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Abstract

Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct 

molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ 

ionization (MALDI) represents one of the most broadly applicable IMS technologies. In recent 

years, advances in solid state laser technology, mass spectrometry instrumentation, computer 

technology, and experimental methodology have produced IMS systems capable of unprecedented 

data acquisition speeds (>50 pixels/second). In applications of this technology, throughput is an 

important consideration when designing an IMS experiment. As IMS becomes more widely 

adopted, continual improvements in experimental setups will be important to address biologically 

and clinically relevant time scales.
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Introduction

Mass spectrometry (MS) has long been recognized for its high sensitivity, high throughput, 

and molecular specificity. Advances in MS instrumentation have enabled the use of MS 

technology as an imaging modality.1–2 Specifically, matrix-assisted laser desorption/

ionization imaging mass spectrometry (MALDI IMS), offers an untargeted approach to the 

regiospecific measurement of molecules in tissue specimens. The untargeted nature of this 

technology provides for the ability to simultaneously measure the complex array of 

molecular species present in biological tissue, producing molecular maps that can be 

correlated with anatomical tissue features without any required prior knowledge of the 

analytes present and without using any specialized reagents (e.g., antibodies). MALDI IMS 

analyses have been successfully applied to the study of eye physiology,3–7 neurology,8–9 

skin cancer,10–11 pancreatic cancer,12 and breast cancer.13–14
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In a typical MALDI IMS experiment, a thinly sectioned tissue specimen is mounted onto a 

flat target, such as a microscope slide, and then coated with a MALDI matrix (Figure 1). The 

MALDI matrix is typically a small organic molecule with strong absorbance at the 

wavelength of the MALDI laser and is applied to the sample in a manner that preserves the 

spatial integrities of the analytes of interest (e.g., metabolites, lipids, peptides, proteins). A 

raster of the tissue surface is performed, generating a mass spectrum at each x, y coordinate 

(i.e., a single pixel in `microprobe' imaging mode).1, 15 Ion intensity maps can be 

constructed as a function of x, y position across the tissue surface for any ion of interest. 

Ions can then be identified through one or a combination of several techniques, including 

exact mass measurements,16–17 on-tissue tandem mass spectrometry (MS/MS),18–23 or off-

tissue liquid chromatography-tandem mass spectrometry (LC-MS/MS).24

Early MALDI IMS experiments required 1–2 minutes/pixel for data acquisition, often 

requiring total analysis times of many hours or even days.1 However, recent advances in 

laser technology,25–27 data acquisition, and scanning methodology18, 23, 28–29 have provided 

for mass spectrometry systems which are capable of scanning at speeds as high as 50 pixels/

second. The increasing use of IMS technology in many biological and clinical applications 

necessitates that continuing improvements in experimental times be achieved in order to 

perform IMS investigations on reasonable time scales.

Experimental

Transverse and coronal rat brain (Pel-Freez Biologicals, Rogers, AR) specimens were 

cryosectioned at 10 μm and thaw-mounted onto indium-tin oxide (ITO) slides. A custom 

built sublimation apparatus was used to apply a 1,5-diaminonapthalene (DAN, Sigma 

Aldrich, St. Louis, MO) matrix layer (110° C, 8 min, ~50 mtorr).30–31 IMS experiments 

were performed on either a SimulTOF 300 Tandem MALDI tandem time of flight (TOF/

TOF) MS (SimulTOF Systems, Sudbury, MA) in positive ion reflectron MS mode or a 

RapifleX MALDI Tissuetyper TOF MS (Bruker Daltonics, Billerica, MA) in negative ion 

reflectron mode. The SimulTOF instrument is equipped with a 349 nm, diode-pumped, 

frequency-tripled Nd:YLF laser capable of laser repetition rates up to 5 kHz. This system 

employs continuous laser raster sampling and was scanned using a 1 mm/second stage 

speed, 1 kHz laser frequency, and 50 hardware averaged shots per spectrum.23 The RapifleX 

instrument is equipped with a Smartbeam 3D 10 kHz 355 nm Nd:YAG laser and was set to 

200 shots per pixel using a single shot laser configuration and 85% focus setting.24

Results

All analytical technologies experience trade-offs in various aspects of performance; as one 

particular characteristic is optimized, there are consequences that can affect the performance 

of other aspects of the technology. One such trade-off in IMS is the interplay between the 

amount of area sampled and the time required for data acquisition. The total number of 

pixels in an IMS experiment is a function of both the spatial resolution of the image (i.e., 

defined by the pitch or spacing between each pixel) and the total imaged area. As area is a 

square function, the number of pixels required to sample larger and larger amounts of tissue 

at a defined spatial resolution increases rapidly. For example, a 1 cm by 1 cm area of tissue 
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sampled at 100 μm spatial resolution requires 10,000 pixels to analyze the entire region, 

whereas a 5 cm by 5 cm area of tissue analyzed at the same spatial resolution requires 

250,000 pixels. Similarly, as the spatial resolution of an experiment is adjusted to a finer 

setting, the experimental time also increases. An example of the consequences of throughput 

is shown in Figure 2 and Table 1. Assuming a 1.5 cm diameter circular tissue section and a 

pixel acquisition speed of 1 pixel/second, a fairly common acquisition speed, the region of 

tissue that can be sampled in a reasonable 12 hour acquisition time decreases dramatically as 

the desired spatial resolution is altered (Figure 2). Similarly, the amount of time required to 

sample the entire tissue section using a 1 pixel/second acquisition speed at 5 μm spatial 

resolution can take over 81 days (Table 1)! Certainly, this acquisition time is not practical for 

most biological and clinical applications. However, at increased acquisition speeds, imaging 

the same area of tissue at finer spatial resolutions can again become practical. It is important 

to note that the acquisition times in Table 1 are reported for only a single tissue section; the 

effect on throughput is multiplicative when one considers the number of tissue sections in an 

experiment (e.g., normal versus disease state tissue comparisons), the number of technical 

replicates, and the number of biological replicates.

New advances in MS instrumentation have provided for systems capable of imaging at well 

above single pixel/second acquisition speeds. One such system utilizes continuous laser 

raster sampling to acquire data while continually firing the laser and scanning the stage 

(SimulTOF 300 Tandem).23 This is in contrast to more traditional scanning methods that 

move the stage in discrete steps under a stationary laser, pausing the stage to fire the laser 

before turning the laser off and moving to the next raster step. By using continuous raster 

sampling, a 39,073 pixel image of a coronal rat brain section sampled at 50 μm spatial 

resolution was acquired in approximately 45 minutes (Figure 3). This corresponds to an 

acquisition rate of roughly 15 pixels/second. In this image, many brain substructures are 

clearly visible, including the corpus callosum, fornix, anterior commissure, and ventricles.32 

It is also evident that various ions in the mass spectrum display quite different spatial 

localizations. For example, the ion at m/z 734 is localized primarily to the ventricles (Figure 

3c) while the ion at m/z 778 is primarily localized to the corpus callosum, fornix, and 

anterior commissure (Figure 3d). Given that this image was acquired in positive ion mode 

under sample conditions conducive to lipid ionization, these ions are likely forms of 

phosphatidylcholine ions, a class of glycerophospholipids that constitutes the major 

phospholipid present in most cellular membranes.33 While the identity of these two ions can 

be hypothesized based on the experimental polarity and the nominal mass of the peak, 

further rigor should be employed when assigning identities to ions from these types of 

experiments (vide infra).

Another high-speed system employs a 10 kHz laser and moves the laser and the stage 

independently from one another, allowing the stage to be moved continuously while still 

acquiring discrete pixel spots (RapifleX Tissuetyper).24 Using this setup, a 644,134 pixel 

image of a transverse rat brain section sampled at 20 μm spatial resolution was acquired in 

approximately 345 minutes (Figure 4a). This corresponds to an acquisition rate of roughly 

30 pixels/second. At this fine spatial resolution, the gray and white matter regions of the 

cerebellum are clearly well resolved (Figure 4b). However, when conducting an IMS 

experiment, the user should not simply ask: “how high of a spatial resolution can I achieve?” 
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Rather, the user should consider the experimental question for the biological or clinical task 

at hand and ask: “what spatial resolution is sufficient for this experiment?” By considering 

the level of image detail required and the area required to be imaged, the user can define a 

reasonable spatial resolution and analysis time.

Such considerations not only have implications on throughput, but also on other aspects of 

IMS performance. For example, as the number of pixels in an image increases, the data file 

size also increases.34–36 In some cases, file sizes can be well over a terabyte in size! 

Additionally, at smaller laser diameters required for high-spatial resolution analyses, 

sensitivity can become a concern.37–39 While the images shown here were acquired on high-

speed TOF systems, other systems with slower acquisition speeds can be extremely 

important for high-quality IMS studies. As mentioned above, the ability to identify an ion of 

interest should not rely solely on the measured nominal mass of the ion. Exact mass 

measurements using high-mass accuracy, high-resolving power mass spectrometers such as 

Fourier transform ion cyclotron resonance (FTICR) instruments, Orbitrap instruments, and 

quadrupole-TOF (Q-TOF) instruments can be used to identify the empirical formula of an 

ion of interest, facilitating analyte identification.16–17,40 For example, the ion of nominal m/z 
885 in Figure 4b was determined to have an exact m/z of 885.550 by tissue profiling on a 

15T FTICR MS (Bruker Daltonics, Billerica, MA) (data not shown). Searching this 

experimental exact mass through an online lipid database (LIPID MAPS, Lipidomics 

Gateway, www.lipidmaps.org) allows for the identification of this lipid with an accuracy of 

<1 ppm as a phosphatidylinositol, PI(38:4), a glycerophospholipid commonly found in brain 

tissue.41 While extremely powerful, high-resolving power instrument platforms are often the 

most expensive and have larger data file sizes. MS/MS enabled ion trap, TOF, and hybrid 

instruments18, 20–22, 40, 42–43 as well as ion mobility-mass spectrometry (IM-MS) 

instruments40, 44 can also be used to provide structural information to aid in identification. 

While not always the case, many of these instruments have IMS acquisition speeds closer to 

1 pixel/second, making them much slower than the high-speed TOF systems detailed above. 

However, diminished throughput is countered by an increase in molecular specificity with 

these instruments, an extremely important aspect of any MS experiment.

Conclusions

As IMS workflows are extended to more and more applications, it will be imperative that 

experimental setups provide biologically or clinically relevant time scales. In addition to 

continuing advances in instrumentation, advances in data acquisition also provide promising 

avenues for increasing experimental throughput. Histology-directed MS profiling 

experiments, where MS data is only acquired from several small predefined regions of the 

tissue, allow for dramatic increases in throughput.45 Additionally, predictive imaging 

modalities that employ multivariate regression46 or pan-sharpening algorithms47 can allow 

for the mathematical combination of multiple imaging datasets, allowing for poorer spatial 

resolution IMS experiments to be sharpened to finer resolution IMS experiments. This 

`image fusion' approach can also be used to provide out-of-sample ion distribution 

predictions for regions of unanalyzed tissue.46 Combined with high-speed MS 

instrumentation, these methods and bioinformatics tools will be vital to the widespread 

adoption of IMS technology.
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Figure 1. IMS workflow
a) Specimens are prepared for analysis by mounting thinly cut tissue sections onto slides. 

Matrix application is then performed via any number of methods prior to b) MALDI 

analysis. c) Mass spectra generated at each x, y position are then used to d) construct 

intensity map images for any single ion of interest. e) Analyte identification can be 

performed by one or a combination of several techniques.
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Figure 2. 
A depiction of an IMS experiment showing that, given a defined circular tissue area (d=1.5 

cm, represented by one cartoon brain image, images not shown to scale) and a 1 pixel/

second acquisition speed, the amount of tissue that can be sampled in 12 hours is dependent 

upon the spatial resolution of the experiment. Percentages indicate the approximate 

proportion of one brain section that can be measured at the indicated spatial resolution.
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Figure 3. 
A 39,073 pixel MALDI image of a coronal rat brain section was sampled at 50 μm spatial 

resolution and was acquired in approximately 45 minutes. a) An average mass spectrum of 

100 pixels shows the various lipid ions that were detected. b) A scanned optical image shows 

the tissue section following MALDI matrix application. Ion images of nominal masses c) 

m/z 734 and d) m/z 778 are plotted as m/z 734.6±0.6 and m/z 778.6±0.6, respectively, and 

show differential localization in brain substructures.
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Figure 4. 
A 644,134 pixel MALDI image of a transverse rat brain section was sampled at 20 μm 

spatial resolution and was acquired in approximately 345 minutes. a) An ion image of 

nominal mass m/z 770 depicts the entire brain. b) Ion images of nominal masses m/z 770, 

m/z 794, and m/z 885 are shown in an enlarged region of the cerebellum highlighted in (a) 

using the pink box and are plotted as m/z 770.6±0.5, 794.7±0.5 and m/z 885.6±0.5, 

respectively, using root mean square (RMS) normalization. c) A hematoxylin and eosin stain 

of the tissue section is performed following MALDI IMS analysis. d) The enlarged region of 

the cerebellum is highlighted in (c) using the black box.
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Table 1

The number of pixels required to sample a defined circular tissue area is determined by the spatial resolution 

of the experiment. Depending on the type of IMS instrumentation utilized, acquisition speeds can vary and 

will have a dramatic influence on the total analysis time.

Spatial Resolution (μm) Number of Pixels Required to 
Sample Entire Tissue (d=1.5 cm)

Analysis Time (1 pixel/sec 
acquisition)

Analysis Time (40 pixels/sec 
acquisition)

100 ~17,670 4.9 hours 7.4 minutes

50 ~70,690 19.6 hours 29.5 minutes

20 ~441,790 122.7 hours 3.1 hours

10 ~1,767,150 20.5 days 12.3 hours

5 ~7,068,580 81.8 days 49.1 hours
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