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ciation with  CYP2D6  metabolizer status. Furthermore,  HSPG2  
and  DPP6  have been identified as candidate genes with the 
potential to predict differential susceptibility to TD. Overall, 
considerable progress has been made within the field of psy-
chiatric PGx, with inroads toward the development of clinical 
tools that can mitigate AAEs. Going forward, studies placing 
a greater emphasis on multilocus effects will need to be con-
ducted.  © 2016 S. Karger AG, Basel 

 Introduction 

 Antipsychotic (AP) drugs are the mainstay pharmaco-
logical treatment for schizophrenia (SCZ) and related 
psychotic disorders. APs have also been shown to be ef-
fective for the treatment of other psychiatric conditions, 
including bipolar disorder, treatment-resistant depres-
sion, and autism spectrum disorders (ASDs)  [1–3] . De-
spite their demonstrable clinical utility, significant in-
terindividual variation in the therapeutic efficacy and
tolerability of APs presents a significant challenge for 
physicians and their patients.

  The introduction of second-generation ‘atypical’ APs 
(SGAs; e.g., risperidone) was highly welcomed by the psy-
chiatric community, as these drugs were thought to rep-
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 Abstract 

 The effectiveness of antipsychotic drugs is limited due to ac-
companying adverse effects which can pose considerable 
health risks and lead to patient noncompliance. Pharmaco-
genetics (PGx) offers a means to identify genetic biomarkers 
that can predict individual susceptibility to antipsychotic-
induced adverse effects (AAEs), thereby improving clinical 
outcomes. We reviewed the literature on the PGx of com-
mon AAEs from 2010 to 2015, placing emphasis on findings 
that have been independently replicated and which have 
additionally been listed to be of interest by PGx expert pan-
els. Gene-drug associations meeting these criteria primarily 
pertain to metabolic dysregulation, extrapyramidal symp-
toms (EPS), and tardive dyskinesia (TD). Regarding metabol-
ic dysregulation, results have reaffirmed  HTR2C  as a strong 
candidate with potential clinical utility, while  MC4R  and 
 OGFR1  gene loci have emerged as new and promising bio-
markers for the prediction of weight gain. As for EPS and TD, 
additional evidence has accumulated in support of an asso-
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resent a significant improvement over first-generation 
‘typical’ APs (FGAs; e.g., haloperidol). The use of FGAs 
had been marred by the tendency of these drugs to cause 
extrapyramidal symptoms (EPS), and with long-term 
use, tardive dyskinesia (TD), a highly debilitating and po-
tentially irreversible movement disorder  [4, 5] . While the 
risk of developing EPS and TD associated with SGAs is 
substantially lower, these adverse effects (AEs) still rep-
resent an ongoing concern  [6, 7] . Moreover, the use of 
SGAs is often accompanied by weight gain and related 
cardiometabolic abnormalities, thereby putting patients 
at a greater risk of developing diabetes and cardiovascular 
disease  [8–10] . Importantly, whether caused by FGAs or 
SGAs, AP-induced AEs (AAEs) are a major source of pa-
tient noncompliance and treatment discontinuation, 
both of which lead to greater functional impairment, 
higher rates of relapse, and an increased risk of suicide 
 [11–14] . In view of this, dissecting the underlying factors 
contributing to interindividual variation in susceptibility 
to AAEs may facilitate better treatment selection, and 
thereby improve clinical outcomes.

  Pharmacogenetics (PGx) is a field of study and clinical 
tool that assesses how genetic variability influences drug 
response and tolerability. Evidence from twin studies im-
plicates a significant genetic component underlying in-
dividual differences in susceptibility to AAEs  [15, 16] . 
Therefore, PGx has the potential to significantly improve 
the treatment of SCZ and other neuropsychiatric disor-
ders. Considering the progress of PGx in the last two de-
cades, it seems inevitable that pharmacogenetic testing – 
accounting for genetic variability in both pharmacokinet-
ic and pharmacodynamic processes – will eventually play 
a role in the prescription of APs and other psychotropic 
drugs. It is hoped that physicians will be able to utilize 
information from pharmacogenetic tests in order to de-
liver personalized drug therapies with optimal efficacy 
and minimal AEs. Although still in the early stages of 
their predictive capacity, several psychiatric-based PGx 
tests have already begun to be offered by private com-
panies [for a review, see  17 ]. Furthermore, several clini-
cal PGx expert panels, such as the Pharmacogenomics 
Knowledgebase (PharmGKB) and the Clinical Pharma-
cogenetics Implementation Consortium (CPIC)  [18–20] , 
as well as drug regulatory agencies (e.g., US Food and 
Drug Administration)  [21, 22] , have begun to propose 
guidelines to assist physicians in interpreting the clinical 
significance of information provided by these tests. Fi-
nally, recent studies assessing the feasibility and utility of 
incorporating PGx into standard psychiatric practice 
have yielded encouraging results  [23–27] .

  Here, we survey the literature published on the PGx of 
AAEs within the last 5 years (2010–2015), placing empha-
sis on drug-gene associations replicated in independent 
samples and which have additionally been listed by expert 
panels as having potential clinical relevance. Several high-
quality reviews providing extensive coverage on the AP 
PGx literature published prior to 2010 are available  [28–
31] .

  Methods 

 PubMed, Embase (Ovid), and PsycINFO (Ovid) databases 
were searched using the following combination of key-terms and/
or their matched subject headings: (‘antipsychotic’ OR ‘neurolep-
tic’) AND (‘pharmacogenetics’ OR ‘pharmacogenomics’ OR ‘ge-
netic association study’ OR ‘polymorphism’) AND (‘adverse effect’ 
OR ‘tardive dyskinesia’ OR ‘extrapyramidal symptoms’ OR ‘weight 
gain’). Our search parameters limited results to include only peer-
reviewed articles that were published in English from 2010 to 2015 
inclusive. Letters to the editor, editorials, and publications solely 
related to drug efficacy, or which were otherwise irrelevant to the 
subject of our review were excluded. The reference lists of retained 
publications were also screened for other relevant studies. Given 
the abundance of literature available, emphasis has been placed
on independently replicated gene-drug relationships of common 
AAEs that have additionally been recognized by expert panels as 
having potential clinical relevance.

  Results 

 Studies meeting our criteria represent two major cat-
egories of AAEs: (1) metabolic dysregulation, including 
weight gain and/or metabolic syndrome (MetS), and (2) 
movement disorders, including EPS and TD. In total, we 
have reviewed 53 studies that report on variants within 11 
different genes.

  Weight Gain and MetS 
 AP-induced weight gain (AIWG) has an incidence of 

approximately 30% and is most pronounced among pa-
tients treated with the SGAs clozapine and olanzapine 
 [32] . The heritability (h 2 ) of AIWG is estimated to be 0.6–
0.8  [16] . AIWG often coincides with the development of 
MetS, a complex phenotype characterized by central obe-
sity, insulin resistance, hyperglycemia, dyslipidemia, and 
hypertension  [8] . With respect to AIWG and AP-induced 
MetS (AP-MetS), we report on variants within genes 
 HTR2C ,  LEP ,  LEPR ,  MC4R ,  MTHFR , and  OGFRL1 . In-
formation on gene-drug interactions listed to be of poten-
tial clinical significance by expert PGx panels is given in 
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 table 1 . A detailed overview of the studies, including in-
formation on design, treatment duration, AP use, sample 
demographics, main results, and associated odds ratios 
and/or p values (if applicable), is provided in  table 2 .

  HTR2C 
 Serotonin 2C receptors (5-HT 2C Rs) are integral to the 

regulation of energy homeostasis via their interaction 
with the melanocortin and leptin signaling pathways  [33–
35] . The most potent weight-inducing APs are character-
ized by their high affinity for 5-HT 2C Rs and the antago-
nistic properties they have at these receptors  [36] . 5-
HT 2C R antagonism promotes hyperphagic activity and 
attenuates energy expenditure  [35] . In light of this, the 
X-linked  HTR2C  gene encoding 5-HT 2C Rs has been 
among the most extensively investigated genes with re-
spect to AP-induced metabolic dysregulation. Results 
from studies conducted prior to 2010 have pointed to a 
consistent relationship between the rs3813929 (–759C/T) 
promoter SNP and AIWG  [28, 37] . This SNP has been 
shown to affect the transcription of  HTR2C , though the 
exact impact on gene expression remains unclear  [38–
41] .

  Several studies included in our results have replicated 
the association of –759C/T with AIWG  [42–46] , though 
negative and contradictory results were also reported 
 [47–54] . One study involving a heterogeneous psychiat-

ric sample reported that carriers of the  HTR2C  –759T al-
lele were protected against the weight-inducing effects of 
olanzapine  [42] . This association was also confirmed in a 
pediatric ASD sample treated with risperidone  [43] . 
However, 2 other studies also involving samples of pedi-
atric patients with ASDs could not verify this result  [47, 
48] . Opgen-Rhein et al.  [44]  had initially identified a 
nominally significant association between the –759C/T 
SNP and AIWG. However, a haplotype analysis revealed 
that the A-G-C haplotype (of SNPs rs498207, rs3813928, 
and rs3813929, respectively) was significantly overrepre-
sented in the weight gain group (i.e.  ≥ 7% increase in body 
weight), while the opposite haplotype (G-A-T) was over-
represented in the control group.

  A study by Sicard et al.  [45]  provides additional sup-
port for the involvement of –759C/T in differential sus-
ceptibility to AIWG. Haplotype analyses including cor-
related SNPs rs518147 (G-697C) and rs6318 (Ser23Cys) 
showed that the C-G-Cys23 haplotype was significantly 
overrepresented within the weight gain group. Further-
more, a meta-analysis published as part of the same study 
confirmed the association between the  HTR2C  –759T al-
lele and resistance to AIWG. The effect size was more 
pronounced when limiting the analysis to studies includ-
ing all or almost all European subjects and excluding 
Asian samples. Limiting the analysis to samples with all 
or almost all European subjects also eliminated signifi-

 Table 1.  Putative genetic associations with common metabolic AAEs studied from 2010 to 2015 and their related listings by expert PGx 
panels

Gene Polymorphism Putative association Listings by expert panels References

HTR2C rs3813929 (759C/T) T allele confers protection against AIWG CPIC: evidence level Da

PharmGKB: evidence level 2Bb
[42 – 55]

rs1414334 (C/G) C allele is associated with a higher risk of 
antipsychotic-induced MetS

CPIC: evidence level Da

PharmGKB: evidence level 2Bb
[49, 61 – 63]

LEP rs7799039 (2548G/A) G allele acts dominantly to heighten
susceptibility to AIWG

PharmGKB: evidence level 3c [44, 46, 50,
52, 62, 73 – 78]

LEPR rs1137101 (Q223R)
or (668A/G)

AIWG and related metabolic dysregulation;
risk allele is unclear

PharmGKB: variant annotation [52, 73, 74,
77, 78, 81]

MC4R rs17782313 (C/T) C allele linked to higher risk of AIWG PharmGKB: evidence level 2Bb [97, 98]
rs489693 (A/C) A allele linked to higher risk of AIWG PharmGKB: evidence level 2Bb [75, 93, 96]

MTHFR rs1801131 (A1298C) C allele associated with a greater risk of 
metabolic AAEs

PharmGKB: evidence level 3c [109, 111, 112]

rs1801133 (C677T) T allele associated with a greater risk of
metabolic AAEs

PharmGKB: evidence level 3c [81, 106 – 112]

OGFRL1 rs9346455 (T/G) T allele linked to higher risk of AIWG PharmGKB: variant annotationd [115]

 References include both positive and negative findings. See references [19, 20] for further information on the PharmGKB and CPIC, as well as the criteria 
used to assign evidence levels. a Considered of interest. b Moderate evidence for this association. c Low evidence for this association. d Listed under IBA57.
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 Table 2. Overview of studies and their main findings related antipsychotic-induced weight gain and/or metabolic syndrome

Gene Poly-
morphism(s)

Design, 
treatment 
duration

Medication (n) Sample [diagnosis; n (m/f);
ethnicity/race]

Main findings

HTR2C rs3813929
(759C/T)

prospective 
4 weeks

olanzapine (124) psychotic or mood disorder; n = 124 
(62/62); German-Caucasian (124)

olanzapine treatment associated with change 
in BMI (p = 0.009) and weight (p = 0.008) 
[42]

HTR2C rs3813929
(759C/T)

retrospective 
8 weeks

risperidone (36) ASD pediatric sample (5 – 16 years);
n = 32 (28/4); all Caucasian

carriers of the T allele had lower BMI gain
(p < 0.001) [43]

HTR2C rs3813929
(759C/T)

retrospective 
12 months

risperidone (45) ASD pediatric sample; n = 45 
(34/11), n = 31 at 12 months; 
Caucasian (44), African (1)

nonsignificant [47]

HTR2C rs3813929
(759C/T)

cohort 
≥6 months

risperidone (124) ASD pediatric sample (7 – 17 years);
n = 124 (112/12); mostly European 
American

nonsignificant [48]

HTR2C rs3813929
(759C/T)
rs3813928
rs498207
rs6318
(Ser23Cys)

retrospective 
12 weeks

amisulpride (2)
clozapine (24)
olanzapine (33)
quetiapine (2)
risperidone (8)
mixed (52)

SCZ or SA; n = 128 (80/48);
European (118), Turkish (10)

significant association for rs498207
(p < 0.0049); G-A-T haplotype (of SNPs 
rs498207, rs3813928, and rs3813929, 
respectively) overrepresented in group with 
<7% BWG [44]

HTR2C rs3813929
(759C/T)

cross-sectional
 ≥12 months

clozapine (113) SCZ; n = 113 (81/32); Korean (113) nonsignificant trend for male weight-gainers 
vs. male nongainers (p = 0.051) [50]

HTR2C rs3813929 
(759C/T)

retrospective 
≥7 months

iloperidone (216) SCZ; n = 216 (180/36); White (85), 
Black (106), Asian (17), other (8)

nonsignificant [51]

HTR2C rs3813929
(759C/T)

cohort 
naturalistic 
95% ≥3 months

aripiprazole (23)
clozapine (68)
olanzapine (54)
quetiapine (31)
risperidone (30)

psychotic disorder (89), mood 
disorder (21), personality disorder 
(8), other (23); n = 141 (82/59); 
European-Caucasian

nonsignificant [52]

HTR2C rs3813929
(759C/T)

clinical trial 
8 weeks

olanzapine (205) bipolar disorder, borderline 
personality disorder, treatment 
resistant depression; n = 205; White, 
Hispanic, Black

nonsignificant [53]

HTR2C rs3813929
(759C/T)

retrospective 
3 months

olanzapine or 
risperidone

SCZ (77), SA (7), or delusional 
disorder (17); n = 101; drug-naïve 
females, Caucasian (101)

nonsignificant [54]

HTR2C rs3813929
(759C/T)
rs518147
(G697C)
rs6318
(Ser23Cys)

retrospective 
6 weeks

mostly olanzapine 
or clozapine

chronic SCZ or SA; n = 205 (141/64); 
European (126), African-American 
(58), unspecified (21)

C-G-Cys haplotype (for SNPs rs3813929, 
rs518147, and rs6318, respectively) over-
represented in patients with weight gain
(p = 0.0015; OR: 1.93, 95% CI = 1.04 – 3.56) 
[45]

HTR2C rs3813929
(759C/T)
rs1414334
(C/G)

meta-analysis olanzapine (336) chronic SCZ; n = 336 (140/196);
European (149), Croatian (108),
Korean (79)

nonsignificant association for –759C/T allele; 
significant association showing that C allele 
confers risk of AP-MetS (OR: 2.44, 95% CI = 
1.48 – 4.00; p = 0.0004; I2 = 0) [49]

HTR2C rs3813929
(759C/T)

meta-analysis various SCZ or SA; n = 862; European 
American, African-American, Asian

T allele confers significant protection against 
AIWG (p = 0.02); association more 
pronounced after limiting analysis to all or 
almost all European samples (p = 0.006) [45]

HTR2C rs1414334
(C/G)

cross-sectional 
≥3 months

olanzapine (43)
risperidone (40)
clozapine (31)
aripiprazole (11)
quetiapine (15)
FGAs (17)
polypharmacy (29)

SCZ (146), SA (23), or psychotic 
disorder (17); n = 186 (127/59); 93% 
of participants were of European 
ancestry while the remaining 7% 
were of Asian, African, or mixed 
ancestry

C allele carriership is significantly associated 
with a greater risk of AP-MetS (OR: 3.73, 95% 
CI = 1.29 – 10.79; p = 0.015) [61]

HTR2C rs1414334
(C/G)

cross-sectional 
unstated

clozapine (190) SCZ (clinical diagnosis of F2 group 
according to ICD-10); n = 190; all 
European

nonsignificant [62]
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Gene Poly-
morphism(s)

Design, 
treatment 
duration

Medication (n) Sample [diagnosis; n (m/f);
ethnicity/race]

Main findings

HTR2C rs6318
(rs1414334
proxy)
rs498177,
rs521018, 
rs5988072, 
rs2192371,
rs12833104

cross-sectional 
≥3 months

clozapine (171)
olanzapine (91)
risperidone (194)

SCZ; n = 456 (299/157); Han Chinese the rs521018-rs498177 haplotype was 
significantly associated with AP-MetS, but 
only in female patients (p = 0.0108) [63]

HTR2C-
LEP

rs3813929
(759C/T)
rs7799039
(2548G/A)

cross-sectional 
≥3 months

clozapine (67)
olanzapine (67)
risperidone (55)
quetiapine (3)
polypharmacy (8)

SCZ (139), SA (43), or psychotic 
disorder (18); n = 200 (134/66);
European-Caucasian

combined HTR2C –759C/T-LEP-2548G/A 
genotype significantly associated with AIWG 
(OR: 2.88; 95% CI = 1.05 – 7.95) [46]

LEP rs7799039
(2548G/A)

retrospective 
12 weeks

clozapine (24)
olanzapine (33)
other (12)
mixed (52)

SCZ or SA; n = 128 (80/48); 
European (118), Turkish (10)

nonsignificant [44]

LEP rs7799039
(2548G/A)

cross-sectional 
≥12 months

clozapine (113)
polypharmacy for 
39.8% patients

SCZ; n = 113 (81/32); Korean (113) BMI gain for AA genotype carriers was 
significantly greater than carriers of both the 
AG and GG genotypes (p = 0.048; reported 
for AA-AG comparison) [50]

LEP rs7799039
(2548G/A)

cohort, 
naturalistic 
95% ≥3 months

aripiprazole (23)
clozapine (68)
olanzapine (54)
quetiapine (31)
risperidone (30)

psychotic disorder (89), mood 
disorder (21), personality disorder 
(8), other (23); n = 141 (82/59); 
European-Caucasian

nonsignificant [52]

LEP rs7799039
(2548G/A)

cross-sectional 
unstated

clozapine (190) SCZ (clinical diagnosis of F2 group 
according to ICD-10); n = 190; 
Finnish (190)

nonsignificant [62]

LEP rs7799039
(2548G/A)

cross-sectional 
unstated

clozapine (132)
olanzapine (41)
risperidone (120)
quetiapine (52)
sulpride (48)
haloperidol (47)

SCZ; n = 633 (338/295); 570 included 
in pharmacogenetic analysis; patients 
of Taiwanese descent

LEP rs7799039 G allele significantly 
associated with BMI (p = 0.008), waist 
circumference (p = 0.014), MetS (p = 0.019), 
insulin (p = 0.034), and HOMA (p = 0.029) 
under a dominance genotypic model [73]

LEP rs7799039
(2548G/A)

retrospective 
≥3 months

clozapine (56) SCZ, SA, or psychotic disorder; n = 
56 (44/12); Spanish

nonsignificant [76]

LEP rs7799039
(2548G/A)
rs10954173
rs3828942

prospective 
≥6 weeks

clozapine (80)
olanzapine (28)
risperidone (32)
haloperidol (16)
other (24)

SCZ; n =181; European (127), 
African-American (43), other (9)

significant association between haplotype 
LEP rs7799039G-rs10954173G-rs3828942G 
with AIWG (p = 0.035); the rs7799039 G 
allele (p = 0.042) and G allele of rs3828942
(p = 0.032) were associated with greater 
weight gain [74]

LEP rs7799039
(2548G/A)
rs10244329,
rs12706832
rs2071045

cohort 
8 weeks

risperidone (181) ASD pediatric sample; n = 181 
(148/33); White (125), Black (26), 
Hispanic (10), other (16)

significant association: the rs7799039 G allele 
acts dominantly to increase risk for AIWG
(p = 1.4 × 10 

–
 
4), while AA homozygotes are 

relatively protected [75]

LEP rs7799039
(2548G/A)

prospective, 
longitudinal 
12 months

haloperidol
olanzapine
risperidone
ziprasidone
aripiprazole
quetiapine

drug naïve, first-episode psychosis 
with DSM-IV criteria meeting SCZ 
or a SCZ spectrum disorder; n = 205 
(118/87); 94% European-Caucasian 
(Spanish)

nonsignificant [77]

LEPR rs1137101
(Q223R
or 668A/G)

cross-sectional 
≥3 months

clozapine (71)
olanzapine (68)
risperidone (57)
other SGA (4)

SCZ (139), SA (43), or other 
psychotic disorder (18); n = 200 
(134/66); European-Caucasian

significant association for female subjects: 
70.6% were obese in the LEPR 223QQ group 
vs. 38.5% in the 223QR (OR: 0.11, 95% CI = 
0.02 – 0.54; p = 0.007) and 40.0% in the 223RR 
(OR: 0.07, 95% CI = 0.01 – 0.63; p = 0.018) 
groups [78]

Table 2 (continued)
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Gene Poly-
morphism(s)

Design, 
treatment 
duration

Medication (n) Sample [diagnosis; n (m/f);
ethnicity/race]

Main findings

LEPR rs1137101
(Q223R
or 668A/G)

cohort, 
naturalistic 
95% ≥3 months

aripiprazole (23)
clozapine (68)
olanzapine (54)
quetiapine (31)
risperidone (30)

psychotic disorder (89), mood 
disorder (21), personality disorder 
(8), other (23); n = 141 (82/59); 
European-Caucasian

LEPR 223R allele was significantly associated 
with an increased risk of obesity in females
(p = 0.03), but not in males [52]

LEPR rs1137101
(Q223R
or 668A/G)

cross-sectional 
unstated

clozapine (132)
olanzapine (41)
risperidone (120)
other (147)

SCZ; n = 633 (338/295); 570 included 
in pharmacogenetic analysis; patients 
of Taiwanese descent

nonsignificant [73]

LEPR rs1137101
(Q223R
or 668A/G)

retrospective 
≥6 weeks

clozapine (80)
olanzapine (28)
risperidone (32)
haloperidol (16)
other (24)

SCZ; n =181, European (127)
African-American (43), other (9)

nonsignificant [74]

LEPR rs1137101
(Q223R
or 668A/G)

prospective, 
longitudinal 
12 months

haloperidol
olanzapine
risperidone
quetiapine

drug naïve, first-episode psychosis 
with DSM-IV criteria meeting SCZ 
or a SCZ spectrum disorder; n = 205 
(118/87); 94% European-Caucasian 
(Spanish)

nonsignificant [77]

LEPR rs1137101
(Q223R
or 668A/G)

cross-sectional 
≥12 months

olanzapine (62)
risperidone (59)
paliperidone (24)
other APs (61)

n = 206 (137/69); Malaysian (109), 
Chinese (76), Indian (21)

LEPR 223R or 668G allele significantly 
associated with increased risk of MetS (OR: 
0.47, 95% CI = 0.28 – 0.80, p = 0.005) [81]

MC4R rs17782313
(C/T)
rs2229616
rs11872992
rs8087522

cohort 
4 – 14 weeks

clozapine (99)
olanzapine (36)
risperidone (40)
haloperidol (16)
other (33)

chronic SCZ or SA; n = 224 (150/74); 
European American (157), African-
American (56), other (11)

nonsignificant trend with respect to 
rs17782313 (p = 0.09); nominally significant 
association for rs8087522 detected in the 
clozapine-treated European subsample, with 
the A allele being overrepresented within the 
weight gain group [97]

MC4R rs17782313
(C/T)

retrospective 
4 weeks

olanzapine (135)
quetiapine (102)
risperidone (66)
amisulpride (58)
clozapine (36)
paliperidone (28)

SCZ; whole study, n = 345, 61% with 
an F2 (ICD-10) diagnosis;
adjusted subsample (controlling for 
co-medication), n = 173, 80% with F2 
diagnosis; first-episode sample, n = 
59; control sample, n = 40

C allele was significantly associated with risk 
of weight gain in a dose-loading manner (p = 
0.045); effect was more pronounced in the 
adjusted subsample excluding co-medication 
(p = 0.03); dose-response effect was absent in 
first-episode subsample, but association was 
still significant (p = 0.041) [98]

MC4R rs8087522
rs489693
(A/C)
rs11872992
rs8093815

cohort 
8 weeks

risperidone (181) ASD pediatric sample; n = 181 
(148/33); White (125), Black (26), 
Hispanic (10), other (16)

nonsignificant trends for associations of 
rs8087522 and rs8093815 with AIWG (p = 
0.06 and p = 0.07, respectively); nominally 
significant results for associations of 
rs11872992 and rs489693 with AIWG (p = 
0.03 for both; pcor >0.05) [75]

MC4R Tag-SNPs GWAS, cohort 
6 – 12 weeks

cohort 1: 
quetiapine (36)
risperidone (135)
aripiprazole (41)
olanzapine (45)
cohort 2: clozapine 
(73)
cohort 3: various

cohort 1: drug-naïve youths (4 – 19 
years), n = 270; European American 
(131), African-American (70), other 
(69)
cohort 2: treatment-resistant SCZ,
n = 73; all European American
cohort 3: SCZ, n = 40

rs489693 A allele showed significant effects in 
all three cohorts:
cohort 1: p = 2.8 × 10 

–
 
7

cohort 2: p = 1.4 × 10 
–

 
4

cohort 3: p = 0.007
meta-analytic p = 5.59 × 10 

–
 
12 [93]

MC4R rs489693 retrospective 
4 weeks

olanzapine (133)
quetiapine (102)
risperidone (66)
clozapine (34)
other (83)

whole study, n = 341, ∼61% with an 
F2 (ICD-10) diagnosis; adjusted 
subsample, n = 169, ∼80% with F2 
diagnosis; first-episode sample, n = 
59; control sample, n = 40

MC4R rs489693 A allele was significantly 
associated with increased risk of AIWG in 
whole study sample and both of the 
subsamples [96]

MTHFR rs1801133
(C677T)

cross-sectional 
median 
treatment 
duration of 6 
months

quetiapine (49)
risperidone (46)
other (10)

SGA-treated sample, n = 105; 
primarily of European descent (74%)

T allele carriership was significantly 
associated with a greater prevalence of MetS 
(p = 0.05) [108]

Table 2 (continued)
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cant heterogeneity and publication bias that was initially 
detected.

  A more recent meta-analysis only detected a trending 
association between –759C/T and AIWG, though only 4 
studies were included as the authors were specifically in-
terested in olanzapine-induced weight gain  [49] . Kang et 
al.  [50]  also reported a trend in their study involving a 
sample of Korean SCZ patients. Five other studies report-
ed neither an association nor a trend  [51–55] . As Wallace 
et al.  [41]  first pointed out, contradictory reports relating 

to this association can mainly be attributed to differences 
in study duration, as the relationship between AIWG and 
–759C/T is most prominent during the early stages of 
treatment (<3 months). Indeed, this pattern is largely 
consistent with the studies reviewed here. Conflicting re-
sults may also be attributable to as yet unidentified con-
founding variables, such as differential RNA editing  [56, 
57]  and the ‘flip-flop’ phenomenon described by Lin et al. 
 [58] . All things considered, the overall evidence suggests 
that the  HTR2C  –759C/T polymorphism is an important 

Gene Poly-
morphism(s)

Design, 
treatment 
duration

Medication (n) Sample [diagnosis; n (m/f);
ethnicity/race]

Main findings

MTHFR rs1801131
(A1298C)
rs1801133
(C677T)

cohort 
8.87 ± 3.6 
weeks

clozapine or 
olanzapine (179)
risperidone (92)
other (77)

n = 347 (183/164); 66 were first-
episode patients; European/
Caucasian (281), African-Americans 
(56), other (11)

nonsignificant association for MTHFR 
A1298C variant in total study sample, 
clozapine/olanzapine-treated European 
subsample, and first-episode subsample 
analyses; nominal association detected for the 
C677T variant in total study sample analysis 
(p = 0.03; pcor > 0.05) [109]

MTHFR rs1801131
(A1298C)
rs1801133
(C677T)

cohort 
Chinese 
sample: 8 – 10 
weeks
Spanish sample: 
3 months

Chinese sample: 
chlorpromazine 
risperidone, other
Spanish sample:
risperidone
olanzapine, other

first-episode, drug-naïve SCZ 
patients; Chinese Han sample, n = 
182 (83/99); Spanish sample, n = 72 
(53/19)

677CC genotype carriers showed a 
significantly greater gain in BMI compared to 
T allele carriers for both the Chinese (p = 
0.012) and Spanish (p = 0.017) samples; 
findings for the rs1801131 SNP were 
nonsignificant [110]

MTHFR rs1801131
(A1298C)
rs1801133
(C677T)

cross-sectional 
variable

primarily SGAs SCZ (69.3%), SD (11.4%), or SA 
(19.3%); n = 518 (66.4% male); 
primarily of European ancestry

significant association detected for MTHFR 
A1298C, with C/C genotype carriers having a 
2.4 times higher risk of MetS compared to 
A/A genotypes (OR: 2.44, 95% CI = 1.25 – 

4.76; p = 0.009) [111]
MTHFR rs1801131

(A1298C)
rs1801133
(C677T)

cohort 
3 months

clozapine (16)
olanzapine (41)
risperidone (37)
other (30)

SCZ or SA; n = 104 (71/33); 
European-Caucasian

MTHFR 1298C allele was significantly 
associated with changes to several metabolic 
parameters after SGA initiation, especially 
weight gain (p = 0.006) and changes in blood 
glucose (p = 0.024) [112]

MTHFR rs1801133
(C677T)

cross-sectional 
≥12 months

olanzapine (62)
risperidone (59)
paliperidone (24)
other APs (61)

SCZ; n = 206 (137/69); Malaysian 
(109), Chinese (76), Indian (21)

nominally significant: MTHFR 677 T allele 
appeared to confer protection against AP-
MetS (OR: 0.59, 95% CI = 0.35 – 0.99, p = 
0.049); authors declare that correction for 
multiple testing was not performed to avoid 
type 2 error [81]

MTHFR rs1801133
(C677T)

cross-sectional 
≥6 months

various SCZ spectrum disorder; n = 127;
ethnicity unspecified

significant association: for patients using risk 
medication, T allele carriership (CT/TT) was 
associated with an increased risk of AP-MetS 
(p < 0.001); MTHFR and COMT 158 Val 
interaction was significant (p = 0.0073) [107]

OGFRL1 Tag-SNPs GWAS, cohort 
discovery 
sample: 20.5 
(±6.2)
replication 
sample: 6.1 
(±2.1)

discovery:
olanzapine (63)
quetiapine (67)
risperidone (59)
replication:
clozapine (69)
olanzapine (18)

discovery sample, SCZ, n = 189 
(151/38); a subset of patients from 
the CATIE sample of sole European 
ancestry; replication sample, SCZ,
n = 86 (56/30); all of European 
ancestry

GWAS yielded a number of signals in 
association with BMI gain, the strongest of 
which emerged from the rs9346455 SNP 
upstream of the OGFRL1 gene
(p = 6.49 × 10 

–
 
6); replication: p = 0.005; 

meta-analytic p = 1.09 × 10 
–

 
7 [115]

SA = Schizoaffective disorder; SD = schizophreniform disorder.

Table 2 (continued)



 MacNeil/Müller

 

 Mol Neuropsychiatry 2016;2:61–78 
DOI: 10.1159/000445802

68

mediator of AIWG during the initial stages of treatment. 
However, further investigation is needed to determine 
the precise nature of this association, and also to under-
stand how –759C/T may interact with other variables to 
influence AIWG.

  Recent evidence has also reaffirmed an association of 
the  HTR2C  intragenic rs1414334 (C>G) SNP with a 
heightened risk of AP-MetS. Carriers of the C allele are 
more likely to meet criteria for AP-MetS. In agreement 
with their previous findings  [59, 60] , a Dutch research 
group reported an association (when controlling for type 
2 error) between the rs1414334 C allele and a higher risk 
of developing AP-MetS  [61] . A recent meta-analysis by 
Ma et al.  [49]  was able to corroborate the significance of 
this association when examining all 3 studies conducted 
by the Dutch research group. However, negative results 
of this association have also been reported  [62, 63] . Nev-
ertheless, there is an overall greater amount of evidence 
supporting this association than there is refuting it. Fu-
ture studies should investigate the clinical utility of this 
variant as a means to inform and optimize treatment se-
lection.

  LEP and LEPR 
 Leptin plays a critical role in the regulation of energy 

homeostasis and feeding behavior. In the hypothalamus, 
particularly the arcuate and ventromedial nuclei, leptin 
targets leptin receptors encoded by the  LEPR  gene, where-
by it transmits a potent anorectic signal  [64–66] . Muta-
tions in both  LEP  and  LEPR  are linked to metabolic ab-
normalities and the occurrence of human obesity  [67–
69] . The  LEP  –2548G allele, for instance, has been 
associated with an increased risk of overweight and obe-
sity  [69–71] . Taken together, there is a sound theoretical 
basis supporting the potential involvement of  LEP  and 
 LEPR  in AP-induced metabolic dysregulation. Indeed, 
several studies from our review have implicated these 
genes in metabolic AAEs  [46, 52, 72–75] . Still, negative 
and contradictory results have also been reported  [44, 62, 
76, 77] .

  In line with a 2008 report by Yevtushenko et al.  [72] , 
Gregoor et al.  [46]  found that the combined presence of 
the  LEP  –2548G allele and absence of the  HTR2C  –759T 
allele was associated with a greater risk of SGA-related 
obesity. Another study by Gregoor et al.  [52]  found that 
baseline obesity risk was significantly greater for females 
carrying the  LEPR  223R allele. This result runs contrary 
to the finding from their 2009 study which instead re-
ported that the 223R allele was associated with lower 
baseline risk for female obesity  [78] .

  Nurmi et al.  [75]  have offered compelling evidence in 
support of the association of the –2548G allele with 
AIWG. The sample of this study was comprised of risper-
idone-treated autistic youth who had participated in one 
of two clinical trials conducted by the NIMH Research 
Units on Pediatric Psychopharmacology (RUPP). The 
majority of subjects were drug-naïve and of European an-
cestry. Genotype analysis revealed a robust result for the 
 LEP  –2548G allele, which acted dominantly to confer risk 
of AIWG. Highly significant findings were also identified 
for the  CNR1  promoter SNP rs806378 and the  CNR1  vari-
ant rs1049353. Under a risk-allele dose model, the com-
bination of risk variants associated with  LEP  and  CNR1  
attained an impressive effect size ( D =  0.85; p = 1.3 ×
10 –9 )  [75] . Furthermore, the  CNR1  rs806378 finding is in 
agreement with a previous report from our group  [79] .

  Perez-Iglesias et al.  [77]  found no association for either 
the –2548G/A or Q223R SNP with AIWG. Negative find-
ings for associations of –2548G/A or Q223R with AIWG 
were also reported by 3 other studies  [44, 62, 76] . In terms 
of other metabolic abnormalities, Gregoor et al.  [80]  
found that the absence of the  LEP  –2548G and  LEPR  223R 
alleles were independently associated with higher TC/
HDL ratios in males and females, respectively. Roffeei et 
al.  [81]  reported that the  LEPR  223R allele was protective 
against AP-MetS  [81] . In summary, the results for the 
 LEP  –2548G/A variant have been somewhat consistent, 
whereas those for the  LEPR  Q223R SNP are less straight-
forward.

  MC4R 
 The gene product of  MC4R , the melanocortin 4 recep-

tor (MC4-R),   is essential for maintaining energy homeo-
stasis and regulating food consumption  [82] . MC4-R has 
also been implicated in molecular pathways regulating 
sexual arousal, inflammatory response, pain modulation, 
and blood pressure  [83–86] . MC4-R is widely distributed 
throughout the brain, though it primarily regulates meta-
bolic pathways from within hypothalamic and brain stem 
nuclei  [82, 87] . MCR-4 interacts with both the serotoner-
gic and leptinergic systems  [88, 89] , and similar to  LEP  
and  LEPR , mutations in the  MC4R  gene or adjacent re-
gions have a well-established role in the expression of 
congenital and polygenic forms of obesity  [90–92] . Re-
cent pharmacogenetic studies have identified the MC4-R 
gene locus SNPs rs489693 and rs17782313 as potential 
biomarkers of AIWG.

  The rs489693 SNP was first detected in a genome-wide 
association study (GWAS) conducted by Malhotra et al. 
 [93]  in a cohort of SGA-treated, drug-naïve youth. Twen-
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ty SNPs surpassed a statistical threshold of p < 10 –5 , all of 
them located at a single locus, approximately 190 kb 
downstream of  MC4R . This locus overlaps with a region 
that had been previously linked to obesity and BMI by 
other GWA studies  [94, 95] . The association of SNP 
rs489693 with AIWG was subsequently confirmed in 
three replication cohorts. Importantly, these cohorts con-
sisted of adult SCZ patients, and one of these cohorts had 
previous SGA exposure, thereby demonstrating that this 
association is neither exclusive to pediatric nor drug naïve 
populations  [93] . Furthermore, this association was re-
cently replicated by Czerwensky et al.  [96]  in a naturalis-
tic study involving a sample of SCZ inpatients. A trending 
association between rs489693 and BMI gain was also re-
ported by Nurmi et al.  [75]  in the RUPP study mentioned 
above.

  In a study involving a sample of SCZ patients of pri-
marily European or African ancestry (70 and 25%, re-
spectively), Chowdhury et al.  [97]  were unable to identify 
an association between  MC4R  rs17782313 and AIWG at 
the genotype level. However, an allelic analysis restricted 
to patients of European ancestry receiving either cloza-
pine or olanzapine revealed a trending association in 
which the C allele conferred a greater risk of AIWG.
Czerwensky et al.  [98]  were able to corroborate this find-
ing at the genotype level and showed that CC and CT 
genotype carriers were at a significantly greater risk of 
AIWG. A haplotype analysis of rs17782313 and rs489693, 
as well as other SNPs in LD, may yield more robust re-
sults. In sum, the  MC4R  locus appears to be a very prom-
ising candidate for the prediction of AIWG. Clinical trials 
will be required to assess the clinical utility of these SNP 
as biomarkers to predict AIWG.

  MTHFR 
  MTHFR  (methylenetetrahydrofolate reductase) en-

codes an enzyme that catalyzes biochemical reactions im-
portant to the folate pathway  [99] . Two common  MTHFR  
variants, rs1801133 (C677T) and rs1801131 (A1298C), 
reduce the catalytic activity of MTHFR by 35 and 20%, 
respectively  [100–102] . The attenuation of MTHFR as a 
consequence of these SNPs has been linked to elevated 
plasma homocysteine. Hyperhomocysteinemia has been 
associated with a greater risk of both SCZ and cardiovas-
cular disease  [103–105] . Taken together, there is a ratio-
nale establishing  MTHFR  as a potential candidate influ-
encing AAEs.

  Following up on the results of a previous study  [106] , 
Ellingrod et al.  [107]  found that an interaction between 
the  MTHFR  677T and  COMT  158Val alleles was posi-

tively associated with risk of AP-MetS. Interestingly, in-
creasing age was negatively correlated with the likelihood 
of meeting MetS criteria, suggesting that this interaction 
exerts a stronger effect on relatively younger patients. 
Consistent with the studies by Ellingrod et al.  [106, 107] , 
Devlin et al.  [108]  found that pediatric patients with ASDs 
carrying the 677T allele were at a greater risk of MetS 
compared to CC homozygotes. Similarly, Kao et al.  [109]  
reported a nominally significant association between the 
T allele and AIWG. Conflicting results in which the T al-
lele has a protective effect against AP-MetS have also been 
reported  [81, 110] . In addition, other studies have failed 
to identify an association between MetS and the 677T al-
lele, but have reported positive results for an association 
with the 1298C allele  [111, 112] .

  In light of the discordant findings, it is unlikely that 
 MTHFR  plays a major role in the PGx of metabolic AAEs. 
However, considering the heterogeneity across studies 
and possible gene interaction effects, it would be prema-
ture to completely rule out  MTHFR  as a potentially infor-
mative biomarker. There may also be other confounding 
variables not taken into consideration. For example, di-
etary folate has been shown to be important in moderat-
ing the effects of the  MTHFR  SNPs C677T and A1298C 
in other contexts (e.g., susceptibility to cancer) and may 
similarly influence AAEs  [113] .

  OGFRL1 
  OGFRL1  encodes for opioid growth factor receptor-

like 1, a paralog receptor which binds the endogenous 
opioid met-enkephalin  [114] . Our research team recently 
conducted a GWAS to assess the genetic factors contrib-
uting to AIWG within a subset of European participants 
(n = 189) derived from the Clinical Antipsychotic Trials 
of Intervention Effectiveness (CATIE) sample  [11, 115] . 
This subsample represented a relatively homogenous 
group of participants with similar clinical characteristics 
and treatment. A strong signal was detected at marker 
rs9346455, approximately 6.6 kb upstream of  OGFRL1 , 
with greater BMI gain observed among carriers of the G 
allele. This finding was subsequently replicated in an in-
dependent sample to produce a meta-analytic p value of 
1.09 × 10 –7 . Although not quite reaching genome-wide 
significance, this finding still represents a robust and 
promising result. At present, the rs9346455 SNP is not 
known to have any functional significance, and only a few 
studies on  OGFLR1  have been published  [115] . Because 
it is unknown if or how opioid growth factor receptor-like 
1 is related to energy homeostasis, this result should be 
interpreted with caution. Future research should aim to 
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address these uncertainties and clarify the potential role 
of  OGFRL1  in AIWG.

  To summarize this section, several genetic associations 
have been consistently replicated for AIWG, and the 
 HTR2C  intragenic SNP rs1414334 has been verified as a 
possible predictor of MetS vulnerability. In light of this 
accumulating evidence, efforts have been undertaken to 
develop the first gene panels for use in clinical popula-
tions [e.g.,  116 ].

  EPS and TD 

 Our review of EPS and TD will focus on the genes
encoding cytochrome P450 2D6  (CYP2D6) , dopamine 
receptor D2  (DRD2) , heparan sulfate proteoglycan
2  (HPSG2) , dipeptidyl aminopeptidase-like protein
6  (DPP6) , and vesicular monoamine transporter 2
 (SLC18A2)  genes. See  table 3  for an overview of the results 
and listings by expert PGx panels. Detailed information 
on the studies is listed in  table 4 .

  CYP2D6 
 CYP2D6 is a highly polymorphic enzyme involved in 

the metabolism of over 25% of the pharmaceuticals in 
clinical use, including the majority of APs  [24] . CYP2D6 
is predominantly expressed within the liver  [117] , though 
constitutive expression has also been detected in various 
brain regions, suggesting that CYP2D6 may also influ-
ence the activity of drugs at their sites of action  [118] .

  Given the highly polymorphic nature of the  CYP2D6  
locus, genotypes are typically described using  * star al-
lele nomenclature, which indicates an estimate of an in-
dividual’s corresponding phenotype or metabolizer sta-
tus  [119] . Four different metabolizer phenotypes are 
commonly identified: (1) poor metabolizer (PM); (2) 
intermediate metabolizer (IM); (3) extensive metabo-
lizer (EM; the ‘wild-type’), and (4) ultrarapid metabo-
lizer. The frequencies of these phenotypes and corre-
sponding genotypes vary considerably between ethnic 
groups. For additional details on the specific allelic 
combinations associated with each metabolizer status 
and the distribution of  CYP2D6  alleles among different 
ethnic groups, refer to Hicks et al.  [21]  and references 
 [17, 120] , respectively. Numerous studies published pri-
or to 2010 have examined the relationship between
 CYP2D6  and EPS/TD, with the majority having sup-
ported a significant association between CYP2D6 me-
tabolizer status and susceptibility to EPS/TD  [121–123] . 
Eight studies published since 2010 have been reviewed 
here  [124–131] .

  Fleeman et al.  [124]  conducted a meta-analysis of 20 
studies reporting data on EPS and/or TD in relation to the 
CYP2D6 genotype. The majority of studies included clin-
ical samples of patients treated with FGAs. After limiting 
the analysis to prospective studies only, PMs and IMs 
were found to have a significantly greater susceptibility to 
developing TD and AP-induced parkinsonism than EMs. 
Additionally, PMs had TD symptoms of greater severity 
than EMs.

 Table 3. Putative genetic associations with antipsychotic-induced TD and EPS studied from 2010 to 2015, and their related listings by 
expert PGx panels

Gene Polymorphism Putative association Listings by expert panels References

CYP2D6 CYP2D6*1, *2, *3,*4, *5, *6, *10, *41  
PM and IM status associated with a greater risk
of TD or EPS  

PharmGKB: evidence level 3a [124 – 131]

DPP6 rs6977820 (T > C) T allele associated with a greater risk of TD PharmGKB: evidence level 2B [149]

DRD2 rs1800497 (Taq1A) G allele associated with a greater risk of TD PharmGKB: evidence level 2Bb [136 – 139]
CPIC: evidence level Dc

SLC18A2 rs2015586 (G/C) C allele associated with a greater risk of TD unlisted [129, 140]

HSPG2 rs2445142 (G > C);
rs878949 (T > C)d

G and T allele associated with a greater risk
of TD

PharmGKB: evidence level 3a [145 – 147]

References include both positive and negative findings. See references [19, 20] for further information on the PharmGKB and CPIC, 
as well as the criteria used to assign evidence levels. a Low evidence for this association. b Moderate evidence for this association.
c Considered of interest. d Perfect proxy marker for rs2445142 (r2 = 1).
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 Table 4. Overview of studies pertaining to antipsychotic-induced movement disorders

Gene Polymorphism(s) Design, treatment
duration

Medication (n) Sample [diagnosis; n (m/f); ethnicity] Main findings

CYP2D6 EM/UM, IM, PM meta-analysis primarily FGAs SCZ spectrum disorder; association 
of TD with CYP2D6, n = 1,482 (all 
studies); n = 336 (prospective); 
Caucasian, Japanese, Korean, Chinese

analysis of prospective studies showed 
significant associations between TD and 
CYP2D6 when comparing wt/wt genotypes 
with wt/mut and mut/mut + mut/wt (p = 
0.008 and p = 0.02, respectively) [124]

CYP2D6 CYP2D6*1, *41, *3, *4, *5, *1xn, *2xn
cross-sectional 
≥12 months

FGAs; equivalent 
≥100 mg 
chlorpromazine 
daily

SCZ; n = 66; European-Caucasian significant association between a greater 
ability to metabolize CYP2D6, as measured by 
increasing number of functional alleles, and 
tardive dyskinesia (χ2 = 7.65, d.f. = 1, p = 
0.006) [125]

CYP2D6 CYP2D6*1,*3,*4, *10, *41, *1xn, *2xn
clinical trial 
8 days

risperidone (50) SCZ (43), SA (7); n = 50 (39/11); 
Caucasian 

indirect association suggesting that PMs and 
IMs experienced a higher occurrence of EPS 
in response to risperidone [128]

CYP2D6 CYP2D6*1, *4, *5, *6, *1xn RCT 
24 h (2×; 2 studies)

haloperidol (25)
risperidone (25)

healthy volunteers, n = 25 (17/8); 
PMs, n = 8; EMs, n = 10; UMs, n = 7; 
Caucasian

metabolizer status associated with differences 
in ‘EPS’ (measured as wakefulness activity by 
actigraphy) [126, 127]

CYP2D6 unclear cross-sectional unclear SCZ (CATIE subsample); n = 710 
(524/186) 

nonsignificant [129]

CYP2D6 *1, *3, *4, *5, *6, *2xN retrospective 
8 weeks

risperidone (83) first-episode SCZ, drug-naïve; n = 83 
(17/66)

nonsignificant [130]

CYP2D6 *1,*2,*4,*5,*6B, *10B, *17, *29, *35, *41, *43, *106
naturalistic cohort risperidone (25) multiple diagnoses (unstated); n = 24 

(16/8); South-African Black (9), 
White (15)

nonsignificant [131]

DPP6 rs6977820 discovery: GWAS
replication: cohort

various SCZ, discovery, TD, n = 61 (35/26); 
non-TD, n = 61 (35/26); replication, 
TD, n = 36 (18/18); non-TD, n = 136 
(88/50); all Japanese

discovery: p = 7.0 × 10 
–

 
6 (< reach genome-

wide significance); significant association in 
replication sample: p = 0.008 (after correction 
for multiple testing); combined: p = 4.6 × 10 

–
 
6 

[149]

DRD2 rs6277, rs1800497 (Taq1A); 
rs1800498 (Taq1D); 
rs1799732 (−141CIns/Del)

cross-sectional
≥1 month

FGAs (37)
SGAs (303)
both (15)
missing (47)

SCZ (277), SA (55), other PDs (70);
n = 401; relatively young (median
age = 26 years) Caucasian sample

association of Taq1A with TD nonsignificant, 
though this variant was significantly 
associated with akathisia (p = 0.001); the 
–141C variant was significantly associated 
with TD (p = 0.001) [139]

DRD2 rs6275, rs1800497 (Taq1A)
rs1800498 rs1801028

cross-sectional
at least 3 months

unclear SCZ; n = 263 (140/123); Korean nonsignificant [139]

HSPG2 rs2445142 (G/A) discovery: GWAS
replication: cohort

various SCZ, discovery, n = 50 TD, n = 50 
non-TD; replication, n = 36 TD 
(18/18), n = 136 non-TD (88/50); all 
Japanese

nominally significant association with TD 
attained in genome-wide and replication 
samples (p = 0.001 and p = 0.002, 
respectively); combined p = 2.0 × 10 

–
 
5 [145]

HSPG2 rs2445142 (G/A) rs878949 
(surrogate; r2= 1)

CATIE: prospective
Jewish: cross-sectional
≥3 months

various Jewish-Israeli sample, n = 166 
(89/77); CATIE subsample, n = 179 
(147/32); European-Caucasian

nominal significant association identified 
between rs2445142 (or rs878949 as a 
surrogate) in both samples (p = 0.003 and p = 
0.039, respectively), with the G allele being the 
risk allele [146]

HSPG2 rs2445142, rs2270697 prospective unclear most SCZ, PD, or other; n = 168; 
Caucasian

nonsignificant, including rs2445142 [147]

SLC18A2 rs2015586 cross-sectional unclear SCZ (CATIE subsample); n = 710 
(524/186); 56% European-American

p = 9.858 × 10 
–

 
5; result is nonsignificant at 

genome-wide significance of 5.0 × 10 
–

 
8 [129]

SLC18A2
and
DRD2

SLC18A2: rs2015586, 
rs363224 DRD2: rs6277

retrospective 
variable durations

various SCZ or SCZ spectrum disorder; n = 
223; Caucasian (193), African-
American (30)

gene-gene interaction involving C allele of 
rs363224 and the C allele of rs6277 was
significantly associated with AIMS scores
(p = 0.001); nominal association involving 
rs2015586 [140]

AIMS = Abnormal Involuntary Movements Scale; mut = mutant; PD = psychotic disorder; RCT = randomized controlled trial; SA = schizoaffective disorder; UM = ultrarapid 
metabolizer; wt = wild type.
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  A large-scale candidate gene study utilizing data from 
the CATIE sample, however, found no association be-
tween TD and  CYP2D6   [129] . Interestingly, results from 
a recent cross-sectional study by Koola et al.  [125]  sug-
gested that the risk of TD was positively correlated with 
the number of functional CYP2D6 alleles that an indi-
vidual carries. The experimenters speculated that active 
metabolites of FGAs might have toxic pharmacodynamic 
properties, and that a greater capacity to metabolize FGAs 
could therefore enhance susceptibility to TD by increas-
ing exposure to these toxic metabolites. Three other stud-
ies involving healthy volunteers reported an indirect as-
sociation between the PM or IM  CYP2D6  phenotypes and 
a greater risk of developing EPS  [126–128] . Finally, 2 
studies involving risperidone-treated samples found no 
association between CYP2D6 metabolizer status and EPS 
 [130, 131] .

  Owing to difficulties in characterizing  CYP2D6  geno-
types, most studies investigating associations with this 
gene have limited sample sizes and are therefore under-
powered. Also, naturalistic and cross-sectional pharma-
cogenetic studies of CYP2D6   are limited given that nu-
merous factors influencing the activity of this enzyme 
(e.g., co-medications, diet) remain unaccounted for. The 
meta-analysis performed by Fleeman et al.  [124] , which 
yielded significant results only after excluding cross-sec-
tional and retrospective studies, underscores this point. 
Accordingly, a greater number of prospective studies, 
with sample sizes providing adequate power, are needed 
to clarify the role of CYP2D6 in AP-induced EPS/TD.

  Dopamine Receptor D 2   
 The binding of dopamine D 2  receptors  (DRD2)  is hall-

mark feature of all APs and is strongly linked to their ef-
ficacy in treating the positive symptoms associated with 
SCZ and related spectrum disorders  [132] . Because dopa-
minergic transmission in the nigrostriatal pathway is es-
sential for adaptive motor control  [133] , aberrant DA sig-
naling in this pathway is thought to underlie – at least in 
part – the pathophysiology of TD and EPS  [134, 135] . In 
light of this, various studies have investigated the possi-
bility that variation at the  DRD2  locus could explain in-
dividual differences in susceptibility to AP-induced EPS 
and TD. The  DRD2/ANKK1  marker rs1800497 (TaqIA) 
has yielded the most consistent findings, with two meta-
analyses conducted prior to 2010 supporting an associa-
tion with TD  [136, 137] . However, the two studies includ-
ed in our review that reexamined this association yielded 
negative results  [138, 139] . Nevertheless, these studies 
hold little weight in view of the overall evidence, and the 

association between the TaqIA variant and TD suscepti-
bility continues to be of clinical interest. Future studies 
should aim to investigate the clinical utility of this variant 
in guiding treatment selection.

  SLC18A2 
 The  SLC18A2  gene encodes vesicular monoamine 

transporter 2 (VMAT2), which is involved in regulating 
the release of numerous neurotransmitters, including do-
pamine. A recent study by our lab revealed a significant 
association between the  SLC18A2  rs363224 CC genotype 
and susceptibility to TD in sample of chronic SCZ pa-
tients  [140] . An association of TD with an interaction be-
tween the  SLC18A2  rs363224 C allele and the putatively 
functional  DRD2  rs6277 C allele showed an even great-
er effect size. Several nominally significant results for
 SLC18A2  were also reported, the most interesting of 
which was rs2015586. This SNP was the top signal de-
tected by Tsai et al.  [129]  in their candidate gene study of 
TD in the CATIE subsample.

  HSPG2 
  HSPG2  encodes heparan sulfate proteoglycan 2, or 

perlecan, a highly conserved and essential structural pro-
tein originally identified within the basal lamina (i.e. 
basement membrane)  [141] . Perlecan has also been 
shown to have an important role in endocytosis, as well 
as in the mediation of cell signaling, migration and pro-
liferation  [142, 143] .

  Using a genome-wide approach, a team of Japanese 
researchers  [144]  identified a number of putative asso-
ciations predisposing to treatment-resistant TD, with
the strongest signal emerging from an intronic SNP 
(rs2445142) located in the  HSPG2  gene. Although none 
of the associations survived correction for multiple test-
ing, a replication study reanalyzing the top 67 hits in an 
independent sample was performed  [145] . Case and con-
trol criteria were stringently defined so as to represent an 
extreme distribution of the TD phenotype, thereby in-
creasing the power of the sample. A nominally significant 
association between the HSPG2 SNP rs2445142 and TD 
was once again detected. As with the discovery sample, 
the G allele was found to be overrepresented in the treat-
ment-resistant group. Pooling the results from genome-
wide and replication samples, the rs2445142-TD associa-
tion attained an allelic p value of 2.0 × 10 –5 . Functional 
studies of the rs2445142 variant provided further evi-
dence that  HSPG2  is involved in TD  [145] . Moreover, this 
association was later replicated by Greenbaum et al.  [146]  
in two independent samples, one of Jewish-Israeli ances-
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try and the other of American-European ancestry. After 
limiting the control group of the Jewish-Israeli sample to 
subjects representing an ‘extreme’ TD-resistant pheno-
type, a nominally significant association between the risk 
rs2445142 G allele and TD was detected. A nominal as-
sociation was also identified in the European-American 
sample using a surrogate marker (rs878949, r 2  = 1) as a 
proxy for the rs2445142 genotype. A recent prospective 
study by Bakker et al.  [147] , however, was unable to ver-
ify this association. Still, given the naturalistic design of 
this study, it is possible that the signal was masked. While 
the results for  HSPG2  are promising, further replication 
of this finding is warranted.

  DPP6 
  DPP6  encodes dipeptidyl peptidase protein 6, an aux-

iliary subunit of kv4.2 voltage-gated potassium channels 
 [148] . Using the same discovery sample and a similar 
methodological approach to that of the Japanese study on 
 HSPG2  (though this time utilizing a different SNP array), 
the same research team detected an association between 
the  DPP6  intronic SNP rs6977820 and TD  [149] . The A 
allele was found to be overrepresented in treatment-resis-
tant TD cases. However, the association did not reach a 
genome-wide level of significance (defined at p < 1.9 × 
10 7 ). Nevertheless, replication in an independent sample 
yielded a significant result (allelic p = 0.008), giving a 
combined sample p value of 4.6 × 10 6 . Subsequent func-
tional studies conducted by the investigators provided 
further evidence that the  DPP6  SNP rs6977820 influences 
susceptibility to TD  [149] . In sum,  DPP6  appears to be a 
promising biomarker for identifying patients at risk of 
developing treatment-resistant TD.

  Discussion 

 In this review, we surveyed the literature on the PGx 
of AAEs from 2010 to 2015 inclusive, placing emphasis 
on independently replicated gene-drug associations that 
have been supported by expert panels. The studies includ-
ed in the review assessed genetic associations involving 
metabolic dysregulation and movement disorders.

  With respect to metabolic dysregulation, the studies 
included in this review have reaffirmed associations of the 
 HTR2C  –759C/T and  LEP  –2548G/A SNPs with AIWG 
[e.g.,  45, 74 ]. Furthermore, additional evidence has accu-
mulated in support of an association between the  HTR2C 
 rs1414334 SNP and AP-MetS  [49] . With respect to AIWG, 
the  MC4R  marker rs489693 arguably represents the most 

promising finding to have emerged within the last 5 years 
 [75, 93, 96, 97] . Also, a recent GWAS has identified a 
promising biomarker of AIWG risk at the  OGFRL1  locus 
 [115] .

  In terms of TD and EPS, a large meta-analysis has pro-
vided additional support for an association between ab-
normal  CYP2D6  metabolizer status and greater suscepti-
bility to AP-induced movement disorders, namely AIP 
and TD  [124] . Research has also implicated variants of the 
 SLC18A2  gene and an interaction between  SLC18A2  and 
 DRD2  in TD susceptibility  [129, 140] . Finally,  HSPG2  and 
 DPP6  have emerged as promising candidates for the pre-
diction of TD susceptibility  [145, 146, 149] .

  The studies on  HSPG2  and  DPP6  are noteworthy for 
reasons other than the results they obtained. The studies 
that looked at these genes involved a stringent character-
ization of the phenotypes constituting cases and controls. 
Enhancements in power attained through extreme phe-
notype sampling can help to facilitate the identification of 
risk alleles that are relatively rare or that only exert a mod-
est effect on drug-gene phenotypes  [150] . More frequent 
application of this design strategy could benefit psychiat-
ric PGx by identifying variants that might usually go un-
detected due to noise within the sample. However, the 
limitations inherent to this sampling method, such as the 
requirement for more extensive screening protocols and 
the potential that detected variant effects may not apply 
to a broader distribution of the phenotype  [151] , need to 
be considered.

  Also of interest in this review was the number of stud-
ies representing cases in which the consideration of mul-
tilocus effects yielded significant findings, while the ex-
amination of single markers was shown to yield nominal 
or nonsignificant results, or significant results with oth-
erwise smaller effect sizes  [46, 72, 75, 107, 140] . These 
studies highlight the genetic complexity of the pheno-
types under examination and the need for investigators 
to place greater emphasis on gene-gene interactions in 
unravelling the pharmacogenetic determinants of AAEs. 
Statistical tools and methods for performing analyses of 
this complexity are becoming increasingly more efficient 
 [152–154] . For example, principles of pathway-analysis 
are being combined with machine learning techniques in 
order to detect epistatic effects from high-dimensional 
GWAS datasets  [155] . The application of computerized 
algorithms including genetic and nongenetic variables to 
predict AAEs appears to be particularly promising [e.g., 
 156 ].
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  Conclusion 

 In summary, pharmacogenetic studies of AAEs bear 
the promise of improving treatment outcomes by allow-
ing physicians to deliver personalized treatments with 
minimal AEs and optimal efficacy. One important aspect 
is that gene variants frequently have larger effect sizes in 
pharmacogenetic phenotypes compared with complex 
disease risk  [157] . Consistent with this, gene variants as-
sociated with AIWG appear to have relatively large effect 
sizes, especially the rs489693 marker at the  MC4R  gene 
locus  [93] . Furthermore, there is general consensus for an 
association between CYP2D6 abnormal metabolizer sta-
tus and an increased risk of AAEs, including TD and par-
kinsonism  [124] . The levels of evidence assigned to AAE 
genetic associations by expert clinical PGx panels and 

consortia have continued to increase. In addition, drug 
regulatory agencies, such as the FDA and Health Canada, 
are beginning to include PGx information on AP drug 
labels. Nevertheless, the current level of evidence remains 
limited, and further validation by additional studies is re-
quired. Also, further research is needed to identify novel 
and interacting variants for AAEs. Building up on these 
efforts will undoubtedly lead to the implementation of 
genetic testing to predict and thereby reduce the occur-
rence of AAEs.
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