1. The 10-fold way

The color code is explained in the main text. This table also applies to the
high-frequency problem of nonreciprocal metamaterials. The first column
gives the standard names of the symmetry groups. The next three columns
serve to indicate the absence (0) or presence (1,+,−) of a given symmetry.
The +=− signal that the respective symmetry squares to ±1. The last columns
finally provide the information if the band structures in the given dimension
is characterized by an integer number (Z), an even integer (2Z), or a binary
index (Z2).

¶
“High” is to be understood as “nonzero.”

#Remember that
ffiffiffiffi
D

p
and D share the same eigenvectors, and we continue with H to keep

the discussion unified.
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symmetry T p that squares to −1 via an appropriate unitary
symmetry Uaug:

UT p =Uaug ○UT with U2
T * =−1. [16]

However, it is important to note that the simultaneous presence
of both a T and T p symmetry will force certain indices to vanish.
A careful but straightforward analysis (Supporting Information)
of the indices results in Table 2 relevant for reciprocal high-
frequency problems.

Low-Frequency Reciprocal Metamaterials. Topological band struc-
tures with nontrivial gaps around zero frequency are relevant for
floppy modes in static problems (8) or thermodynamic properties
(34) of jammed granular media. As argued above, the structure
of the equations of motion imply a C symmetry around ω= 0. In
the absence of Γ, an additional T symmetry is present. Both this
built-in symmetries canonically square to +1. As in the case of
high-frequency reciprocal materials, one can augment these
symmetries by unitary symmetries to reach classes where the
augmented ones square to −1. Table 3 summarizes the resulting
possibilities for topological indices in this setup.

Low-Frequency Nonreciprocal Metamaterials. Similarly to the high-
frequency nonreciprocal metamaterials, the generic T symmetry
is absent here. Hence, there can arise effective T symmetries that
either square to +1 or −1 without the need to augment the ge-
nerically present one to reach classes where T 2 =−1. Given that
we deal with the gap at ω= 0, however, guarantees the generic C
symmetry, which in turn can be enriched to one that squares to
−1. The resulting possible topologies are shown in Table 4.
For the case of zero-frequency indices, the construction of H

with the help of
ffiffiffiffi
D

p
necessary leads to trivial phases (Supporting

Information). However, in refs. 5 and 35, it was shown how a
decomposition D=QQT allowing for nontrivial Z indices in class
BDI can be constructed for Maxwell frames. How one can
construct similar formulations for the other symmetry classes
shown in Tables 3 and 4 is an interesting open problem.

Examples
To clarify and reinforce our approach, we provide a set of ex-
amples. We directly consider discrete models. An example on
how to extract a discrete description of a continuum model is
provided in Supporting Information. The degrees of freedom are
assumed to be ideal 1D or 2D pendula. The desired Dmatrix can
be obtained by coupling the different pendula by springs. To
encode negative coupling elements, or in case of geometrical
obstructions, it might be required to replace a spring coupling by
a more involved coupling composed of springs and deflection
levers, as for example, in ref. 11. Note, that although we consider
pendula as our local oscillator, all examples are generic and can
be applied to any set of mechanical modes.
The last ingredient we need is a Γ≠ 0. One option is to engage

the Lorentz force, which directly provides such a coupling. An-
other possibility is to use spinning tops, or gyroscopes as in refs.
12 and 30. We consider a symmetric gyroscope with a fixed point
(different from the center of mass) about which it can rotate
(Fig. 2). For our considerations, there will be no external mo-
ment along the principal axis passing through the center of mass,
rendering this rotation a conserved quantity. Hence, there are
only two degrees of freedom left.
In a constant gravitational field, we can use the direction of

the field to define a z axis. The potential energy of the gyroscope
has a minimum, and one can linearize the problem about this
minimum. The resulting problem has two effective degrees of
freedom, which we choose to be displacements along the x and y
direction. The equation of motion for the linearized system is
then of the form (Supporting Information)0

BB@
_x
_y
x
::

y
::

1
CCA=

0
BB@

0 0 1 0
0 0 0 1
−μ 0 0 γ
0 −μ −γ 0

1
CCA
0
BB@

x
y
_x
_y

1
CCA+

0
BB@

0
0
Mx

My

1
CCA,

where γ is proportional to the spinning speed of the gyroscope
and Mx=y are external moments coupling to it. Such moments arise,
for example, from the couplings to neighboring degrees of freedom.
For multiple gyroscopes, this allows us to obtain

Γ= γ

�
0 1
−1 0

�
. [17]

These are all elements we need to discuss the following examples.
Although every model has a high-frequency and a low-frequency
symmetry part, we are only looking at the former, where the generic
particle-hole symmetry is irrelevant. For a detailed discussion of
certain low-frequency models, we refer to refs. 5 and 35.

Table 3. Indices for low-frequency reciprocal metamaterials
with Γ= 0

Both the C and T symmetry need to be augmented to reach classes where
these symmetries square to −1.

Table 4. Indices for low-frequency nonreciprocal metamaterials
with Γ≠ 0

Here, only the C symmetry needs to be augmented as no generic T sym-
metry is present. Fig. 2. Coordinate system for a spinning gyroscope.
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We start with the simplest possible 1D model with a nontrivial
index below. After its discussion, we show how one can combine
several copies of such simple building blocks to reach a number
of other symmetry classes in 1D. Finally, we provide each an
example of a 2D system with a nonvanishing Chern number and
a model where we use the idea of symmetry enrichment.

Class BDI in 1D. Probably the simplest model available is the analog
of the Su–Schrieffer–Heeger model (54). It can be realized through
a chain of 1D pendula, coupled through springs with alternating
spring constants t and t′. Its dynamics is governed by

Dðk; t, t′Þ=
�

μ −t− t′e−ik
−t− t′eik μ

�
, Γ= 0, [18]

and μ> jtj+ jt′j for positive definiteness.
The model has a S symmetry (chiral symmetry), which can

already be seen on the level of the D matrix:

USDðkÞ+DðkÞUS = 2μUS , US =
�
1 0
0 −1

�
.

The symmetry translates into a S symmetry of ±
ffiffiffiffi
D

p
, which are

the two blocks of Hð~kÞ after block-diagonalizing it:

THðkÞT† =
� ffiffiffiffi

D
p

ðkÞ 0
0 −

ffiffiffiffi
D

p
ðkÞ

�
, T =

1ffiffiffi
2

p
�
1 1
1 −1

�
. [19]

In addition, the model has T symmetry and therefore C symmetry
as well, which puts it into symmetry class BDI. This class features
a winding number through its QðkÞ matrix

QðkÞ=
�

0 qðkÞ
qpðkÞ 0

�
, qðkÞ= cðkÞ

	
t+ t′e−ik



, [20]

with cðkÞ∈R. The matrix is already in block–off-diagonal form,
and hence, the winding number n∈Z is given by (Supporting
Information)

n=
i
2π

Z
qðkÞ−1q′ðkÞdk=

�
0 t< t′
−1 t> t′ .

The band structure of the periodic system is shown in Fig. 3,
Left, and the eigenfrequencies of the open system are given in
Fig. 3,Middle, at the point γ = 0 (see below). Up to here, we were
free to discuss the problem in terms of DðkÞ instead of

ffiffiffiffi
D

p
ðkÞ.

However, this is no longer possible once Γ≠ 0, as considered in
the next example.

Class AIII in 1D. The above model is now supplemented by a
nonvanishing Γ matrix. This breaks the T and the particle-hole
symmetry, but the chiral symmetries on the two subspaces (positive/
negative eigenfrequencies) are left invariant. In the case that
jγj � jt− t′j, all spectral gaps remain open, and hence the to-
pological index will not change. The evolution of the gap as well
as of the edge mode (which stays invariant) for increasing γ is
shown in Fig. 3, Middle. An exemplary band structure for γ = 1
can be seen in Fig. 3, Right.
Breaking T and C symmetry of the BDI model did not change the

topological index, because the index relies on chiral symmetry only.

Class D in 1D. To break the S symmetry while keeping C symmetry,
we need to add further degrees of freedom. Starting point are
two copies, Dðk; t, t′Þ and Dðk; s, s′Þ, of the above BDI model:

Dðk; t, t′, s, s′Þ=
�
Dðk; t, t′Þ 0

0 Dðk; s, s′Þ

�
. [21]

We assume that both share the same μ. For Γ= 0, the model belongs
to BDI and the winding number of the lowest two bands is given by

n=

8<
:

0 t< t′  and  s< s′
1 ðt> t′  and  s< s′Þ  or    ðt< t′  and  s> s′Þ
2 t> t′  and  s> s′

.

By choosing t≠ s or s′≠ t′, and turning on Γ≠ 0, we break all of
the symmetries except for the high-frequency C symmetry

UC =

0
BB@

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

1
CCAκ.

This puts the model into symmetry class D.
The Z index gets reduced to a Z2 index,

p=
�
0 ðt− t′Þðs− s′Þ> 0
1 ðt− t′Þðs− s′Þ< 0 ,

the parity of the winding number. In the case that p= 0, the
breaking of the S symmetry makes the cases n= 0 and n= 2

Fig. 3. Spectra of examples belonging to classes BDI (γ = 0) and AIII (γ ≠ 0).
(Left) The band structure of the BDI model given in Eq. 18. (Middle) Spec-
trum of an open AIII chain as a function of γ. Blue lines denote edge modes,
whereas the gray areas represent the bulk modes. (Right) The band structure
of the AIII model for γ = 1. Parameters chosen to obtain the figures are:
t = 2 Hz2, t′= 10 Hz2, and μ= 14 Hz2.

Fig. 4. Spectra of examples belonging to classes BDI (γ =0) and D (trivial) (γ ≠ 0).
(Left) The band structure of the periodic BDI model given in Eq. 21. (Middle)
Spectrum of the open D model. The parity of the winding number is even;
therefore, the topological edge modes are not protected upon turning on γ ≠ 0.
(Right) The band structure of the D model for γ = 1. Parameters chosen to obtain
the figures are: t = 2 Hz2, t′= 10 Hz2, s= 4 Hz2, s′= 8 Hz2, and μ= 14 Hz2.
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equivalent, as the two edge modes can hybridize and disappear
from the gap (Fig. 4). In the case that p= 1, the single-edge mode
from the BDI model remains as displayed in Fig. 5.

Class A in 2D. The topology of the discussed 1D models relied on
the presence of a S (C) symmetry. The next model we look at
does not rely on any symmetries at all, and the topological index
will be the Chern number. To obtain a nonvanishing Chern
number, we need to break T symmetry by choosing Γ≠ 0, and
therefore we need to have at least two degrees of freedom per
unit cell. The Γmatrix can only take the form from Eq. 17, which
leaves us with finding a suitable D matrix.
To this end, it is helpful to transform Hð~kÞ, as in Eq. 19, to

THT† =

0
BB@

ffiffiffiffi
D

p
+
i
2
Γ −

i
2
Γ

−
i
2
Γ −

ffiffiffiffi
D

p
+
i
2
Γ

1
CCA,

and to define

~H
	
kx, ky; α



=

0
BB@

ffiffiffiffi
D

p
+
i
2
Γ −α

i
2
Γ

−α
i
2
Γ −

ffiffiffiffi
D

p
+
i
2
Γ

1
CCA. [22]

By varying α∈ ½0,1�, we can continuously deform Hðkx, kyÞ into a
model with two decoupled blocks ±

ffiffiffiffi
D

p
+ i

2Γ. If the bulk gaps
remain opened during the interpolation from α= 0 to α= 1, the
Chern number of any subspace will not change, and we can focus
on constructing nontrivial subblocks of ~Hðkx, ky; 0Þ.
We now focus on the block characterized by

ffiffiffiffi
D

p
+ i

2Γ. This
matrix is Hermitian and can be written asffiffiffiffi

D
p 	

kx, ky


+
i
2
Γ= μ

	
kx, ky



1+~d

	
kx, ky



·~σ,

where σi are the Pauli matrices

σ1 =
�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�
,

and ~dðkx, kyÞ∈R3, a vector with real coefficients. The d vector
contains all of the information about the eigensolutions of the
problem and therefore also about the Chern numbers of the
bands. In the case that j~dðkx, kyÞj≠ 0 for all kx and ky, we
can define ~nðkx, kyÞ=~d=j~dj. Upon varying kx and ky through the

Brillouin zone~n traces out a closed surface in R3. It can be shown
that the number of net encircling of the origin by this surface
corresponds to the Chern number of the lower band (55).
A possible choice of coefficients giving rise to a nontrivial

band structure is

d1 = cos kx,
d2 = sin kx + sin ky − γ,
d3 = cos ky.

[23]

Owing to the fact that
ffiffiffiffi
D

p
and D share the same eigenvalues, it is

easy to see that the dynamical matrix is parameterized by

D
	
kx, ky



= ~μ1+ t ~d

	
kx, ky; γ = 0



·~σ [24]

for some suitable ~μ and t.
The approximative argument at α= 0 is supported by a nu-

merical calculation for α= 1, which confirms the presence of a
nonzero Chern number. In addition, we show the spectrum of a
semiinfinite cylinder in Fig. 6, revealing the existence of an edge
mode within the bulk gap.
The presented model is a minimal model in the sense of re-

quired degrees of freedom. However, it is probably not the
simplest model for an actual implementation. For such a pur-
pose, a simpler model can be found in ref. 12.

Class AII in 2D. Up to here, all examples we looked at were based
on symmetries that square to +1. However, we can also supplement
symmetries to obtain new symmetries that can square to −1. As an
example, we discuss the quantum spin Hall-like system presented in
ref. 11. It mimics a Hofstadter model (56) at Φ= 1=3 flux plus its
time-reversed copy. Its dynamical matrix is

D
�
~k
�
=

 
D1

�
~k
�

D2

�
~k
�

−D2

�
~k
�

D1

�
~k
�
!

,

D1

�
~k
�
=−μ1+ 2t

0
@ 2 cos

	
ky



1 eikx
1 −cos

	
ky



1
e−ikx 1 −cos

	
ky


1
A,

D2

�
~k
�
= i2

ffiffiffi
3

p
t sin

	
ky

0@ 0 0 0

0 1 0
0 0 −1

1
A,

and Γ= 0.

Fig. 5. Spectra of examples belonging to classes BDI (γ = 0) and D (nontrivial)
(γ ≠ 0). Here, the parity of the winding number is odd, and hence the topological
edge mode is protected even when γ ≠ 0. Parameters chosen to obtain the fig-
ures are: t = 2 Hz2, t′= 10 Hz2, s= 8 Hz2, s′= 4 Hz2, and μ= 14 Hz2.

Fig. 6. Spectrum of the class A model on a semiinfinite cylinder as a function of
the wave vector around the cylinder. Gray areas represent a continuum of bulk
modes, whereas blue lines denote the chiral surface modes. Parameters chosen
to obtain the figure are: t = 5 Hz2, ~μ= 16  Hz2, and γ = 1 Hz2.

Süsstrunk and Huber PNAS | Published online August 1, 2016 | E4773

PH
YS

IC
S

PN
A
S
PL

U
S



The structure of Dð~kÞ carries a T symmetry whose antiunitary
representation is just given by the complex conjugation κ, that is,
UT = 1κ. Therefore, this symmetry squares to 1. However, there
is an additional structure, which allows to generate an aug-
mented symmetry T p,

UT p =Uaug ○ κ=
�

0 1
−1 0

�
κ, U2

T * =−1,

which gets lifted to a T p symmetry of Hð~kÞ. Otherwise, there are
no relevant symmetries present away from ω= 0, which puts the
problem into symmetry class AII. Repeating the calculation from
the previous model results in Fig. 7. For further details on this
model, we refer directly to ref. 11.

Conclusions
In summary, we have developed a framework to map the equa-
tions of motion of a set of coupled linear mechanical oscillators
to a quantum-mechanical tight-binding problem. Using this
mapping, we showed how one can import the topological clas-
sification of noninteracting electron systems to the realm of
classical mechanical metamaterials. Using the presence or ab-
sence of nonreciprocal elements as a key aspect of meta-
materials, we further adapted the electronic classification to
mechanical problems.
With our work, we provide the stage for the development of

potentially new classes of materials, where topological boundary
modes can be used to provide a specific functionality. Moreover,
we help to clarify the recent literature in the field, where topo-
logical phonon modes have been predicted without an over-
arching framework. We hope that, with the extensive example
section, we provided the reader with the tools and concepts
to construct more topological phonon models using simple
building blocks.
Many directions in the field of topological mechanical meta-

materials are still unexplored. Obvious problems to be solved are
the presentation of a topological surface mode in a 2D or 3D
continuous material or the miniaturization of the effects observed

at the centimeter scale down to micrometer scale. Moreover, ex-
amples of materials in many of the possible symmetry classes
characterized in this report have neither been theoretically
proposed nor experimentally implemented. We hope that, with
this work, we stimulate research in this direction. Moreover, our
results also provide the framework to import ideas based on
crystalline symmetries.
Finally, the efficient characterization of model materials

according to their topological properties is an important open
problem. In electronic systems, the search for topological band
structures is now routinely done using high-throughput ab initio
calculations in combination with advanced numerical tools (57)
to determine the topological indices. Our framework should
provide the basis for a similar approach in mechanical meta-
materials and therefore open the route to various applications
based on topological boundary modes.
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