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Abstract

Inflammatory bowel disease (IBD) is associated with risk variants in the human genome and 

dysbiosis of the gut microbiome, though unifying principles for these findings remain largely 

undescribed. The human commensal Bacteroides fragilis delivers immunomodulatory molecules 

to immune cells via secretion of outer membrane vesicles (OMVs). We reveal that OMVs require 

IBD-associated genes, ATG16L1 and NOD2, to activate a non-canonical autophagy pathway 

during protection from colitis. ATG16L1-deficient dendritic cells do not induce regulatory T cells 

(Treg) to suppress mucosal inflammation. Immune cells from human subjects with a major risk 

variant in ATG16L1 are defective in Treg responses to OMVs. We propose that polymorphisms in 

susceptibility genes promote disease through defects in ‘sensing’ protective signals from the 

microbiome, defining a potentially critical gene-environment etiology for IBD.

Intestinal microbiota modulate development and function of the immune system, and play a 

critical role in inflammatory bowel disease (IBD), a family of idiopathic intestinal disorders 

including Crohn’s disease (CD) and ulcerative colitis (UC) (1-6). Concordance rates of 

40-50% between monozygotic twins implicate gene-environment interactions contribute to 

CD (7-10), albeit in ways that are poorly understood. Advances in DNA sequencing 
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technologies have empowered unprecedented insights into the human genome and the gut 

microbiome in IBD, enabling detailed genomic characterization of patients (11) and 

chronicling alterations in the composition and gene content of the gut microbiome 

(dysbiosis) (12).

Close to 200 risk loci have been proposed for CD, with several susceptibility genes linked to 

the regulation of autophagy (e.g., ATG16L1) (13-15) or to microbial sensors that activate 

autophagy (e.g., NOD2) (16-18). While previous studies have shown that disruption of 

ATG16L1 and NOD2 impacts CD susceptibility through defects in microbial clearance 

(19-23), recent reports reveal that immune cells impaired in autophagy are hyper-

inflammatory (24-29). This suggests that deficiencies in ATG16L1 or NOD2 may contribute 

to CD risk through impaired anti-inflammatory responses, a hypothesis not mutually 

exclusive with microbial clearance functions.

The microbiome of CD patients is altered, with emerging evidence for cause and effects 

relationships to disease. Among other recent examples of host-microbe interactions (3, 5, 6), 

the human commensal Bacteroides fragilis has evolved beneficial immunomodulatory 

properties. During colonization of mice, B. fragilis capsular Polysaccharide A (PSA) is 

packaged in outer membrane vesicles (OMVs) and delivered to intestinal dendritic cells to 

induce interleukin-10 (IL-10) production from CD4+Foxp3+ regulatory T cells (Tregs), 

which protect from experimental colitis (30-32). To explore gene-environment interactions 

during host-microbiota symbiosis, we tested if genetic pathways linked to CD are involved 

in the immune response to B. fragilis OMVs.

Bone marrow-derived DCs (BMDCs) differentiated from wild-type (WT) and ATG16L1-

deficient (Atg16l1fl/fl Cd11cCre; Atg16L1ΔCD11c) mice were pulsed with OMVs harvested 

from wild-type B. fragilis (WT-OMV) or an isogenic mutant lacking PSA (ΔPSA-OMV), 

and co-cultured with CD4+ T cells. As previously reported (33), WT-OMVs, but not vehicle 

or ΔPSA-OMVs, promote IL-10 production (Fig. 1, A to C, figs. S1 and S2). Conversely, 

ATG16L1-deficient DCs do not support IL-10 production in response to WT-OMVs (Fig. 1, 

A to C). We observe similar results using Atg16l1fl/fl LysMCre mice (fig. S3). Purified PSA 

does not require ATG16L1 for its activity (Fig. 1, A and C, fig. S2). Next, we tested 

functional outcomes using in vitro T cell suppression assays. Tregs isolated from co-cultures 

with Atg16L1ΔCD11c BMDCs treated with B. fragilis OMVs exhibit impaired suppressive 

activity (Fig. 1D and fig. S2A). Neither WT-OMVs nor pure PSA have any effect on IL-10 

production among CD4+Foxp3− type 1 regulatory T cells (fig. S4). ATG16L1, ATG5 and 

ATG7 are components of the autophagy elongation complex; BMDCs deleted in these genes 

likewise do not induce IL-10 production from Tregs (fig. S5). Further, recent reports reveal a 

role for autophagy components in Treg homeostasis (34, 35). Our findings indicate that 

ATG16L1-deficient DCs fail to respond to B. fragilis OMVs, demonstrating that autophagy 

components in DCs are required for commensal-driven Treg induction and function.

ATG16L1, ATG5 and ATG7 participate in both canonical and non-canonical autophagy 

pathways (36). Interestingly, the classical autophagy-specific genes Ulk1, Fip200 or Atg14 
are not required for CD4+Foxp3+IL-10+ Treg induction upon WT-OMV treatment (fig. S6). 

We hypothesized that OMVs utilize the non-canonical autophagy pathway, LC3-associated 
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phagocytosis (LAP), which is specifically activated by microbial ligands delivered as 

particles rather than soluble molecules. LAP activation requires RUBICON, which represses 

canonical autophagy (36). Rubicon+/− but not Rubicon−/− BMDCs display increased 

accumulation of lipidated, membrane-bound LC3-GFP (LC3-II) upon B. fragilis WT-OMV 

treatment (Fig. 1E). As expected, neither ΔPSA-OMVs nor purified PSA are able to activate 

LAP (fig. S7). Moreover, treatment of Rubicon−/− DCs fails to induce Treg responses (Fig. 

1F). As RUBICON is upstream of ATG16L1 signaling, OMVs preferentially utilize the non-

canonical autophagy pathway LAP to mediate tolerogenic responses to B. fragilis. Further, 

these data suggest a reconsideration of previous literature assigning the role of ATG16L1 in 

IBD to defects exclusively in autophagy.

As a CD-risk gene, we investigated the in vivo requirement for ATG16L1 in CD11c+ DCs 

during OMV-mediated protection from experimental colitis. Indeed, WT mice treated by 

oral gavage with WT-OMVs are protected from 2,4-dinitrobenzenesulfonic acid (DNBS) 

colitis (33), whereas Atg16L1ΔCD11c mice exhibit acute weight loss and increased mortality 

similar to untreated mice (Fig. 2A and fig. S8A). WT, but not Atg16L1ΔCD11c mice, orally 

administered OMVs are protected from shortening of the colon, a hallmark of colitis models 

(Fig 2B), with colitis scoring and cytokine profiles verifying protection from disease (Fig. 

2C and fig. S8B). Prevention of colitis is not due to an overall defect in Treg development in 

Atg16L1ΔCD11c mice (fig. S9). Further, while proportions of CD4+Foxp3+ cells are 

comparable in all groups of mice during colitis (fig. S10), Atg16L1ΔCD11c mice produce 

significantly less IL-10 from gut Foxp3+ Tregs compared to WT mice following WT-OMV 

treatment (Fig. 2D and fig. S8C). Thus, WT-OMVs require ATG16L1 within DCs to induce 

IL-10 expression from Foxp3+ Tregs and to suppress intestinal inflammation in a colitis 

model.

In addition to impaired IL-10 production in response to OMV treatment, Atg16L1ΔCD11c 

mice display an increase in IL-17A expression (Fig. 2E), but not IFN-γ (fig. S11), among 

mucosal CD4+Foxp3+ T cells during colitis. Further, in vitro co-cultures of OMV-pulsed 

Atg16L1ΔCD11c BMDCs result in impaired IL-10 expression among Tregs (Fig. 1C), and 

increased IL-17A production in CD4+Foxp3+ T cells (fig. S12). Interestingly, while OMVs 

from other enteric bacteria each elicited a unique ATG16L1-dependent immune profile, only 

B. fragilis OMVs exclusively induce an anti-inflammatory response (fig. S13). Together, 

these data suggest ATG16L1-deficiency in DCs alters the quality of the T cell response to 

OMVs.

As DCs coordinate adaptive immunity, we sought to determine how Atg16L1ΔCD11c DCs 

are impaired in promoting tolerogenic responses. Following OMV stimulation, we observe 

no differences by WT or Atg16L1ΔCD11c DCs in internalizing OMVs, or in surface 

expression of MHC II, CD80 and CD86 (fig. S14) (27). However, stimulation with OMVs 

results in an increase transcription of multiple pro-inflammatory cytokines in 

Atg16L1ΔCD11c DCs compared to WT cells (fig. S15). These data are consistent with 

previous reports of a hyper-inflammatory response in ATG16L1-deficient macrophages and 

DCs stimulated with other microbial ligands (24, 26). Abrogation of Treg responses by 

ATG16L1-deficient DCs is likely due to increased pro-inflammatory cytokine production, 

which may impair DC-T cell interactions. Atg16L1ΔCD11c mice do not display more severe 
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colitis than WT mice in the absence of OMV treatment (Fig. 2), suggesting that lack of 

protection is not due to more fulminant inflammation, but rather an inability to induce Tregs 

in mice deficient in ATG16L1 among CD11c+ DCs.

NOD2 encodes for an intracellular sensor of bacterial peptidoglycan, and polymorphisms in 

this gene contribute to the largest fraction of genetic risk for CD (13). NOD2 has been 

shown to physically recruit ATG16L1 (20, 21), a process that is impaired in human cells 

homozygous for a NOD2 frameshift mutation (20). Accordingly, Nod2−/− BMDCs pulsed 

with WT-OMVs are unable to support IL-10 production from Foxp3+ Tregs during in vitro 
co-cultures (Fig. 3, A and B), revealing a crucial role for NOD2 signaling in microbiome-

mediated immune tolerance. This notion is supported with in vivo studies showing that 

Nod2−/− mice are not protected from colitis by WT-OMV treatment (Fig. 3, C and D). 

Similar to Atg16L1ΔCD11c animals, Nod2−/− mice produce significantly less IL-10 from 

Foxp3+ Tregs of the MLN following WT-OMV treatment (fig. S16A), while proportions of 

Tregs remain unchanged during DNBS colitis (fig. S16B). Previous studies have shown that 

Toll-like receptor 2 (TLR2) is required for the PSA response (33, 37). While the role of 

NOD2 in inducing LAP is currently unknown, signaling through TLR2 potently activates 

LAP (36, 38). B. fragilis OMVs induce reactive oxygen species (ROS) from WT DCs, a 

known product of LAP activation (36), but at significantly reduced levels in Nod2−/− or 

Tlr2−/− DCs (fig. S17). Though further studies are needed to define the mechanism of LAP 

activation by OMVs, these data reveal that NOD2 and ATG16L1 may cooperate as part of a 

common pathway to promote anti-inflammatory immune responses to the microbiome.

To extend and validate gene deletion approaches, we tested responses to OMVs by immune 

cells carrying the CD-associated variant of ATG16L1 (13, 14, 39). The ATG16L1 T300A 

variant leads to protein instability and altered cellular responses (23). BMDCs from 

transgenic mice expressing the T300A allele are also unable to promote IL-10 expression 

from Foxp3+ Tregs in response to WT-OMVs (fig. S18A). Further, ATG16L1 T300A 

transgenic mice are not protected from DNBS colitis and do not mount a potent Treg 

response when administered WT-OMV compared to WT mice (fig. S18, B to F). These 

findings prompted us to investigate if human immune cells from CD patients with the 

ATG16L1 T300A risk variant (table S1) are also defective in promoting Foxp3+ Treg 

development by B. fragilis OMVs. Monocyte-derived dendritic cells (MoDC) from CD 

patients and healthy controls harboring either the protective allele (T300) or the risk allele 

(T300A) were pulsed with OMVs or PSA and co-cultured with syngeneic CD4+ T cells. 

Consistent with our mouse data, human cells homozygous for the risk allele are unable to 

support induction of IL-10 from Foxp3+ Tregs by WT-OMVs compared to MoDCs carrying 

the protective allele (Fig. 4). Remarkably, all samples tested display the predicted outcome 

based on genotype, and not disease status. However, cells from most subjects, regardless of 

genotype, respond to purified PSA (Fig. 4). Collectively, we conclude that mouse and human 

DCs require functional ATG16L1 for induction of CD4+Foxp3+IL-10+ Tregs in response to 

B. fragilis OMVs.

IBD impacts over 1.5 million people in the US, with rates of diagnosis increasing and 

treatment options remaining limited (40, 41). The etiology of IBD is complex and 

incompletely resolved (1). We describe herein that interactions between genetic (ATG16L1/
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NOD2) and environmental (microbiome) factors cooperate to promote beneficial immune 

responses. B. fragilis OMVs utilize LAP, an ATG16L1-dependent cellular trafficking and 

signaling pathway, to induce mucosal tolerance. The hyper-inflammatory responses that 

occur with mutations in ATG16L1 likely alter antigen-processing pathways and impair 

signaling by DCs to T cells, and may explain why CD-associated polymorphisms abrogate 

Treg induction by OMVs. Collectively, discovery of genetic circuits co-opted by the 

microbiome to engender health provides unprecedented functional insights into gene-

environment interaction relevant to the pathogenesis of IBD. We propose an additional role 

for genes previously implicated in killing bacteria—namely, mutations in genetic pathways 

linked to IBD result in an inability to sense and/or respond to beneficial microbes. This 

hypothesis may represent a new perspective for the etiology of microbiome-related diseases.
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Fig. 1. ATG16L1 signals via a non-canonical autophagy pathway during OMV-mediated Treg 
induction
(A) ELISA for IL-10 production during DC–T cell co-cultures with WT or Atg16L1ΔCD11c 

BMDCs treated with PBS, B. fragilis WT-OMV, ΔPSA-OMV or purified PSA. (B and C) 

Representative flow cytometry plots (B) and frequency (C) of CD4+Foxp3+IL-10+ Tregs 

from DC–T cell co-cultures with WT or Atg16L1ΔCD11c DCs treated with PBS, B. fragilis 
WT-OMV, ΔPSA-OMV or purified PSA. (D) T cell suppression assay analyzing in vitro 
generated Tregs from WT or Atg16L1ΔCD11c DCs treated with WT-OMVs. (E) 

Quantification of LC3-GFP accumulation by B. fragilis WT-OMV treatment of Rubicon+/− 

or Rubicon−/− DCs. Representative flow cytometry histogram plot (inset). PBS, grey; WT-

OMV, blue. (F) Frequency of CD4+Foxp3+IL-10+ Tregs from Rubicon+/− or Rubicon−/− DC–

T cell co-cultures treated with PBS, B. fragilis WT-OMV, ΔPSA-OMV or purified PSA. 

Error bars represent S.E.M. * p < 0.05, *** p < 0.001, **** p < 0.0001. Two-way ANOVA, 

followed by Tukey’s post-hoc analysis. Data are representative of at least 2 independent 

experiments.
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Fig. 2. B. fragilis OMVs require ATG16L1 in CD11c+ DCs for protection from colitis
(A and B) Weight loss (A), colon length and gross pathology (B) of WT and Atg16L1ΔCD11c 

mice orally treated with PBS or B. fragilis WT-OMV during DNBS colitis. Sham groups 

were treated with ethanol. (C) Colitis scores by a blinded pathologist using a standard 

scoring system, and representative H & E images. Scale bar represents 100 μm. (D and E) 

Mesenteric lymph node (MLN) lymphocytes isolated post-DNBS analyzed for IL-10 (D) 

and IL-17A (E) production among CD4+Foxp3+ Tregs, as assessed by flow cytometry. Error 

bars represent S.E.M. * p < 0.05, *** p < 0.001, **** p < 0.0001. Two-way ANOVA, 

followed by Tukey’s post-hoc analysis. Data are representative of at least 3 independent 

experiments, with 3-9 mice/group.
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Fig. 3. NOD2 is required for OMV-mediated Tregs induction and protection from colitis
(A and B) Representative flow cytometry plots (A) from WT-OMV (left) and ΔPSA-OMV 

(right) treated BMDCs co-cultured with CD4+ T cells, and frequency (B) of 

CD4+Foxp3+IL-10+ Tregs from DC–T cell co-cultures. (C and D) Weight loss (C), colon 

length and gross pathology (D) of WT or Nod2−/− mice treated with PBS or B. fragilis WT-

OMV during DNBS colitis. Error bars represent S.E.M. * p < 0.05, ****p < 0.0001. Two-

way ANOVA, followed by Tukey’s post-hoc analysis. Data are representative of at least 3 

independent experiments, with 3-5 mice/group.
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Fig. 4. The T300A risk variant of ATG16L1 in human cells is unable to support OMV responses
(A and B) MoDCs with either the protective (A) or risk (B) allele were treated with PBS, B. 
fragilis WT-OMV, ΔPSA-OMV or purified PSA, washed and co-cultured with syngeneic 

CD4+ T cells. IL-10 expression was analyzed by flow cytometry among CD4+Foxp3+ Tregs. 

Human samples were processed and analyzed in a blinded fashion. CTL, control subjects; 

CD, Crohn’s Disease subjects. Error bars represent S.E.M. * p < 0.05, ** p < 0.01, *** p < 

0.001, **** p < 0.0001, ns, not significant. One-way ANOVA, followed by Tukey’s post-hoc 

analysis.
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