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Dishevelled (DVL) is a key scaffolding protein and a branching point
in Wnt signaling pathways. Here, we present conclusive evidence
that DVL regulates the centrosomal cycle. We demonstrate that DVL
dishevelled and axin (DIX) domain, but not DIX domain-mediated
multimerization, is essential for DVL’s centrosomal localization. DVL
accumulates during the cell cycle and associates with NIMA-related
kinase 2 (NEK2), which is able to phosphorylate DVL at amultitude of
residues, as detected by a set of novel phospho-specific antibodies.
This creates interfaces for efficient binding to CDK5 regulatory subunit-
associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated
protein 1 (C-NAP1), two proteins of the centrosomal linker. Displace-
ment of DVL from the centrosome and its release into the cytoplasm
on NEK2 phosphorylation is coupled to the removal of linker proteins,
an event necessary for centrosomal separation and proper formation
of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolu-
tion of loose centrosomal linker and subsequent centrosomal separa-
tion. Increased DVL levels, in contrast, sequester centrosomal NEK2
and mimic monopolar spindle defects induced by a dominant nega-
tive version of this kinase. Our study thus uncovers molecular crosstalk
between centrosome and Wnt signaling.
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Signaling pathways activated by Wnt ligands are evolutionary
conserved drivers of proliferation, differentiation, and mor-

phogenesis (1). Their deregulation leads to numerous developmen-
tal abnormalities and contributes to the pathogenesis of several
cancers (2).
Dishevelled (DVL), in mammals with three isoforms DVL1,

DVL2, and DVL3, is a crucial scaffolding component present at
the crossroads of bothWnt/β-catenin and noncanonical Wnt/planar
cell polarity pathways. DVL acts as a signal integrator, which de-
termines subsequent downstream signaling. Its domain structure
provides sites for binding of regulatory proteins and its function is
further modulated by phosphorylation (3). DVL was recently found
to also localize to the centrosome-derived structures, where it reg-
ulates functioning of basal body (4), ciliary disassembly (5), and
mitotic spindle orientation in tandem with Plk1 (6).
Centrosomes are evolutionary conserved structures, which serve

as centers for microtubule nucleation, mitotic spindle organization,
and formation of basal bodies of cilia and flagella (7). The two
connected orthogonal centrioles that each cell inherits after division
go through several steps of structural changes (8, 9), which are tightly
controlled and coupled to cell cycle progression (10). FromG1 phase
onward, a loose proteinaceous linker, containing centrosomal Nek2-
associated protein 1 (C-NAP1) (11), CDK5 regulatory subunit-
associated protein 2 (CDK5RAP2) (12, 13), and fibrous Rootletin
(14), is established and continues to anchor centrioles until it is
degraded during the G2/M phase (15). As the cell approaches mi-
tosis, linker proteins are phosphorylated by the Plk1-Mst2-NIMA-
related kinase 2 (NEK2) cascade (16, 17), which in turn causes

cleavage of Rootletin (14) and displacement of C-NAP1 from cen-
trosomes (18). Interference with linker proteins or their phosphor-
ylation has a drastic effect on cell division (19) and on genome
integrity caused by chromosome segregation errors (20). Structural
or numerical centrosomal abnormalities are linked to chromosomal
instability, cancer progression, and various developmental diseases
(7, 21).
In this work, we present evidence that DVL dynamically asso-

ciates with the proteins of centrosomal linker and is an essential
part of the centrosomal cycle. These DVL functions are mediated
by NEK2, which phosphorylates DVL at several residues, and
induces interaction of DVL with the linker proteins CDK5RAP2
and C-NAP1. We reveal a mechanism of DVL-dependent linker
protein release from centrosome and show that DVL is a crucial
regulator of centrosomal cycle.

Results
Dishevelled Localizes to the Centrosome via Its DIX Domain and Is a
NEK2 Target. Previous research revealed that DVL localizes to
centrosome (6, 22), which we confirmed by endogenous immuno-
cytochemistry and biochemical fractionation (SI Appendix, Fig. S1
A–C). Building on these data, we aimed to define which DVL do-
main is required for its centrosomal localization. By expressing
low levels of DVL in HEK293 cells, we were able to analyze its
colocalization with the centrosomal marker pericentrin. Exogenously
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expressed DVL3 localized to centrosome vicinity (Fig. 1A) in the
same fashion as endogenous protein (SI Appendix, Fig. S1D), and
the DVL3 dishevelled and axin (DIX) domain was both sufficient
and required for its centrosomal localization (Fig. 1A; for expression
levels see SI Appendix, Fig. S1E). The DIX domain confers to DVL
the ability to polymerize in a head-to-tail manner (23). Interestingly,
the DVL2 M1 (F43S) mutant, which is multimerization-defective
but can still form dimers with endogenous DVL (23), also localized
to the centrosome (SI Appendix, Fig. S1F). We conclude that the
DIX domain, and not the ability of DVL to polymerize, is required
for its centrosomal localization. The requirement for the DIX do-
main is in line with the previously described requirement of the Axin
DIX domain for centrosomal attachment (24, 25).
It has been previously reported by functional screens inDrosophila

that the centrosomal kinase NEK2 phosphorylates fly Dishevelled
(Dsh) (26). We confirmed the colocalization of endogenous DVL1,
DVL2, and DVL3 with NEK2 in retinal pigment epithelium (RPE)
cells (Fig. 1 B and C) and showed that NEK2 coimmunoprecipitated
DVL3 in HEK293 cell lysates (although DVL3 was unable to pull
down NEK2) (Fig. 1D). Interestingly, DVL3 coimmunoprecipitated
only with wild-type (wt), but not with kinase-dead mutant K37R
(mut), of NEK2, suggesting that kinase activity of NEK2 is required
for efficient binding (Fig. 1E). Domain mapping experiments per-
formed either by coimmunoprecipitation or as relocalization of
cytoplasmic NEK2 to nucleus with DVL3 mutants lacking nuclear
export sequence identified a critical role for the PDZ domain in the
interaction of DVL and NEK2 (Fig. 1F; raw data: SI Appendix, Fig.
S2 A and B).
MS analysis of DVL3 revealed a variety of specific NEK2-

induced phosphorylation events (Fig. 1G and SI Appendix, Table
S1), and in vitro kinase assay confirmed that several serine res-
idues are phosphorylated directly by NEK2 (Fig. 1G and SI
Appendix, Fig. S2C). We verified induction of phosphorylation by
NEK2 of some of the DVL3 phosphorylation sites (T15, S280,
S643, and S697) independently using novel phospho-specific

antibodies and point S-A mutants (Fig. 1G and SI Appendix, Fig.
S3). Phosphorylation at S643 was associated with homogenous
cytoplasmic localization of DVL3 (27), and indeed NEK2, sim-
ilar to casein kinase (CK)1e coexpression (28, 29), triggered sub-
cellular relocalization of DVL from punctate to even cytoplasmic
distribution (SI Appendix, Fig. S2D). Moreover, pT15- and pS697-
DVL3 phospho-specific antibodies showed a centrosomal signal,
which for pS697 accumulated throughout the cell cycle, whereas
pS280-DVL3 was found only in mitotic spindle and was absent in
the interphase centrosome (Fig. 1H and SI Appendix, Fig. S3 E–G).
These data suggest that NEK2 controls accumulation and sub-
sequent release of DVL3 from the centrosome.

DVL Is Required for Efficient Separation of Centrosomes and Interacts
with Linker Proteins After NEK2-Mediated Phosphorylation. NEK2
expression levels peak at G2/M phase of the cell cycle. Protein
analysis in individual cell cycle phases using sorted HeLa S. Fucci
cells (30) showed that DVL3 expression gradually increases
throughout the cell cycle. This was reminiscent of numerous
centrosomal components, which increase when centrosomes du-
plicate (γ-tubulin, CDK5RAP2, pericentrin), or regulators of G2/M
cell cycle phases such as NEK2 (Fig. 2A and quantification, SI Ap-
pendix, Fig. S4A, and sorting control, SI Appendix, Fig. S4B).
We were thus intrigued by the possibility that DVL could be

involved in regulation of centrosome number and configuration.
After DVL1/DVL2/DVL3 (DVL1-2-3) knockdown (for knock-
down efficiencies and controls, see SI Appendix, Fig. S4 C–H), we
observed marked reduction of cells with the clearly separated
centrosomes and an increase of cells with closely connected
centrosomes (Fig. 2B and SI Appendix, Fig. S4I). This suggests
that the process of centrosomal separation is defective in the
absence of DVL. Knockdown of individual DVL isoforms caused
significant centrosomal separation, as well as proliferation phe-
notypes, but never reached the levels of triple DVL1-2-3 knock-
down, suggesting the functional redundancy of individual DVL
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Fig. 1. DIX domain is required for DVL centrosomal localization, and NEK2 is a DVL kinase. (A) HEK293 cells were transfected with a low amount of DVL3,
DVL3ΔDIX, and DVL3 DIX domain (green), and colocalization with pericentrin (red) was assessed. (B) NEK2 (red) colocalizes with DVL1, DVL2, and DVL3
(green) on an endogenous level in RPE cells. (C) Quantification (% of cells where proteins colocalized and coefficient of determination R2). (D) Endogenous
DVL3 was co-IPed, using NEK2 as bait; anti-DVL3/IgG isotype was used as a positive and negative control. (E) HEK293 cells were cotransfected with DVL3 and
NEK2, as indicated, and subjected to coimmunoprecipitation. DVL3 interacts with and shows an electrophoretic mobility shift, as a result of posttranslational
modifications, only after coexpression with the wild-type form of the NEK2 kinase. (F) Summary of interaction of individual DVL3 deletion mutants with NEK2
(raw data, SI Appendix, Fig. S2 A and B). Domain structure is schematized. (b, basic region; Pro, proline-rich region). (G) HEK293 cells were transfected with
DVL3, cotransfected with empty vector or wild-type NEK2, coimmunoprecipitated, and subjected to MS analysis. Schematic view of identified phosphorylated
residues of DVL3 by MS. Red solid lines represent sites whose phosphorylation was induced by NEK2. Blue dashed lines represent sites directly phosphorylated
by NEK2; purified DVL3 domains were incubated with recombinant kinase in presence of ATP and subjected to MS analysis. Arrows, induction of phos-
phorylation by NEK2 coexpression confirmed by phospho-specific antibody. For a complete list of residues, see SI Appendix, Table S1. (H) Panel indicating the
successful use of phospho-specific antibodies using different methods and cell lines. (Scale bars, 10 μm.)
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isoforms (SI Appendix, Fig. S4 J and K). DVL knockdown in RPE
cells did not affect the localization of structural centrosomal com-
ponents (pericentrin, γ-tubulin, CDK5RAP2, C-NAP1, Rootletin,
and CEP164) (SI Appendix, Fig. S5A) and did not cause any ob-
vious ultrastructural aberrations in centriolar morphology analyzed
by electron microscopy (SI Appendix, Fig. S5B). Moreover, it did
not block the ability to duplicate centrioles seen after overexpression
of PLK4, which can trigger procentriole formation (SI Appendix,
Fig. S5C). We conclude that DVL contributes to centrosomal sep-
aration but is not involved in other centrosomal processes, either as
structural or scaffolding component.
These results prompted us to test the connection of DVL to

linker proteins. We analyzed the amount of DVL3 in CDK5RAP2,
C-NAP1, and Rootletin pulldowns in the presence or absence of
exogenous NEK2. Interestingly, levels of DVL associated with
CDK5RAP2 and C-NAP1, but not Rootletin, were significantly
increased when NEK2 was coexpressed (Fig. 2 C and D and SI
Appendix, Fig. S5D). When visualized by immunofluorescence,
colocalization of DVL with either C-NAP1 or CDK5RAP2 also
improved when NEK2 was coexpressed (Fig. 2 E and F).
C-NAP1 is a known NEK2 substrate, in which multisite phos-

phorylation introduces bulk negative charge and facilitates its release
from centrosome and triggers centrosome disjunction (18). We tested
whether the interaction of DVL with C-NAP1/CDK5RAP2 is a
prerequisite for or consequence of NEK2-mediated phosphorylation
by performing MS analysis of NEK2-triggered phosphorylation of the
linker proteins in wt and triple-knockout DVL1/DVL2/DVL3 cells.
We have identified more than 80 amino acid residues of C-NAP1 and
CDK5RAP2 specifically phosphorylated by NEK2, with the pattern
comparable in both cell lines (Fig. 2G andH and SI Appendix, Table
S2). This suggests that the role of CDK5RAP2 in centrosome co-
hesion can be regulated in a way similar to C-NAP1, and that DVL is
not required for NEK2-mediated phosphorylation of linker proteins.
We cannot, however, rule out that DVL is important for low

stoichiometry phosphorylation events below the detection limit
of our methods.

Dishevelled Mediates NEK2-Triggered Displacement of Linker Proteins
from Centrosome. To get deeper insight into the role of DVL in
the NEK2-controlled linker dissolution, we performed a series
of experiments in RPE cells, where we quantified levels of
endogenous DVL, C-NAP1, or CDK5RAP2 at the centrosome.
NEK2 was able, in a kinase activity-dependent manner, to displace
endogenous DVL from the centrosome (Fig. 3A). This NEK2-
dependent displacement from centrosome resembles behavior of
linker proteins such as C-NAP1 (31). We therefore hypothesized
that DVLmay be involved with NEK2 in removal of linker proteins.
Indeed, overexpressed DVL was able to displace both C-NAP1 and
CDK5RAP2, but not centrin, from the centrosome, and this phe-
notype was rescued by NEK2 knockdown (Fig. 3 B and C; raw data:
SI Appendix, Fig. S5 E–H; controls: SI Appendix, Fig. S4F and SI
Appendix, Fig. S6 A–C). Similarly, DVL depletion by DVL1-2-3
triple knockdown was able to rescue centrosomal displacement of
C-NAP1 and CDK5RAP2 observed upon overexpression of NEK2
(Fig. 3 D and E). The role of NEK2 in the centrosomal displace-
ment of CDK5RAP2 has not been described yet, but our data
clearly demonstrate that only wt NEK2, not the inactive kinase,
is able to remove CDK5RAP2 from centrosome (Fig. 3G and
SI Appendix, Fig. S6B), similar to the previously described ef-
fects on C-NAP1 (Fig. 3F and SI Appendix, Fig. S6A) (18). These
data are in agreement with the hypothesis that DVL serves as a
temporally regulated scaffold required for the efficient NEK2-
controlled release of both C-NAP1 and CDK5RAP2 in the process
of centrosomal separation.
RPE cells possess undisturbed cell cycle checkpoints and stop

dividing when centrosome is affected (e.g., by DVL depletion). To
study consequences of centrosomal defects caused by DVL, we
therefore performed experiments in transformed HEK293 cells,
which continue cycling even with severe centrosomal defects. Loss
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of DVL in HEK293 caused increased proportion of cells with
aberrant nuclei and longer cell cycle (SI Appendix, Fig. S6D and E).
Overexpression of each DVL isoform in HEK293 cells caused a
multinuclear phenotype (Fig. 3H and SI Appendix, Fig. S6F), which
is a consequence of the monopolar spindle defect connected with
the failure of centrosome function (32). The ability of DVL iso-
forms and its mutants to trigger formation of a monopolar spindle
(Fig. 3I) correlated well with the ability to localize to the centro-
some (compare with Fig. 1A). This is exemplified by DVL3ΔDIX
deletion mutant, which fails to induce monopolar spindle-induced
defects, in contrast to the multimerization defective mutant (DVL2
M1) (Fig. 3I). One of the well-described inducers of monopolar
spindle is dominant-negative NEK2 (19). A possible explanation for
DVL-induced monopolar spindle is thus sequestration of active
NEK2 from centrosome by overexpressed DVL. We failed to ob-
serve monopolar spindle-caused defects on overexpression of a
DVL deletion mutant lacking the PDZ domain (DVL3DIX 1-246)
(Fig. 3I), which can associate with centrosome (Fig. 1F), but cannot
bind and sequester NEK2 (SI Appendix, Fig. S2B). In line with this
assumption, NEK2 overexpression can partially rescue DVL3-
induced monopolar spindle formation (Fig. 3J). We took advantage
of this phenomenon to identify which of the sites phosphorylated by
NEK2 (Fig. 1G and SI Appendix, Table S1) are required for the
centrosomal DVL3 function. Analysis of monopolar spindle phe-
notype in DVL3 mutants showed the special importance of cluster
of phosphorylations sites C1 and C2 (SI Appendix, Fig. S3H) and
S697 residue of DVL3 (Fig. 3J). This suggests that the phosphor-
ylation of the C-terminal part of DVL is functionally critical for the
centrosomal roles of DVL. We, however, do not exclude the im-
portance of other sites.

NEK2-Mediated Displacement of DVL from the Centrosome Increases
Cell Response to the Activation of the Wnt/β-Catenin Pathway. A
novel role of DVL controlled by NEK2 opens the question of how
the centrosomal function of DVL coordinated with other well-
defined roles of DVL; namely, with its function in the basahe l
body docking, required for primary cilia formation, and in the
Wnt/β-catenin pathway (33). To address the first issue, we tested
the ability of NEK2 to affect the interaction of DVL3 with Chibby,
CEP164, and Inversin (Inv), three proteins with the important role
in ciliogenesis and links to DVL or other Wnt pathway compo-
nents (34–36). SI Appendix, Fig. S6 shows that NEK2 can interact
with all three proteins and potentiates the DVL3–Inversin interaction
(SI Appendix, Fig. S6G). It, however, cannot trigger the DVL3–
Chibby interaction (SI Appendix, Fig. S6H) and has no positive
effect on DVL3–CEP164 binding (SI Appendix, Fig. S6I; for con-
trols, see SI Appendix, Fig. S6J). This suggests that players other
than NEK2 are involved in the DVL role in ciliogenesis, and that
the issue requires further investigation.
To address the role of NEK2-mediated phosphorylation of

DVL in the canonical Wnt pathway, we performed gain-of-
function experiments using TopFlash reporter assays. NEK2 was
unable to trigger Wnt/β-catenin pathway activation, neither on its
own (Fig. 4A) nor when coexpressed with DVL3 (Fig. 4B, col-
umns 1–3). However, we have observed a synergy of NEK2 with
CK1e when DVL was present (Fig. 4B, columns 2–5), and knock-
down of NEK2 reduced reporter activation induced by exogenously
supplied Wnt-3a (Fig. 4C). These results are in agreement with the
possibility that NEK2 controls (via displacement from centrosome)
size of the DVL3 pool available for the Wnt/β-catenin pathway.
This assumption is confirmed by the analysis of DVL3 S-A mutants,
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Fig. 3. DVL mediates NEK2-triggered displacement of linker proteins from the centrosome. (A) RPE cells with overexpressed NEK2 show significantly reduced
fluorescence intensity of endogenous DVL2 at centrosome in a kinase activity-dependent manner. (B and C) Overexpressed DVL1 displaces linker proteins
from centrosome manifested by reduced fluorescence of CDK5RAP2 and C-NAP1. This phenotype is rescued by NEK2 siRNA. (D and E) Overexpressed NEK2 wt
displaces linker proteins from centrosome manifested by reduced fluorescence of CDK5RAP2 and C-NAP1. This phenotype is rescued by DVL1-2-3 siRNA. Red
dashed line shows baseline fluorescence of linker proteins. (F and G) C-NAP1 and CDK5RAP2 are removed from the centrosome after transfection of wt but
not mut NEK2. (H) DVL overexpression (green) in HEK293 cells leads to monopolar spindle phenotype; acetylated-α-tubulin (red). (I) Extent of monopolar
spindle formation in full-length DVLs, DVL3 with deleted DIX domain (DVLΔDIX87-716), DVL3DIX1-246, and nonpolymerizable mutant of DVL2 (DVL2 M1).
(J) Quantification of the monopolar spindle-related phenotypes in S–A mutants at the DVL3 sites phosphorylated by NEK2 in the presence and absence of
exogenous NEK2 was quantified. Graphs represent mean ± SEM of three independent replicates. *P < 0.05; **P < 0.01; ***P < 0.001 (ANOVA, Bonferroni’s
posttest: A, F, G, I; Student t test: B–E; multiple comparison adjusted Student t test: J). DAPI (blue). (Scale bars, 10 μm.)
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which in numerous cases show lower ability to triggerWnt/β-catenin
signaling (Fig. 4D). In combination with other data, we conclude
that NEK2 is able to positively influence the output of the Wnt/
β-catenin pathway by increasing the proportion of the DVL pool
available for Wnt/β-catenin pathway.

Discussion
Here we provide evidence for a function of DVL in the interphase
centrosome, where it serves as an indispensable regulator of the
loose centrosomal linker. Our work provides further insight into the
centrosome-associated function of DVL, in addition to the recently
described role of DVL in the microtubule-kinetochore attachment
and spindle orientation (6), as well as in the basal body docking and
related functions in ciliogenesis/ciliary disassembly (4, 5, 35).
Our data suggest that DVL is an important regulator of linker

protein displacement during the process of centrosomal separation.
The proposed mechanism of action is summarized in Fig. 4E.
During interphase, DVL slowly accumulates at the centrosome,
together with other proteins of centrosomal linker such as C-NAP1
and CDK5RAP2. We propose that at G2/M, when the centrosomal
kinase NEK2 reaches its maximal activity (37), it phosphorylates
DVL at multiple positions, which increases DVL affinity toward
linker proteins. PhosphorylatedDVL binds CDK5RAP2 and C-NAP1
and helps release them from centrosome.
The exact mechanism that leads to DVL-mediated release of

linker protein complexes from centrosome is not entirely clear.
Electrostatic repulsion or sterical exclusion were proposed for
NEK2-driven removal of C-NAP1 from the centrosome (18, 19).
Given that most linkers proteins are heavily phosphorylated [we
identified NEK2-induced phosphorylation on 82 (C-NAP1), 81
(CDK5RAP2), or 41 (DVL3) unique Ser/Thr sites], we believe
that electrostatic repulsion can represent a key mechanism
explaining centrosomal release of CDK5RAP2 and DVL3. Our
work adds CDK5RAP2 onto the list of NEK2 substrates, which
are present in the centrosomal linker and are required for cen-
trosomal cohesion (13, 38).
One intriguing possibility raised by our results is the role for

the centrosome as an organelle coordinating the cell cycle and
Wnt signaling. We propose that NEK2-mediated release of DVL
from centrosome increases the availability of cytoplasmic DVL
for Wnt/β-catenin pathway, where it has a crucial function as a
component of signalosomes (39). Similarly, retention of DVL at
centrosome as a result of depletion of NEK2 by siRNA manifested
itself as attenuation of Wnt/β-catenin signaling, despite the fact
that NEK2 overexpression did not activate Wnt/β-catenin pathway
per se. This hypothesis reconciles the data observed by us and by
Schertel and colleagues (26). Interestingly, NEK2 can phosphory-
late S33/S37/T41 of β-catenin (40), which is inhibitory. This suggests

that NEK2 phosphorylation of β-catenin and DVL have distinct
effects on Wnt/β-catenin signaling.
Novel function of DVL in centrosomal separation and extensive

phosphorylation by NEK2 reopens the question of how DVL can
perform its multiple roles. DVL is needed for Wnt/β-catenin and
Wnt/planar cell polarity pathways, as well as basal body docking
and proper cilia function. These functions are controlled mainly
by the activity of several kinases (for review, see ref. 41). The
efforts to explain DVL’s individual “fates” by single-point muta-
tions were not, so far, successful. For example, NEK2 resembles in
many aspects the best-described DVL kinase CK1e: both kinases
are capable of inducing a dramatic DVL phosphorylation shift,
overlap in many target residues (e.g., S643 and S280 in hDVL3)
(27), and are capable of promoting even cytoplasmic localization
of DVL, but only CK1e can induce downstream Wnt/β-catenin
signaling. It is likely that only identification and functional char-
acterization of complex phosphorylation barcodes of individual
DVL subcellular pools will fully reconcile the issue. We believe
that unique reagents generated in this study, mainly a panel of
phospho-specific antibodies, will pave the way for the ultimate
understanding of multiple functions of DVL in the near future.

Materials and Methods
Cell Culture and Transfection. HEK293, RPE, and HeLa S. Fucci cells were grown
at 37 °C and 5% (vol/vol) CO2 in DMEM, 10% (vol/vol) FBS, and 1% antibiotics
(penicillin/streptomycin).

Cells were transfected 24 h after seeding, using polyethyleneimine in a
stoichiometry of 2.5:1 (polyethyleneimine:DNA). For immunofluorescence,
HEK293 or RPE cells were seeded on 24-well plates with gelatin-coated
coverslips and transfected, as indicated, with 0.3 μg of each corresponding
plasmid. For coimmunoprecipitation, HEK293 cells were seeded on 10-cm
dishes and transfected with 3 μg of each corresponding plasmid. For MS/MS-
based identification of phosphorylations, HEK293 cells were seeded on 15-cm
dishes and transfected with 15 μg of each corresponding plasmid. Used
plasmids are summarized in SI Appendix, Table S4.

RNA Interference. RPE or HEK293T cells were transfected according to the
manufacturer’s instructions (Ambion). In brief, control and DVL siRNAs
(Ambion, Eurogentec; SI Appendix, Table S5) were mixed with Lipofectamine
RNAiMAX (Invitrogen) in serum-free DMEM in a ratio of 1:1 and incubated for
30 min at room temperature. The transfection mixture was added to the 12-
or 24-well plate and mixed with a suspension of freshly trypsinized cells,
resulting in a final concentration of 130 nM siRNA. When a combination of
different siRNAs was used, each siRNA was used at 130 nM, and the amount of
control siRNA was scaled accordingly.

Immunofluorescence, Cell Sorting, and Centrosomal Preparation. HEK293 and
RPE were seeded on 0.1% gelatin-coated coverslips and harvested as follows.
Samples without fluorescently tagged proteins were fixed and stained as
previously described (42). Samples containing fluorescently tagged proteins
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were fixed in 4% paraformaldehyde, permeabilized with 0.5% Triton-X100,
blocked with PBS/BSA/Triton/Azide buffer (PBTA) [3% (wt/vol) BSA, 0.25%
Triton, 0.01% NaN3] and incubated overnight with antibodies in PBTA. Next
day, samples were washed in PBS, incubated in fluorescent secondary anti-
bodies AlexaFluor-405, AlexaFluor-488, AlexaFluor-568 (Invitrogen), or
DyLight-647 (Jackson ImmunoResearch); nuclei were counterstained with
DAPI (4′,6-diamidino-2-phenylindole; 1 μg/mL). Cells were visualized using a
Leica SP5 confocal microscope using 63× (oil) objective with Leica Applica-
tion Suite software. Counting of mitotic cells, centrosomal patterns, monopolar
spindles, and quantification of centrosomal proteins was performed on
Olympus IX51 fluorescent microscope using 40× (air) or 100× (oil) objectives
with QuickPHOTO Camera software. For quantification workflow details, see
SI Appendix.

HeLa S. Fucci cells were sorted according to the cell cycle phase on an Aria II
cell sorter (BD Biosciences). Both mKO2 and mAG were excited by a 488-nm
laser, and fluorescence signals were collected at 530 nm (530/28 BP) for mAG,
at 575 nm (575/26 BP) for mKO2. The same amount of cells was directly lysed
in Laemmli sample buffer and subjected to Western blotting analysis. Crude
centrosomal fraction was prepared as previously described (43); for pro-
cedure, see SI Appendix.

Dual Luciferase Assay, Coimmunoprecipitation, MS, and Western Blotting. Dual
luciferase was performed according to manufacturer’s instruction and as

described previously (29). Immunoprecipitation protocol used was performed
as described previously (27). Expanded protocol can be found in SI Appendix.
Immunoblotting and sample preparation was performed as previously de-
scribed (44) and developed using either light-sensitive films (Agfa, GE Health-
care) or chemiluminescence documentation system FusionSL (Vilber-Lourmat).
MS for posttranslational modifications was performed as previously described
(27), for full experimental details, see SI Appendix. Antibodies used for im-
munoprecipitation are summarized in SI Appendix, Table S3.
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