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Aim: This study was designed to determine whether polymorphisms in acetylcholine 
receptors contribute to opioid dependence and/or cocaine dependence. Patients 
& methods: The sample (n = 1860) was divided by drug and ancestry, and 
55 polymorphisms (nine genes) were analyzed. Results: Of the 20 SNPs that showed 
nominally significant associations, the association of the African-specific CHRM4 
SNP rs2229163 (Asn417=) with cocaine dependence survived correction for multiple 
testing (Pcorrected = 0.047). CHRM4 is located in a region of strong linkage disequilibrium 
on chromosome 11 that includes genes associated with schizophrenia. CHRM4 SNP 
rs2229163 is in strong linkage disequilibrium with several African-specific SNPs in 
DGKZ and AMBRA1. Conclusion: Cholinergic receptors’ variants may contribute to 
drug addiction and have a potential role as pharmacogenetic markers.
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Drug addiction is a serious international 
health and social problem. The pathogenesis 
of addiction involves interactions between 
biological, environmental, psychological 
and drug-related factors  [1]. Genetic varia-
tion is one of the important determinants of 
interindividual variability in drug addiction 
vulnerability  [2]. Although dopamine (DA) 
increases after administration of numerous 
drugs of abuse, including cocaine and heroin, 
other neurotransmitter systems contribute to 
their addictive effects  [3]. In this study, we 
focused on the role of genetic variation in the 
cholinergic system in heroin and/or cocaine 
addiction.

Acetylcholine (Ach) participates in vari-
ous CNS functions including reward, stress 
response, nociception, memory, synaptic plas-
ticity and response to drugs of abuse [4]. Ach 
effects are mediated by cholinergic receptors 
(AChRs) that consist of ionotropic nicotinic 
(nAChRs) and metabotropic muscarinic 
(mAChRs) receptors  [5]. Neuronal nAChRs 

modulate the release of dopamine, serotonin, 
gamma-amino butyric acid (GABA) and glu-
tamate [6]. A dysfunctional central cholinergic 
system may have serious consequences and has 
been associated with the pathology and treat-
ment of drug addiction, smoking cessation, 
stress and psychiatric disorders [7–9].

The nAChRs are heteropentamers consist-
ing of five subunits in various combinations 
of genetically distinct α and β subunits that 
produce a spectrum of ion channels that are 
expressed by various cell types. The nAChRs 
are the primary targets for the exogenous 
agonist nicotine; however, alcohol, cocaine 
and morphine were shown to interact with 
nAChR as well  [10–12]. The predominant 
nAChR subtypes implicated in drug addic-
tion are those containing α4 and β2 subunits 
that are highly expressed in DA neurons and 
regulate DA release.

The mAChRs (encoded by CHRM1–
CHRM5) are slow acting seven transmembrane 
domain G-protein-coupled receptors with a 
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central role in human physiology, signaling pathways 
and synaptic plasticity [13]. Both morphine and cocaine 
conditioned place preference (CPP) were significantly 
reduced in M5-/- mice, relative to WT mice  [14,15]. A 
recent study in mice showed that M2 and M4 receptors 
depressed, while M5 receptors potentiated, DA trans
mission in the nucleus accumbens [16]. Selective M1 and 
M4 agonists and M5 receptor antagonists were suggested 
as treatment for psychostimulant addiction [8].

Previous studies of polymorphisms in genes of the 
cholinergic system reported several associations with 
drug abuse, addiction and related phenotypes. SNPs in 
the CHRNA5/CHRNA3/CHRNB4 gene cluster located 
in the 15q25 chromosome region were associated with 
nicotine dependence (ND), alcohol dependence (AD), 
opioid dependence (OD) and cocaine dependence 
(CD) [17–21]. Many studies demonstrated that the non-
synonymous functional CHRNA5 SNP rs16969968 
(Asp398Asn) is associated with ND and related pheno-
types [20]. Associations of SNPs in genes encoding other 
nAChRs with ND and OD were reported in several 
populations (e.g., see [22–25]). From the genes encoding 
mAChRs, CHRM2 SNPs were associated with OD in 
our previous study of African–Americans (AA)  [26], 
as well as with AD, and nonspecific drug dependence 
(DD) in AA and European–Americans (EA) by other 
groups  [27–29]. CHRM3 SNP was associated with spe-
cific CD subgroup in AA  [30] and CHRM5 SNP was 
associated with alcohol consumption [31].

This study was designed to determine whether 
selected polymorphisms in nine genes which encode 
nAChRs or mAChRs subunits contribute to the sus-
ceptibility to OD and/or CD and to assess whether 
there is overlap of genetic factors underlying addiction 
to heroin and cocaine in different populations. The 
study is an extension of our previous studies of OD 
in these populations [26,32] with larger sample size and 
modified SNP content.

Patients & methods
Study population 
The sample consisted of 1860 subjects (38% females) 
divided into five groups according to drugs of abuse (her-

oin or cocaine) and ancestry: (1) EA OD ± CD, (2) AA 
OD ± CD, (3) AA CD without OD, (4) EA control and 
(5) AA control (Table 1). The subjects in the ‘OD ± CD’ 
groups (1 and 2) are former heroin addicts in stable 
methadone maintenance treatment with a history of at 
least 1 year of multiple daily uses of heroin. About half of 
them also had a history of cocaine addiction. The ‘CD 
without OD’ group (3) included subjects with a history 
of cocaine addiction but no history of heroin addiction.

Ascertainment of cases and controls was made by 
extensive personal interview using several instruments: 
the Addiction Severity Index [33], KMSK [34] and Diag-
nostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV). Diagnosis was based on life-time 
DSM-IV criteria. Subjects were recruited at the Rock-
efeller University Hospital, the Manhattan campus 
of the VA NY Harbor Health Care System and the 
Dr Miriam and Sheldon G Adelson Clinics for Drug 
Abuse Treatment and Research in Las Vegas and Israel.

The exclusion criteria from the control sample were: 
drinking to intoxication and/or using illicit drugs in 
the last month or more than twice a week for more 
than 6 consecutive months, and cannabis use for more 
than 12 days in the last month or more than twice a 
week for >4 years.

The EA samples included subjects with >50% Euro-
pean, Middle-Eastern (ME) or combined EA/ME 
ancestry contributions based on Structure analysis (see 
below) from the US (n = 744) and Israel (n = 315). 
Combining EA and ME ancestry contributions was 
based on relative low population differentiation [35,36]. 
The AA sample included subjects with >50% African 
ancestry contribution. Self-identified Hispanics and 
AA subjects with >25% contribution of any major 
ancestry other than European/Middle Eastern were 
excluded.

A total of 465 EA subjects and 481 AA subjects were 
added after the completion of our previous studies [26,32].

The study was approved by the Institutional Review 
Boards of the Rockefeller University Hospital, the VA 
New York Harbor Healthcare System and the Tel Aviv 
Sourasky Medical Center (Helsinki Committee). All 
subjects signed informed consent for genetic studies.

Table 1. Groups description.

Ancestry Heroin addiction, n Cocaine addiction, n Controls, n Total, n

  OD ± CD CD     

EA/ME 827 (1) – 232 (4) 1059

AA 315 (2) 279 (3) 207 (5) 801

Total 1142 279 439 1860

Numbers in brackets are the group assigned numbers.
AA: African–American; CD: Cocaine dependence; EA/ME: European/Middle Eastern; OD: Opioid dependence.



www.futuremedicine.com 997future science group

CHRM4 SNP & drug addiction in African–Americans    Research Article

SNPs
A total of 62 SNPs in nine genes (Table 2) encoding 
nAChRs or mAChRs subunits were selected and geno-
typed on a modified Illumina® GoldenGate custom 
panel (GS0013101-OPA, CA, USA). The array content 
was a modification of the ‘Addiction array’ in which 
SNPs were selected based on allele frequencies and link-
age disequilibrium (LD) based on HapMap  [37]. The 
nine selected genes were included on the original ‘Addic-
tion array’. Thirteen SNPs, in these genes, that were 
included in the ‘Addiction array’, were not included in 
the modified array due to failure or low frequency in EA 
and AA in our previous studies. Two SNPs (CHRNA5 
SNP rs16969968 and CHRNA3 rs1051730) were added 
to the modified array based on functionality and asso-
ciation reports [20,25]. Genotyping was performed at the 
Rockefeller University Genomics Resource Center and 
analyzed with Illumina® BeadStudio software v2.3.43 
(CA, USA) as described [32].

Structure analysis
Of the original 186 AIMs from the ‘Addiction array’, 
171 SNPs with adequate quality were included in the 
modified panel, and 155 AIMs with high quality scores 
were used for analysis. Assessment of ancestry contri-
bution was performed by Structure 2.2 with seven clus-
ters (K). Each subject was anchored against genotypes 
of 1051 samples from the Human Genome Diversity 
Cell Line Panel, as described [38].

Statistical analysis
Exact tests for deviation from Hardy–Weinberg equi-
librium (HWE) were performed with the PLINK pro-
gram. Pairwise LD (D´ and r2) was estimated using 

Haploview 4.2. LD blocks were identified using the 
D´ confidence interval bound of 0.7–0.98. Single SNP 
association analyses were conducted by logistic regres-
sion, under dominant or recessive model assumptions 
using PLINK. Three independent analyses were per-
formed for EA OD ± CD, AA OD ± CD and AA 
CD without OD. Correction for multiple testing was 
performed by permutation test (n = 100,000) for each 
model of inheritance, using PLINK.

Results
The ancestry contributions of all subjects in the cohort 
were verified using Structure analysis of 155 AIMs and 
were used to establish two groups (EA and AA) based 
on the predominant ancestry (see ‘Methods’). These 
groups were then subdivided based on drug addiction 
phenotype (OD, CD or control). The three AA groups 
(OD, CD and control) had an average range of 80% 
(standard deviation [SD]: 0.1) African ancestry and of 
10% (SD: 0.08) European ancestry. There was no evi-
dence for substructure between the case (OD) and the 
control group for the EA group.

A total of 62 SNPs from genes encoding nine subunits 
of cholinergic receptors (Table 2, Supplementary Table 1) 
were genotyped in 1860 subjects, and 55 SNPs with 
high quality were analyzed for association with OD 
and/or CD. A total of 12 SNPs were excluded from 
the EA analysis based on low minor allele frequency 
(MAF < 0.05) in the control group, and one SNP was 
excluded from the AA analyses based on the same cri-
teria. Two additional SNPs showed significant devia-
tion from HWE (p < 0.01) in the EA control group 
and were excluded from analysis of this group. Strong 
LD (r2 > 0.75) was found for four SNP pairs in the 

Table 2. Gene list.

Symbol Description Chr. No. of SNP Excluded

Muscarinic         

CHRM1  Cholinergic receptor, muscarinic 1 11 3 1

CHRM2 Cholinergic receptor, muscarinic 2 7 18 1

CHRM3 Cholinergic receptor, muscarinic 3 1 16 2

CHRM4 Cholinergic receptor, muscarinic 4 11 1 –

CHRM5 Cholinergic receptor, muscarinic 5 15 15 2

Nicotinic        

CHRNA3 Cholinergic receptor, nicotinic, alpha 3 (neuronal) 15 1 –

CHRNA4 Cholinergic receptor, nicotinic, alpha 4 (neuronal) 20 4 –

CHRNA5 Cholinergic receptor, nicotinic, alpha 5 (neuronal) 15 1 –

CHRNB2 Cholinergic receptor, nicotinic, beta 3 (neuronal) 1 3 1

Total   – 62 7

Chr.: Chromosome.
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EA control group and at least eight haplotype blocks 
of at least 21 SNPs were identified in both the control 
groups (Supplementary Figure 1).

Three independent analyses were conducted under 
two models of inheritance (dominant or recessive) 
as follows: EA OD ± CD (1 vs 4), AA OD ± CD 
(2 vs 5) and AA CD without OD (3 vs 5) (Table 1). 
A total of 20 SNPs in six genes showed nominally 
significant associations (p < 0.05) in at least one 
analysis (Table 3). One SNP in CHRM5 5 -́UTR was 
associated with OD in EA. Eight intronic SNPs in 
CHRNA4, CHRM2 and CHRM5 and one nonsyn-
onymous CHRM4 SNP were associated with OD 
in AA, including a CHRM2 SNP pair in strong LD 
(r2 = 0.75). A total of 15 SNPs in CHRNA4, CHRNB2, 
CHRM2, CHRM3, CHRM4 and CHRM5 were asso-
ciated with CD in AA, including CHRM4 African-
specific synonymous SNP, two CHRNA4 intronic 
SNPs pairs in strong LD (r2 = 0.67), CHRM2 3 -́UTR 
SNP, CHRM5 5 -́UTR SNP and two SNPs upstream 
of CHRNB2 and CHRM2, respectively. The one sig-
nal that survived correction for multiple testing was 
the synonymous CHRM4 SNP rs2229163 (Asn417=) 
with CD in AA (P

corrected
 = 0.047).

Discussion
The study proposes specific genetic contributions to 
heroin and cocaine addictions in several cholinergic 
receptor subunits. The study suggests mostly dis-
tinct genetic vulnerability in these genes for OD in 
populations of European and African ancestry as only 
CHRM5 SNP was indicated in both groups. Different 
effects of the same variant in the two populations may 
be due to differing history and genetic background as 
well as interactions with other alleles or environmental 
factors that differ between these populations. There 
was also limited overlap on the SNP level (four SNPs) 
between OD and CD in AA, suggesting drug-specific 
susceptibility. However, this comparison is limited by 
substance-related comorbidity and the limited power 
of the study to detect small effects.

Cholinergic receptor, muscarinic 4 
The most significant finding of this study is the associa-
tion of the African-specific synonymous CHRM4 SNP 
rs2229163 (C>T, Asn417=) with CD without OD and 
OD ± CD in AA. To the best of our knowledge this is 
the first report of association of CHRM4 SNP with any 
drug addiction. CHRM4 (chromosome 11: 46,385,098–
46,386,608, hg38) is an intron-less gene that is located 
in a approximately 300 Kb region of strong LD on chro-
mosome band 11P11.2 that also contains the AMBRA1, 
MDK and DGKZ genes. Based on HapMap data, strong 
LD exist in this region across populations. Specifically 

to our findings, HapMap data in samples of African 
ancestry indicate that CHRM4 SNP rs2229163 is in 
strong LD (r2 > 0.9) with several African-specific SNPs 
in DGKZ (rs11827909 and rs11038880) and AMBRA1 
(rs12290327, rs11038901 and rs7942614). AMBRA1 
SNP rs7942614 is also located in an overlapping 
ribosomal protein pseudogene (RPS10P19).

The correlation of these SNPs is noteworthy since 
AMBRA1 SNPs were previously associated with schizo-
phrenia in a large European sample  [39]. AMBRA1 
has an important role in the development of the ner-
vous system. Functional studies showed an AMBRA1 
genetic effect on medial prefrontal activation and on 
impulsivity [39,40]. Nevertheless, as was pointed out by 
Rietschel  et  al., it was difficult to determine the sus-
ceptibility gene for schizophrenia based on the genet-
ics data alone due to the strong LD in the region and 
the potential relevance of several genes in this region. 
Another study reported an association of a synonymous 
CHRM4 SNP, which was not analyzed in the current 
study, with schizophrenia, in a small Australian sam-
ple  [41]. The implication for the results of the current 
study is that the CHRM4 SNP could be a marker in 
LD with a causative SNP in another gene in this region.

The mAChR4 receptor is the most highly expressed 
muscarinic receptor in the striatum, where it is pres-
ent on medium spiny GABAergic output neurons  [8]. 
Preclinical studies showed that CHRM4 plays a central 
role in the regulation of corticostriatal glutamatergic 
transmission [42] and indirectly inhibits DA release [16]. 
CHRM4 knockout mice displayed a ‘dopamine hyper-
sensitive behavior’, an increase in cocaine self-admin-
istration and a reduced capacity to stop alcohol-seek-
ing behavior compared with wild type mice  [43,44]. 
Selective targeting of the CHRM4 is considered for 
the treatment of neuropsychiatric disorders  [8] and 
CHRM4 positive allosteric modulator was shown to 
inhibit cocaine self-administration in mice [45].

Identifying association of ancestry-specific SNPs 
with drug addiction is relevant for population-specific 
or personalized diagnosis and treatment. CHRM4 
SNP rs2229163 may potentially be a pharmacogenetic 
marker in treatment of drug addiction in subjects of 
African ancestry that predicts response to treatment.

Nominally significant associations
The study identified nominally significant associa-
tions of several variants in CHRM2, CHRM3 and 
CHRM5 with OD and/or CD in AA or EA. Some 
of the signals are probably related based on the LD 
structure. Although the majority of the findings was 
only nominally significant and should be considered 
tentative, several of the SNPs identified in the current 
study were previously associated with drug addictions 
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and related phenotypes. The study corroborates the 
associations of six SNPs that were identified in our 
previous study of OD in a subsample of the current 
AA group (p < 0.05  [Levran  et  al. Unpublished Data  ] ) 
although only CHRM2 SNP rs2350780 survived the 
significance cutoff (p < 0.01) of the previous study [26]. 
CHRM2 SNP rs8191993 was associated with AD and 
major depressive syndrome [27]. The intronic CHRM5 
SNP rs8030094 was associated with alcohol consump-
tion  [31]. The current study did not identify associa-
tion of CHRM2 SNP rs1455858 that was previously 
indicated in association with drug addiction [46].

In addition, several other CHRM2 SNPs were previ-
ously associated with AD and with nonspecific drug 
dependence, in AA and EA [27–29], as well as with major 
depression, cognitive ability, externalizing behavior and 
brain oscillations [47–50]. The CHRM2 gene encodes a 
protein translated from one exon with only rare vari-
ants and a large 5́ -untranslated region of five exons. 
Both tissue-specific alternative splicing and complex 
transcriptional regulation were described [51]. The find-
ings of the current study together with previous data 
are intriguing since CHRM2 is specifically implicated 
in learning, memory and cognition, functions hypoth-
esized to be impaired in drug addiction [52]. The asso-
ciations of CHRM5 are of potential interest since the 
rewarding properties of morphine and cocaine were 
shown to be attenuated in M5-/- mice (e.g., see [14,15]), 
and selective M5 receptor antagonists are considered 
for treatment of drug addiction  [8]. In a study from 
our laboratory, the dorsal striatum Chrm5 mRNA lev-
els were increased after chronic extended access self-
administration of the prescription opioid oxycodone, 
in mice [53].

Two intronic CHRNA4 SNPs in strong LD and one 
SNP upstream of CHRNB2 were nominally associated 
with OD and/or CD in AA. To the best of our knowl-
edge, there were no reports of association of SNPs in 
these genes with heroin and cocaine addiction in AA. No 
SNP showed association with OD in EA. Of the SNPs 
indicated, the intronic CHRNA4 SNP rs3787138 was 
previously associated with a subgroup of tobacco smokers 
with massive withdrawal symptoms and depression [54]. 
It is noteworthy that no association was detected with 
CHRNA5 SNP rs16969968 which was associated with 
ND and related phenotypes by numerous studies, and 
with protection from cocaine dependence in EA [20,55]. 
This is particularly interesting because of the high prev-
alence of tobacco smokers among heroin addicts [56] and 
suggests a nicotine-specific effect.

Conclusion
This study provides evidence for associations of spe-
cific cholinergic gene variants, with yet unknown 

functional consequences, with heroin and cocaine 
addictions that are mostly specific to the African–
American population. The findings suggest the pres-
ence of both shared and distinct genetic liability for 
heroin and cocaine addictions. The identified variants 
have a potential role as pharmacogenetic markers as 
nicotinic drugs are being explored for the treatment of 
addiction [57]. Specific variants may improve treatment 
outcomes by identifying subjects most likely to ben-
efit from specific treatment or subjects with increased 
risk for relapse. Ancestry-specific variants like the ones 
indicated in this study are of particular importance as 
they may help in the understanding of the interaction 
between environment and genetics toward reducing 
health disparities. Further studies are required to cor-
roborate the results and to assess the clinical relevance 
of the findings.
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Executive summary

•	 Genetic variation is one of the important determinants of interindividual variability in drug addiction 
vulnerability and response to treatment.

•	 A dysfunctional central cholinergic system has been associated with the pathology of drug addiction.
•	 SNPs in the CHRNA5/CHRNA3/CHRNB4 gene cluster were previously associated with drug dependence.
•	 This study was designed to determine whether polymorphisms in genes which encode nAChRs or mAChRs 

subunits contribute to the susceptibility to OD and/or CD in different populations.
•	 The ancestry contributions were verified using Structure analysis of 155 AIMs.
•	 A total of 55 SNPs were analyzed in 1860 subjects in three independent analyses: EA OD ± CD, AA OD ± CD 

and AA CD without OD.
•	 The one signal that survived correction for multiple testing was the synonymous CHRM4 SNP rs2229163 

(Asn417=) with CD in AA (Pcorrected = 0.047).
•	 CHRM4 is located in a region of strong LD on chromosome 11 that includes genes associated with 

schizophrenia (DGKZ and AMBRA1).
•	 The study suggests mostly distinct genetic vulnerability in these genes for OD in populations of European and 

African ancestry.
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