Table 5.
Analyzed sample set | Data normalization | Feature selectiona | Classifier size | Best predictorb | CCc | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
All cases vs. controls (run 1–4) | QN | 50 GP | 100 | 1-NN, SVM | 83% | 0.90 | 0.75 |
All cases vs. controls (run 1–6) | QN | 100 RFE | 100 | 3-NN | 79% | 0.76 | 0.83 |
All cases vs. controls (run 1–4) | ComBat | 25 GP | 50 | 3-NN | 81% | 0.85 | 0.78 |
All cases vs. controls (run 1–6) | ComBat | 25 GP | 50 | SVM | 85% | 0.85 | 0.85 |
SCLC vs. control group (run 1 + 5) | QN | 100 RFE | 100 | SVM | 98% | 1.00 | 0.96 |
ComBat | SVM | 94% | 0.92 | 0.96 | |||
DWD | SVM | 92% | 0.88 | 0.96 | |||
SqLC vs. control group (run 2 + 5) | QN | 100 RFE | 100 | SVM | 88% | 0.80 | 0.96 |
ComBat | CCP, NC, SVM | 96% | 0.96 | 0.96 | |||
DWD | SVM | 81% | 0.76 | 0.87 | |||
LCLC vs. control group (run 3 + 6) | QN | 100 RFE | 100 | CCP, SVM | 85% | 0.84 | 0.87 |
ComBat | 1-NN | 92% | 0.88 | 0.96 | |||
DWD | SVM | 79% | 0.72 | 0.87 | |||
AdCa vs. control group (run 4 + 6) | QN | 100 RFE | 100 | SVM | 89% | 0.92 | 0.87 |
ComBat | CCP, DLDA, NC | 83% | 0.83 | 0.83 | |||
DWD | DLDA | 91% | 0.92 | 0.91 |
a greedy-pairs algorithm (GP), recursive feature elimination (RFE); b Nearest Neighbor classification (NN), support vector machine(SVM), Compound Covariate Predictor (CCP), Nearest Centroid (NC), Diagonal Linear Discriminant Analysis (DLDA); c correct classification rate.