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guidelines and prevention measures. However, further re-
search is still needed to clearly elucidate the validity of this 
immune model. This article reviews the evidence implicating 
inflammatory cytokines in AIWG and its potential clinical rel-
evance.  © 2016 S. Karger AG, Basel 

 Introduction 

 Antipsychotic-induced weight gain (AIWG) is a com-
mon side effect which, according to some measures, af-
fects up to 72% of schizophrenia patients receiving acute 
or maintenance treatment  [1] . AIWG has been docu-
mented since the advent of chlorpromazine with reports 
of steadily increasing weight with treatment that rapidly 
declines upon drug cessation  [2, 3] . AIWG appears to oc-
cur more often with second-generation antipsychotics 
(SGAs) than first-generation antipsychotics (FGAs), and 
with greater probability for some SGAs than others  [4, 5] . 
In a review by Lett et al.  [4] , clozapine and olanzapine 
were identified as conferring the highest risk of weight 
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 Abstract 

 Antipsychotic medications (APs), particularly second-gener-
ation APs, are associated with significant weight gain in 
schizophrenia patients. Recent evidence suggests that the 
immune system may contribute to antipsychotic-induced 
weight gain (AIWG) via AP-mediated alterations of cytokine 
levels. Antipsychotics with a high propensity for weight gain, 
such as clozapine and olanzapine, influence the expression 
of immune genes, and induce changes in serum cytokine 
levels to ultimately down-regulate neuroinflammation. 
Since inflammatory cytokines are normally involved in an-
orexigenic responses, reduced inflammation has been inde-
pendently shown to mediate changes in feeding behaviours 
and other metabolic parameters, resulting in obesity. Genet-
ic variation in pro-inflammatory cytokines is also associated 
with both general obesity and weight change during AP 
treatment, and thus, may be implicated in the pharmacoge-
netics of AIWG. At this time, preliminary data support a cy-
tokine-mediated model of AIWG which may have clinical 
utility in developing more effective metabolic monitoring 
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gain among SGAs, with quetiapine and risperidone hav-
ing intermediate risk, and aripiprazole and ziprasidone 
having minimal risk, according to mean weight change 
values ( fig. 1 ). While most patients treated with antipsy-
chotics gain weight, some studies also suggest that anti-
psychotic medications (APs) can induce clinically signif-
icant weight loss in up to 10% of patients  [6] .

  AIWG is a leading contributor to AP non-compliance, 
and a major risk factor for obesity, as well as other meta-
bolic (e.g. dyslipidaemia, hyperglycaemia, diabetes mel-
litus) and vascular (e.g. cardiovascular and cerebrovascu-
lar disease, arterial hypertension, ventricular arrhyth-
mias) abnormalities, and premature mortality  [7, 8] . In 
addition, APs have the potential to exacerbate pre-exist-
ing metabolic irregularities that are otherwise observed at 
lower frequencies and/or severities within untreated 
schizophrenia  [9, 10] . For example, Zhang et al.  [9]  iden-
tified significant increases in subcutaneous and intra-ab-
dominal fat, in addition to elevated levels of leptin, circu-
lating lipids, and non-fasting glucose after 10 weeks of AP 
treatment in previously untreated schizophrenia patients. 
In a meta-analysis by Mitchell et al.  [10] , metabolic ir-
regularities such as obesity (52.7 vs. 26.6%), elevated tri-
glycerides (41.1 vs. 16.9%), low levels of high-density li-
poproteins (44.7 vs. 20.4%), high blood pressure (39.7 vs. 
24.3%), diabetes mellitus (12.8 vs. 2.1%), and hypergly-
caemia (27.8 vs. 6.4%) occurred more frequently in treat-

ed as compared to untreated schizophrenia patients, re-
spectively. Beyond psychotic disorders, AIWG has also 
been observed in other AP-treated psychiatric popula-
tions, such as bipolar disorder  [11] , treatment-resistant 
major depressive disorder  [12] , mental retardation and 
autistic disorder  [13] , and Tourette’s syndrome  [14] , sug-
gesting that AIWG occurs independently of schizophre-
nia as an underlying condition. 

  Despite these clinically significant metabolic out-
comes, the mechanisms implicated in AIWG are not ful-
ly understood. Nevertheless, various biological mecha-
nisms have been linked to the orexigenic effects of an-
tipsychotics, including neurotransmitter systems (e.g. 
serotoninergic, histaminergic, adrenergic, dopaminer-
gic), neuropeptides [e.g. leptin, ghrelin, neuropeptide Y 
(NPY)], and neuroendocrine systems (e.g. insulin, pro-
lactin; for review, refer to Wysokinski and Kloszewska 
 [15] ). Recent evidence also suggests that the immune sys-
tem may at least partially contribute to this metabolic 
phenotype, particularly via AP-induced alterations of cy-
tokine levels. More specifically, APs have been shown to 
influence the expression of cytokines to ultimately down-
regulate neuroinflammatory signatures  [16, 17] . An in-
crease in inflammatory cytokines is normally involved in 
anorexigenic responses, while reduced inflammation has  
 been independently shown to mediate changes in feeding 
behaviours and other metabolic parameters which can 
lead to obesity  [18–20] . Genetic variation in pro-inflam-
matory cytokines is also associated with both general obe-
sity  [21–23] , and weight change during AP treatment 
 [24] , and thus, may be implicated in the pharmacogenet-
ics of AIWG. Although limited research has examined the 
direct link between cytokines and AIWG, based on these 
preliminary findings, we propose a cytokine-mediated 
immune model of AIWG which will be further outlined 
within this review. 

  The Role of Cytokines in Energy Homeostasis 

 Biological Properties of Cytokines 
 Cytokines are pleiotropic proteins involved in host 

regulation of both immunological and non-immunolog-
ical processes, and are classified as either pro-inflamma-
tory or anti-inflammatory in function based on their abil-
ity to either augment or suppress the immune response 
 [25] . Cytokines are produced by a variety of cell types 
within the periphery (e.g. endothelial cells, monocytes/
macrophages, dendritic cells, natural killer cells, and T 
cells) and the central nervous system (CNS; e.g. astro-

High-risk drugs
 Olanzapine*
 Clozapine*

Moderate-risk drugs
 Thioridazine
 Chlorpromazine
 Risperidone*
 Quetiapine*Low-risk drugs

 Ziprasidone*
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 Fluphenazine
 Haloperidol

  Fig. 1.  Weight change propensities of antipsychotic treatments. 
Antipsychotics are categorized according to a low, moderate, or 
high propensity to induce weight gain in patients. The varying pro-
pensities of antipsychotics to induce AIWG may depend on differ-
ences in their immunomodulatory profiles. Drugs are listed in the 
order from highest to lowest weight-inducing potential per cate-
gory. Asterisk indicates SGA. 
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cytes, microglia), where they function as chemical mes-
sengers  [26–28] . 

  In the periphery, cytokines (and other immune fac-
tors) are released by phagocytic cells upon infection  [27, 
29–31] , and once the pathogen is cleared, there is a shift 
toward anti-inflammatory signalling in order to resolve 
inflammation and restore homeostasis  [32] . In the CNS, 
microglia and astrocytes primarily regulate the initiation 
and termination of the inflammatory response  [33] . Mi-
croglia are resident macrophages of the CNS that con-
tinuously survey the brain for neuronal damage, plaques, 
and microbes, and provide an immediate response to 
even minor central pathology  [27] . Once activated, mi-
croglia engage in a variety of functions including phago-
cytosis and antigen presentation of invading microbes, 
secretion of oxidative stress markers like reactive oxygen 
species (ROS) and reactive nitrogen species, and produc-
tion of cyclooxygenase (COX)-2, prostaglandin E 2 , and 
inflammatory cytokines  [34–38] . Although astrocytes 
can secrete pro-inflammatory mediators, they primarily 
produce anti-inflammatory factors  [38, 39] . Astrocytes 
also have inhibitory and stimulatory effects on microglia 
depending on the internal immune state  [27] . 

  In addition to centrally produced factors, peripheral cy-
tokines can also access the CNS through multiple humoral 
pathways that act in parallel, including: (1) passive trans-
port at disrupted regions of the blood-brain barrier (BBB) 
 [40]  or through BBB-deficient choroid plexuses and cir-
cumventricular organs  [41–43] , (2) active transport via 
saturable transport molecules  [44, 45] , and (3) binding to 
cerebral endothelial cells to stimulate release of secondary 
inflammatory messengers  [46–48] . Immune information 
is also transmitted to the brain using rapid neural pathways 
which activate primary afferent nerve fibres in response to 
peripheral cytokine release  [49–51] . Once immune infor-
mation from the periphery reaches the brain, it is reconsti-
tuted in the CNS via central cytokine release  [52] .

  The immune capabilities of different cytokines are 
highly redundant, and ultimately lead to the stimulation 
of multiple cell types and the downstream production of 
inflammatory mediators  [1, 53] . Pro-inflammatory cyto-
kines, such as interleukin (IL)-1, IL-2, IL-6, and tumour 
necrosis factor alpha (TNF-α) augment the inflammatory 
cascade by recruiting leukocytes, activating inflammatory 
cells, and assisting with the elimination of invading 
pathogens  [26, 27] . Anti-inflammatory cytokines, such as 
IL-4, IL-5, IL-10, IL-1 receptor antagonist (IL-1RA), and 
soluble IL-2 receptor (sIL-2R), are reciprocally designed 
to down-regulate inflammation via immunosuppressive 
functions  [38, 54] . 

  Cytokines yield their effects by binding to specific cy-
tokine receptors that are expressed on a variety of periph-
eral and central cells, and also exist in soluble form  [55] . 
Some receptor subtypes serve as non-functional decoys 
(e.g. IL-1RII, sIL-2R)  [26, 56, 57] , while others enhance 
cytokine activity (e.g. sIL-6R)  [26] . Inhibitory effects are 
also achieved by non-functional receptor antagonists 
(e.g. IL-1RA) which compete with cytokines for receptor 
binding sites  [56] . Cytokine-receptor complexes are 
phosphorylated by Janus kinase (JAK) and Src kinases, 
and signal through pathways like JAK-STAT (signal 
transducer and activator of transcription), Ras/MAPK 
(mitogen activated protein kinase), and phosphoinosi-
tide-3-kinase (PI-3-kinase) to activate gene transcription 
and cellular activity  [58] .

  Within this repertoire of immunological functions, cy-
tokines play a key role in regulating energy homeostasis. 
This occurs primarily through central effects on feeding 
behaviours and other metabolic outcomes, both for im-
munological and non-immunological purposes. 

  Cytokines and Hypothalamic Regulation of Energy 
Homeostasis 
 AIWG results from AP-induced disruptions of central 

and peripheral energy homeostatic pathways, ultimately 
creating an imbalance favouring energy intake over en-
ergy expenditure  [59] . Various genetic, neuronal, and 
hormonal factors are implicated in mediating this asso-
ciation through effects on appetite and satiety signals 
 [60] . Of particular importance are hypothalamic homeo-
static circuits which, in controlling food intake and ther-
moregulation, rely on peripherally released factors to 
monitor the body’s energy stores and provide appetite-
stimulating (orexigenic) or appetite-diminishing (an-
orexigenic) signals to the CNS  [61, 62] . Although signals 
act at various CNS sites, the pathways converge onto the 
hypothalamus where they are integrated and cue central 
neurons to secrete relevant neuropeptides  [63, 64] . In-
flammatory cytokines, along with leptin and insulin, are 
anorexigenic factors which function as adiposity signals 
to provide information on long-term energy stores to the 
hypothalamus under normal and pathological conditions 
 [15] . To support this role, cytokines have action at central 
neurons, with particularly high receptor densities local-
ized to the hippocampus and hypothalamus  [65, 66] . Cy-
tokines are reciprocally regulated by various centrally re-
leased neurotransmitters and neuropeptides  [66] . 

  The primary CNS interface for these cytokines is the 
arcuate nucleus (ARC) of the hypothalamus which, due 
to an anatomical position near the base of the brain and 
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poor BBB insulation, can directly interact with periph-
eral regulatory factors  [15] . The ARC is responsible for 
reciprocally regulating two types of first-order neurons: 
(1) anorexigenic neurons co-expressing pro-opiomela-
nocortin (POMC) and cocaine- and amphetamine-regu-
lated transcript (CART), and (2) orexigenic neurons co-
expressing NPY, and agouti-related protein (AgRP)  [67] . 
These neuropeptides act on second-order neurons which 
are localized to three primary hypothalamic sites: lateral/
perifornical hypothalamic area (LHA) or ‘hypothalamic 
hunger centre’, paraventricular nucleus (PVN) or ‘hypo-
thalamic satiety centre’, and the ventromedial nucleus 
(VMN) which mediates satiation in response to blood 
glucose levels  [15] . Signals transmitted to the LHA, PVN, 
and VMN are subsequently translated into autonomic, 
endocrine, and behavioural responses  [64, 68] .

  The Role of Cytokines in Weight Regulation 

 The Pathophysiological Role of Cytokines in Weight 
Regulation during Infection 
 During times of infection, the anorexigenic effects of 

inflammatory cytokines, which are typically observed as 
a reduction in food-motivated behaviours, food intake, 
and body weight  [69, 70] , occur as part of the acute phase 
response (APR)  [71] . The APR is an integrated set of im-
mune, endocrine, metabolic, behavioural, and neural al-
terations that are mounted by the innate immune system 
upon immediate recognition of an immunological insult 
 [72, 73] . In addition to anorexia, the APR can include fe-
ver, lethargy, altered plasma protein concentrations, and 
increased leukocyte counts  [74] . APR reactions form a 
critically adaptive defence strategy that takes priority over 
regular homeostatic controls to provide short-term sur-
vival benefits to the host  [71, 75] . The survival benefits of 
anorexia can include: (1) reducing food scavenging be-
haviours to conserve energy and heat, (2) reducing access 
to food-derived micronutrients that can be used by patho-
gens to flourish, (3) limiting potentially harmful meta-
bolic APR effects, and (4) promoting apoptosis of infect-
ed cells  [72, 73, 75] . Murray and Murray  [76]  demon-
strated these functions by showing that force-feeding 
infected mice to a normal energy intake increased mortal-
ity and reduced survival time compared to infected mice 
fed ad libitum. Similarly, Wing and Young  [77]  found 
that acutely starved mice infected with  Listeria monocy-
togenes  showed significantly less mortality than fed mice, 
further demonstrating the survival advantage of anorexic 
behaviours during times of acute infection.

  The anorexigenic outcomes of the APR can be mim-
icked by externally administering inflammatory cyto-
kines to the periphery or CNS, with synergistic effects oc-
curring between cytokines in some cases  [78–86] . The re-
sultant alterations in feeding behaviours are typically 
observed as reductions in meal size, duration, and fre-
quency, and longer inter-meal intervals  [80, 85, 87] . In-
flammatory cytokines have also been shown to influence 
metabolic rate, as observed by an increased rate of ap-
pearance and rate of metabolic clearance of glucose, in 
addition to other metabolic changes which include in-
creased plasma levels of norepinephrine, cortisol, and 
glucagon, resting energy expenditure, plasma free fatty 
acid concentration, fat oxidation, and alterations of low-
density lipoprotein metabolism  [88, 89] . Moreover, cyto-
kines can alter food preferences, as Aubert et al.  [90]  
showed that rats treated with IL-1β, in addition to having 
a reduced total caloric intake, consumed relatively more 
carbohydrates and less protein. Taste aversion is also ob-
served following cytokine administration, but this does 
not appear to be a major component of anorexic action 
 [72, 91] . Nevertheless, anorexigenic responses can be at-
tenuated using cytokine and/or cytokine receptor gene 
knock-out models  [92, 93] , or cytokine antagonism  [87, 
94–96] . Tolerance to chronic cytokine administration 
can develop with consequent restoration of normal food 
intake  [97, 98] , supporting that anorexic effects of cyto-
kines are intended to be short-term. Beyond altering feed-
ing behaviours, cytokines can also influence body weight 
through effects on energy expenditure such as by induc-
ing changes in body temperature  [99, 100] .

  The Physiological Role of Cytokines in Normal Weight 
Regulation  
 During normal fat accumulation and adipocyte en-

largement, adipose tissue (particularly within visceral fat) 
becomes a site of active inflammation as it undergoes mo-
lecular and cellular changes, accumulates macrophages, 
and secretes various immune factors such as inflamma-
tory cytokines  [101, 102] . These cytokines subsequently 
suppress feeding and induce energy expenditure, similar 
to the anorexigenic effects observed within the APR, via 
a feedback loop to prevent excessive fat accumulation (i.e. 
obesity), and thus, maintain homeostatic balance  [103] . 
Once caloric restriction is achieved, it is accompanied by 
a potent anti-inflammatory effect which can include re-
duced production of inflammatory cytokines and prosta-
glandins, lowered blood lymphocyte counts, and reduced 
macrophage activation and infiltration into adipocytes 
( fig. 2 )  [102, 104, 105] . 
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  Central and Peripheral Mechanisms of Cytokine-
Induced Anorexia 
 Peripheral cytokines can stimulate the vagus nerve of 

the abdomen and gastrointestinal tract which relay sig-
nals to the hypothalamus  [15] . The vagus nerve may par-
tially mediate anorexigenic effects, as sub-diaphragmatic 
vagotomy can attenuate suppression of food intake  [106]  
and food-motivated behaviour  [106] , but not in all cases 
 [107] . Cytokines may work with the peripheral satiety 
hormone, cholecystokinin (CCK), to stimulate the vagus 
nerve, as cytokine-induced release of CCK and activation 
of CCK A  receptors partially contribute to vagal-mediated 
hypophagic outcomes  [72] . In addition, cytokines like 
IL-1 and TNF-α act directly on adipocytes to stimulate 
leptin secretion to suppress food intake  [108–112] , and 
influence levels of insulin and glucagon  [113] . Further, 
IL-1, IL-6, and TNF-α reduce stomach muscle contrac-
tions to yield gastric stasis (i.e. delayed gastric emptying) 
which contributes to anorexia by influencing meal size 
and length of inter-meal intervals  [114] . The involvement 
of inflammatory cytokines within multiple metabolic 
pathways in the periphery provides some insight into the 
importance of these adiposity signals in the regulation of 
energy homeostasis.

  In the CNS, cytokines have direct action at hypotha-
lamic neurons in the LHA, PVN, and VMN in mediating 
feeding behaviours  [113] . In support, cytokine mRNA 

and protein, and cytokine receptors have been found in 
multiple brain regions including the hypothalamus  [115–
117] , with greatest concentrations in the VMH  [69] . In 
anorexic tumour-bearing rats, IL-1β and IL-1R mRNA 
are up-regulated in the hypothalamus, and cerebrospinal 
fluid levels of IL-1 negatively correlate with food intake 
 [69] . Kent et al.  [118]  demonstrated that direct adminis-
tration of recombinant IL-1β into the VMN both time- 
and dose-dependently induced anorexia and weight loss, 
with food and water consumption reduced by 45 and 
30%, respectively. VMN-injected cytokine antagonists 
can also reverse anorexic outcomes by improving food 
intake  [119, 120] . These data provide further support for 
the direct involvement of cytokines in the hypothalamic 
regulation of metabolic activity. 

  Cytokines can also mediate anorexigenic effects by in-
fluencing hypothalamic production of various neuro-
transmitters and neuropeptides that are relevant to the 
regulation of food intake. For example, central cytokine 
administration can reduce levels of NPY, an important 
orexigenic factor  [121] . Sonti et al.  [122]  observed that 
NPY administration blocks the anorexic effects of IL-1β 
and induces feeding in anorexic rats. A similar relation-
ship exists between NPY and interferon-α  [82] . Lipopoly-
saccharide endotoxin and IL-1β have been shown to de-
crease plasma levels of the orexigenic factor, ghrelin, an 
effect which can be blocked by administration of exoge-

Macrophage immune
factors (e.g. leptin,
inflammatory cytokines)

Reduce central
cytokine levels

Hypothalamus
(LHA, PVN, VMN)

Meal size
Meal duration
Meal frequency

Pro-inflammatory cytokines
Prostaglandins
Blood lymphocyte counts
Macrophage activation

Anorexigenic
signalling pathways
(e.g. NPY, AgRP, ghrelin,
POMC, CART, monoamines)

Adipocytes

Antipsychotics

  Fig. 2.  Cytokine involvement in adiposity 
signalling. The adiposity signalling path-
way of inflammatory cytokines is shown. 
Cytokines, which are elevated during fat 
accumulation, act within the hypothala-
mus to initiate anorexigenic pathways, to 
ultimately decrease food intake and in-
crease energy expenditure. Once caloric re-
striction is achieved, cytokine levels are re-
duced. Antipsychotics may perturb adipos-
ity signalling by reducing central cytokine 
levels, thereby blocking the illustrated 
pathway at the level of the hypothalamus, 
and shifting weight outcomes back toward 
fat accumulation. 
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nous ghrelin, IL-1RA, and the non-steroidal anti-inflam-
matory drug, indomethacin  [123] . In other words, ad-
ministration of anti-inflammatory factors restores orexi-
genic signalling in cases where cytokine levels are el -
evated. Cytokines also interact with other neuropep-
tides (e.g. POMC-derived peptides, hypocretins/orexins, 
CART, melanin-concentrating hormone, and AgRP) and 
neurotransmitters (e.g. dopamine, serotonin, histamine, 
and norepinephrine) which are involved in regulating 
food intake  [113, 117, 124] . Cytokines are extensively in-
tegrated into the hypothalamic metabolic circuit, both 
regulating and being regulated by various neurotransmit-
ters and neuropeptides, which emphasizes their impor-
tance within energy homeostatic pathways.

   In addition, secondary cytokine messengers such as 
prostaglandins, especially prostaglandin E 2 , and their 
precursors have been shown to reduce food intake and 
influence gastrointestinal motility  [125–130] . These an-
orexigenic effects are typically reversible by COX inhibi-
tors like aspirin, flurbiprofen, indomethacin, and para-
cetamol, which possess anti-inflammatory properties 
 [125, 127] . In support, pre-treatment with COX inhibi-
tors can partially block the anorexic and gastric emptying 
effects of IL-1 and TNF  [114] . Furthermore, cytokines ac-
tivate the hypothalamic-pituitary-adrenal (HPA) axis 
 [131, 132] , and simulate release of corticotropin-releasing 
hormone (CRH)  [133–136]  which acts within the brain 
to reduce food intake  [137] . Uehara et al.  [138]  demon-
strated that pre-treatment with CRH-antiserum blocks 
reductions in food intake subsequent to IL-1β adminis-
tration. Overall, the involvement of cytokines in the regu-
lation of feeding behaviours appears to be non-linear and 
highly extensive involving interactions with various regu-
latory factors and multiple pathway redundancies.

  Disruption of Cytokine Signalling in Normal Weight 

Regulation and Its Implications for Obesity 

 Obesity as a Consequence of Cytokine Function 
Disruption 
 Any perturbations to cytokine-mediated adiposity sig-

nalling may cause a shift in weight outcomes. In cases 
where weight gain is specifically concerned, this outcome 
may theoretically occur in one of two ways: (1) a devel-
oped resistance to inflammatory signalling despite an in-
tact ability to up-regulate cytokine expression, or (2) a 
blunted ability to up-regulate cytokine expression when 
needed. In either situation, important information on ad-
iposity reserves fails to be conveyed to the hypothalamus 

which precludes the initiation of anorexigenic responses, 
leading to continued fat accumulation, and ultimately, 
obesity  [103] . A recent review by Wang and Ye  [139]  
highlights the critical role of inflammation in the mainte-
nance of energy homeostasis, commenting on how a lack 
of responsiveness to inflammatory cytokines will skew 
metabolic outcomes toward obesity while elevated in-
flammatory activity leads to weight loss and malnutrition, 
as observed in cancer cachexia.

  Inflammatory resistance is observable within general 
obesity (and metabolic syndrome), where low-grade in-
flammation is chronically present but with no accompa-
nying reduction in weight  [140] . In further support, hy-
perglycaemia and type 2 diabetes mellitus, which are
by-products of obesity-induced/inflammation-induced 
(particularly via increased levels of TNF-α and IL-6) in-
sulin resistance, are characterized by glucose excretion in 
the urine, which may be an extreme method to rid the 
body of surplus energy where more traditional homeo-
static mechanisms have failed  [103, 141] . Moreover, 
weight loss in morbidly obese patients yields an improve-
ment in insulin resistance when accompanied by signifi-
cant reductions in C-reactive protein (CRP) and IL-6 
 [142] .

  Similar to inflammatory resistance, a deficit of inflam-
matory signalling in the face of increased adiposity would 
yield comparable obesity outcomes. In support, O’Rour-
ke et al.  [143]  found decreased serum cytokine protein 
and mRNA levels in peripheral blood mononuclear cells 
of obese compared to lean patients, which occurred in 
spite of an intact capacity to up-regulate cytokine expres-
sion in response to leptin. These data suggest that obesity 
may result from reduced inflammatory signalling and/or 
responsiveness to inflammatory cytokines, which would 
consequently limit anorexigenic outcomes and weight 
regulation. 

  Genetic Knockout Models of Cytokine-Induced 
Obesity 
 Various models have tested the association between 

deficit cytokine production and obesity outcomes using 
genetic knockout models. Wallenius et al.  [19]  observed 
that IL-6-deficient mice (IL-6 –/– ) developed mature-on-
set obesity accompanied by increased food intake, altered 
carbohydrate and lipid metabolism, increased leptin lev-
els, and reduced responsiveness to leptin treatment. IL-6 
administration was able to partially reverse these effects 
by lowering body weight and leptin levels, and increasing 
energy expenditure. However, other research has shown 
no significant differences between IL-6 –/–  and wild-type 
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mice on measures of obesity, fasting hyperglycaemia or 
lipid metabolism  [144] . Investigations of IL-1 involve-
ment have yielded similar findings. Garcia et al.  [145]  
found that mice with an IL-1R deficiency (IL-1RI –/– ) de-
veloped mature-onset obesity relative to wild-type mice 
by 5 to 6 months of age, with a 20% weight difference 
emerging by 9 months. IL-1RI –/–  mice also developed a 
1.5- to 2.5-fold increase in visceral and subcutaneous fat 
mass, insulin resistance, increased leptin levels and, prior 
to obesity onset, lower locomotor activity and reduced 
suppression of body weight and food intake in response 
to leptin. These developmental data suggest that cyto-
kines exert extensive metabolic effects from relatively ear-
ly on in life. 

  Furthermore, McGillicuddy et al.  [146]  noted that IL-
1RI –/–  mice developed mature-onset obesity after 6 
months despite being fed a low-fat diet, thereby suggest-
ing that obesity outcomes are primarily regulated by in-
ternal factors and can occur independent of the environ-
ment. Finally, Netea et al.  [147]  showed that deficiency of 
IL-18 (IL-18 –/– ) in mice led to higher leptin levels, hyper-
phagia, increased cholesterol and triglyceride concentra-
tions, obesity, and insulin resistance, which could all be 
partly reversed with central administration of recombi-
nant IL-18. Obesity differences, relative to control mice, 
first appeared at 6 months of age, with the greatest differ-
ence of 38.1% occurring at 12 months. Mice deficient for 
the IL-18R (IL-18R –/– ) also displayed similar obesity and 
insulin resistance outcomes. Overall, these data suggest 
that the role of cytokines within metabolic regulation is 
not limited to food intake and weight outcomes, but rath-
er, includes more global effects on various metabolic pa-
rameters. These findings may provide additional insights 
into the host of metabolic consequences that often occur 
in tandem with AIWG among AP-treated patients.

  There is also an observed synergy between cytokines 
in yielding weight change effects. Chida et al.  [18]  found 
that mice with a combined IL-1 and IL-6 deficiency (IL-
1 –/– /IL-6 –/– ) developed obesity by 10 weeks while mice 
with either an IL-1 or IL-6 knockout remained normal at 
this age. IL-1 –/– /IL-6 –/–  mice also had significantly higher 
daily food intake and greater suppression of anorexic ef-
fects after peripheral IL-1 administration. These results 
provide further support for the redundancies in cytokine 
metabolic pathways, as functional blockade of one cyto-
kine pathway does not necessarily lead to global orexi-
genic effects. 

  In addition to inflammatory cytokines, anti-inflam-
matory factors can also yield considerable, yet opposing 
effects on weight change outcomes. IL-1RA –/–  mice, in 

which excess IL-1 signalling may occur, have a lean phe-
notype through impaired body fat accumulation and lip-
id storage, and resistance against the obesity-inducing ef-
fects of both monosodium glutamate and a high-fat diet 
 [148] . Additional studies of IL-1RA –/–  mice revealed a 
lean phenotype based on reduced fat mass, dysfunctional 
adipogenesis, and increased energy expenditure, in addi-
tion to reduced body weight relative to heterozygote IL-
1RA +/–  littermates  [149, 150] . Thus, anti-inflammatory 
cytokines appear to work in concert with inflammatory 
cytokines to indirectly regulate homeostatic balance 
through their antagonizing effects on pro-inflammatory 
activity. 

  Cytokine Genetic Variants and Obesity 
 Genetic investigations involving polymorphisms in 

cytokine genes show an association with obesity in hu-
mans. Andersson et al.  [151]  found that the 3 ′  untrans-
lated region variant rs4252041 (C>T) of the IL-1RA gene 
was associated with lower total and regional fat mass, to-
tal fat percent (%) and body mass index (BMI) in men. 
Um et al.  [152]  found two IL-1α polymorphisms, C-889T 
(rs1800587) and G+4845T (rs17561), that were associat-
ed with an increase in BMI in obese healthy women. Lee 
et al.  [153]  investigated the IL-1β +3953 (rs1143634) vari-
ant site, finding a higher frequency of the T (CT/TT), or 
high transcriptional, allele among lean BMI (<25) versus 
overweight BMI (25–29) females. The same locus was 
tested by Manica-Cattani et al.  [21] , similarly finding a 
higher T allele frequency in non-overweight than over-
weight and obese groups. Strandberg et al.  [154]  also test-
ed the +3953 variant but against body fat mass in men. 
Results showed that carriers of the T allele had signifi-
cantly lower total fat mass, in addition to reduced arm, 
leg, and trunk fat. 

  The IL-6 gene has also been implicated in metabolic out-
comes. Additional investigations by Strandberg et al.  [155]  
found an association for both the IL-1β –31T>C (rs1143627) 
and IL-6 –174 G>C (rs1800795) polymorphisms with total 
and regional fat mass in elderly men. Interestingly, the IL-6 
–174C variant, which produces less IL-6, has been associ-
ated with higher BMI and risk of obesity-related metabolic 
indices like insulin resistance and high systolic blood pres-
sure  [156, 157] , while the –174G variant has been associ-
ated with a lean phenotype, low waist circumference, and 
low concentrations of insulin or glucose  [22] . Andersson et 
al.  [158]  found the IL-6 rs10242595 * A variant to be associ-
ated with low BMI and total body fat mass, and smaller re-
gional fat masses. In addition, the IL-6 promoter polymor-
phism, rs2069827 G>T, is associated with elevated early-
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adulthood BMI, baseline BMI, and waist circumference in 
men and women, separately  [159] . Wolford et al.  [160]  
studied multiple polymorphisms across the IL-6R gene 
(rs4845623 T>C, c_1981308_10 T>C, rs2228145 T>G, 
c_1158918_10 G>C, rs2229328 T>C) finding that carriers 
of the variant allele for these sites had a higher mean BMI 
compared to those with the wild-type allele when tested 
among non-diabetic Pima Indians. 

  In addition to research examining general obesity out-
comes, previous investigations by our own study team 
have identified multiple cytokine polymorphisms associ-
ated with AIWG. We found that variant sites across the 
IL-1β gene, specifically rs16944 * GA, rs1143634 * G, and 
rs4849127 * A, were associated with greater AIWG in 
schizophrenia patients  [161] . Our analyses further identi-
fied epistatic effects between IL-1β (rs13032029, rs16944) 
and the anorexigenic neurotrophin, brain-derived neuro-
trophic factor (BDNF), specifically the Val66Met variant, 
in predicting AIWG outcomes. Epistatic interactions 
were also demonstrated between IL-6 rs2069837 and 
BDNF Val66Met  [161] . Furthermore, an expansion of 
GWAS results from the Genetic Investigation of ANthro-
pometric Traits (GIANT) identified associations between 
BMI and variants across genes associated with the MAPK 
pathway, which has been implicated in cytokine signal-
ling  [162] . Despite the availability of genetic data, inter-
pretation of these results is limited by the absence of func-
tional data which are needed to determine the direction 
of association. Nevertheless, these results, which high-
light the significant influence of genetic variability across 
cytokine genes on weight gain outcomes, suggest that 
AIWG may partially derive from a genetic susceptibility.

  Antipsychotic-Induced Disruption of Cytokine 

Signalling and the AIWG Side Effect 

 Linking the Anti-Inflammatory Properties of 
Antipsychotics to AIWG 
 Several studies suggest that APs have immunomodu-

latory properties ( table 1 ), particularly anti-inflammatory 
effects, which may contribute to their clinical efficacy. 
Long-term treatment with APs has primarily been shown 
to increase expression of anti-inflammatory mediators 
(e.g. sIL-1RA, sIL-2R, and IL-10) while simultaneously 
reducing pro-inflammatory markers (e.g. IL-1β, IL-2, IL-
6, sIL-6R, and TNF-α) in the periphery and CNS  [17, 27, 
163] . Despite these main trends, a meta-analysis of cyto-
kine alterations in schizophrenia patients proposed that 
only state marker cytokines such as IL-1β and IL-6 are 

responsive to AP treatment, while trait makers such as 
interferon-γ, TNF-α, and sIL-2R, remain unchanged 
 [164] . The reverse relationship has also been demonstrat-
ed with levels of inflammatory cytokines increasing sub-
sequent to AP treatment  [16] . However, these results 
should be cautiously interpreted as the use of serological 
methodology can compromise data outcomes through 
the introduction of various confounds which can alter pe-
ripheral cytokine expression. APs have also been shown 
to reduce microglia activation and release of nitric oxide 
and ROS  [165–167] , and increase levels of S100B (a cal-
cium- and zinc-binding protein which serves as a marker 
for astrocyte activity) in some  [168, 169]  but not all cas-
es  [170] . Additional support for the anti-inflammatory 
properties of APs is derived from reports of AP efficacy 
in treating inflammation-based conditions such as tuber-
culosis/mycobacterial infections  [171] , and rheumatoid 
arthritis  [172] . APs may mediate these effects by sup-
pressing production of pro-inflammatory cytokines and 
nitric oxide from activated microglia  [31, 34] . 

  The alteration of cytokine systems by APs may have 
secondary consequences on normal adiposity signalling 
by disrupting inflammatory cytokine release. If levels of 
inflammatory cytokines are suppressed, information on 
long-term energy stores may be compromised, thereby 
preventing hypothalamic circuits from restoring energy 
homeostasis via anorexigenic responses. This may ulti-
mately lead to a continued accumulation of adiposity 
demonstrated as weight gain and/or obesity ( fig.  2 ). 
Moreover, SGAs have more potent anti-inflammatory 
properties relative to FGAs  [27, 173] , which provides sup-
port for data trends which consistently implicate SGAs in 
having a greater propensity toward AIWG as compared 
to FGA treatments.

 Table 1.  Immune alterations through antipsychotic treatment

Immune biomarker Primary direc-
tion of change

Citations

Inflammatory cytokinesa (e.g. IL-1,
IL-2, IL-6, IL-6R, TNF-α) ↓ 17, 27, 163

Anti-inflammatory cytokinesa

(e.g. sIL-1RA, sIL-2R, IL-10) ↑ 17, 27, 163
S100B ↑ 168, 169
Microglia activation ↓ 165, 166
Nitric oxide release ↓ 165, 166
ROS ↓ 167

 a In both the periphery and CNS.
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  Preliminary Evidence Supporting a Cytokine-
Mediated Model of AIWG 
 There is a growing body of evidence that supports the 

role of cytokine dysfunction in metabolic disturbances, 
like AIWG, in schizophrenia. A recent genetic analysis by 
Chase et al.  [174]  identified concurrent dysregulation of 
obesogenic (e.g. peroxisome proliferator-activated recep-
tor, sterol regulatory element binding transcription factor 
1) and immunogenetic (e.g. IL-6, TNF-α, CCAAT/en-
hancer-binding protein-α) gene expression in schizo-
phrenia patients. An additional analysis of blood mono-
nuclear cells further identified a significant difference be-
tween obese and non-obese schizophrenia patients on 
measures of inflammatory cytokines, in addition to se-
rum levels of leptin and adiponectin  [175] .

   In considering the proposed immunomodulatory 
properties of APs, it is plausible that immune factors con-
tribute to AIWG. This theory has received some attention 
in recent years, starting with Klunge et al.  [176]  who pro-
posed that the effects of clozapine and olanzapine on 
weight gain may be closely related to their effects on cy-
tokine networks. In this study, 30 patients diagnosed with 
schizophrenia,  schizophreniform or schizoaffective dis-
order were randomized to either clozapine (mean modal 
dose: 266.7 ± 77.9 mg) or olanzapine (21.2 ± 2.5 mg) treat-
ment for 6 weeks. Data were longitudinally collected on 
BMI, and plasma levels of leptin and cytokines which
included TNF-α, soluble TNF receptor (sTNFR)-1,
sTNFR-2, IL-6, and sIL-2R. All cytokine levels were found 
to significantly change over time, with the exception of 
IL-6 and sTNFR-1 among olanzapine-treated patients, 
thereby suggesting treatment-specific effects on cytokine 
systems. In addition, TNF-α, sTNFR-1, sTNFR-2, and 
sIL-2R levels correlated with BMI after 6 weeks of treat-
ment. 

  Similarly, Song et al.  [177]  observed significant altera-
tions in serum levels of IL-1β, IL-6, and TNF-α, in addi-
tion to body weight, over 6 months of risperidone treat-
ment in 62 drug-naïve first-episode schizophrenia pa-
tients. In fact, patients who experienced clinically sig-
nificant (>7%) weight gain by the end of treatment had 
higher levels of all cytokine markers compared to patients 
who gained <7% of weight. However, the data from these 
last two studies are limited by their relatively small sample 
sizes. Therefore, additional cytokine analyses in larger 
clinical samples are required to more clearly elucidate the 
cytokine-AIWG relationship.

  Klemettila et al.  [178]  relied on a larger sample of 190 
treatment-resistant schizophrenia patients who were ad-
ministered clozapine. Results showed that levels of IL-

1RA and CRP were associated with obesity after control-
ling for age and smoking status, as was IL-6 specifically 
among female patients. Together, these data suggest both 
age- and gender-dependent cytokine effects which show 
that the cytokine-AIWG relationship can be affected by 
patient-related variables. Overall, these results indicate 
that administration of AP treatment yields alterations of 
cytokine levels which occur in tandem with changes to 
weight outcomes. Thus, these findings provide prelimi-
nary support for a cytokine-mediated immune model of 
AIWG.

  Conclusions 

 At this time, preliminary evidence suggests that the im-
mune system may partially contribute to AIWG via AP-
mediated alterations of cytokine levels. Antipsychotics 
with a high propensity for weight gain likely yield these 
effects through their documented ability to decrease pro-
inflammatory cytokine production while increasing levels 
of anti-inflammatory mediators to ultimately down-regu-
late neuroinflammation. In considering that anorexigenic 
outcomes are mediated via increased levels of inflamma-
tory cytokines, these AP-induced alterations create an in-
ternal inflammatory milieu which may disrupt adiposity 
signalling in favour of fat accumulation. As documented 
within this review, obesity outcomes are associated with a 
reduced production and/or responsiveness to inflamma-
tory cytokines. Hence, reduced inflammatory cytokine 
signalling resulting from AP administration has the po-
tential to yield AIWG, as further supported by serological 
data in AP-treated schizophrenia patients. Based on the 
available literature, the inflammatory cytokines IL-1, IL-6, 
and TNF-α may be particularly key players in mediating 
the relationship between APs and AIWG. 

  Based on this hypothesized model, it may be advisable 
for clinicians to routinely monitor patients for changes in 
blood levels of inflammatory mediators, particularly IL-1, 
IL-6, and TNF-α, in addition to completing standard met-
abolic profiling. However, clinical monitoring of periph-
eral cytokine levels remains, at this preliminary stage, only 
a potential screening tool that would require further re-
search to enhance its clinical application, particularly by 
addressing the issues of situational confounds of serolog-
ical methodology, identifying a plasma level range for 
healthy versus pathological plasma cytokine concentra-
tions, and generating clinical guidelines on how to inter-
pret blood reports. This information may also inform new 
cytokine drug targets for AIWG in AP-treated popula-
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tions. However, in considering that reduced neuroinflam-
mation may mediate therapeutic response to APs, such a 
targeted approach to improving AIWG will need to be bal-
anced against secondary effects on clinical efficacy. Cyto-
kine data may also have clinical application in designing 
predictive biomarker screens for AIWG which may in-
clude serological quantification of circulating cytokines in 
the blood or cerebrospinal fluid, or high-throughput ge-
netic analyses of cytokine polymorphisms. However, since 
details characterizing the relationship between cytokines 
and AIWG have yet to be clearly elucidated, further re-
search is required before more effective clinical guidelines 
and prevention measures can be developed.
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