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Abstract
Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vac-

cine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing

the anxiety related to possible L. chagasi infection and for controlling human visceral leish-

maniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-

deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania
vaccine has been investigated in past decades. We investigated the immunogenicity of the

“LbSapSal” vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis
salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd)

and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indi-

cated that immunization with “LbSapSal” is able to induce biomarkers characterized by

enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon

[IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimen-

tal challenge. The establishment of a prominent pro-inflammatory immune response after

“LbSapSal” immunization supported the increased levels of nitric oxide production, favoring

a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L.
chagasi infection. In conclusion, these results confirmed the hypothesis that the “LbSapSal”

vaccination is a potential tool to control the Leishmania chagasi infection.
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Introduction
Leishmania infantum (syn. L. chagasi) is an intracellular protozoon that cause a severe systemic
disease named visceral leishmaniasis (VL) [1]. It is widely distributed in the Mediterranean
Basin, Middle East, and South America. VL has an annual incidence of approximately 500,000
cases [2]. Brazil declared a total of 50,060 clinical VL cases between 1990 and 2006, and this
number accounts for 90% of all reported VL cases in the Americas; however, it is subject to
substantial under-reporting [3].

Different geographical regions of the globe where visceral leishmaniasis is endemic, present
the dogs as main reservoir for the L. chagasi that play a relevant role in transmission of the par-
asite [4,5]. Dogs are also excellent models for the study of VL because the natural history of the
disease in dogs and in humans is similar [6], especially regarding parasite–host interaction,
immune response, and the development of new vaccines [7]. The natural history of canine VL
(CVL) has been well-described, particularly in regard to the parasite load in different tissues
and the immunopathological changes according to progression of clinical forms
[8,9,10,11,12,13,14,15,16,17].

A vaccine against CVL would be an important tool in the control of VL and would decrease
the anxiety associated with L. chagasi infection in humans [18]. The induction of long-lasting
cell-mediated immune response triggering high levels of protection against CVL is considered
as prerequisite of an ideal vaccine for controlling the L. chagasi transmission. Different vaccine
candidates against CVL have been reported showing the ability to induce immunoprotective
mechanisms [19,20,21,22,23,24,25,26,27].

In this sense, it has been shown that Leishmune1 (fucose manose ligand plus saponin as
adjuvant; Zoetis, São Paulo, Brazil) presented 95% protection in a phase III study [28]. Leish-
mune1 provided protection associated with the ability to trigger early and persistent activation
of neutrophils and monocytes, in addition to activation of T CD4+ and T CD8+ lymphocytes
displaying high levels of IFN-γ in the CD4+ T-cell subset [29,30]. Additionally, the Leish-Tec1

vaccine (Hertape Calier, Juatuba, Brazil; A2 antigen plus saponin as adjuvant) has also been
shown to induce increased levels of IFN-γ in four out of seven dogs with L. chagasi-infected
bone marrow [21]. More recently, a vaccine composed of excreted/secreted antigens of L.
infantum promastigotes, referred as LiESAp has been shown to induce increased levels of IFN-
γ and nitric oxide (NO), thus supporting its leishmanicidal effect [31]. The efficacy of the LiE-
SAp vaccine was reported as 92% in a double-blind randomized study [19]. LiESAp is commer-
cially available as CaniLeish1 (Virbac, Carros, France) and is able to induce a Th1 profile and
reduce the parasitic load of infected macrophages co-cultured with lymphocytes from immu-
nized dogs [32].

The LbSap (L. braziliensis crude antigens plus saponin as adjuvant) and “LbSapSal” (L. bra-
ziliensis crude antigens plus saponin as adjuvant and Lutzomyia longipalpis saliva) vaccines
against CVL has also shown to induce a strong immune-mediated response. The LbSap and
“LbSapSal” presented higher levels of circulating T-cell subsets (CD4+, CD8+) and B lympho-
cytes (CD21+), as well as Leishmania-specific CD8+ and CD4+ T cells [20,22,25,27]. Further-
more, LBSap-vaccinated dogs presented high IFN-γ and low interleukin (IL)-10 and
transforming growth factor (TGF)-β1 expression in the spleen, resulting in a significant reduc-
tion of parasite load in this tissue [25]. Additionally, LbSap has been shown to induce a promi-
nent pro-inflammatory immune response characterized by increased levels of both IL-12 and
IFN-γ and decreased levels of TGF-β by peripheral blood mononuclear cells (PBMCs), which
were associated with parasite control in dogs [26].

The incorporation of salivary proteins of sand flies have been widely used in experimental
challenge studies, and the results suggest that this could be a good strategy to protect against
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Leishmania infection [22,33,34,35,36,37,38,39,40,41]. Previous studies of dogs using the
“LbSapSal” vaccine displayed higher counts of circulating and Leishmania-specific CD8+ T
cells in addition to high nitric oxide (NO) production [22] and reduction of splenic parasite
load [27]. Considering the inclusion of saliva from sand flies as a promising compound in vac-
cines against Leishmania infection, we describe additional biomarkers induced by the “LbSap-
Sal” vaccine in dogs. We considered the previous vaccine protocol (T0), post-vaccine protocol
(T3rd), and early (T90) and late (T885) periods of the L. chagasi-challenge.

Materials and Methods

Ethics statement
All research involving dogs was carried out according to the regulations of the Brazilian Society
of Science in Animal Research, adopted by the Federal University of Ouro Preto Ethics Com-
mittee in Animal Experimentation, that approved the technical procedures using dogs under
protocol number 2010/71.

Animals, vaccination, and experimental challenge with Leishmania
chagasi plus Lutzomyia longipalpis saliva
All dogs included in this study, were born and bred in the kennel facility at Universidade Fed-
eral de Ouro Preto in Ouro Preto, Minas Gerais, Brazil. This kennel facility was established
with male and female mongrel dogs, with negative serological and molecular/parasitological
diagnosis for Leishmania infection, donated by the local zoonosis control center from Belo
Horizonte, Minas Gerais, Brazil. The filial generations, comprising of offsprings resulting from
the cross between the original mongrel dogs pairs were used further maintain the mongrel dog
colony. In the present study, twenty mongrel dogs (10 males and 10 females), with seven
months of age and negative results for indirect fluorescence immunoassay to anti-Leishmania
antibodies, were selected and received an anti-helmintic treatment and were submitted to poly-
vaccination protocols, including rabies (Tecpar, Curitiba-PR, Brazil), leptospira, parvovirus,
canine distemper, type II adenovirus, parainfluenza and coronavirus (Vanguard1 HTLP 5/
CV-L; Pfizer Animal Health, New York, NY, USA). Prior the experimental onset, the animals
were maintained in quarantine in kennel runs (4m length x 2m width x 3m height) completely
covered with stainless steel wire mesh to prevent the entry of sand flies. The kennel facilities
were sprayed with pyrethroid insecticide, every three months, as a measure to control insect
access. Each run was installed with an infrared lamp heating (250 watts) to ensure the thermal
comfort of animals during the night and on cold days. All the dogs were housed without envi-
ronmental enrichment (e.g. toys, exercise regimes, etc). The dogs were monitored twice a day,
as routine inspection, during which the responsible veterinary was in charge of stimulating and
playing with them to aiming to avoid behavior problems and minimize their suffering or dis-
tress throughout the study. All the experimental procedures described in this study, including
this aspect of animal care was approved by Federal University of Ouro Preto Ethics Committee
in Animal Experimentation (protocol number 2010/71). The animals were maintained with
water and food ad libitum throughout the experiment time. The euthanasia of all dogs was per-
formed under the supervision of a veterinarian physician, using barbiturate anesthetic (Thio-
pental Sodium, 35mg/kg, iv) followed by intravenous injection of saturated solution of
potassium chloride.

Four groups of dogs involved in experiments were treated as follows: (i) “Control” (C)
group (n = 5; subcutaneous injections of 1mL of sterile 0.9% saline); (ii) “Sal” group (n = 5; sub-
cutaneous injections of salivary Lutzomyia longipalpis gland extract (SGE; obtained as
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previously described–[22]) in 1mL of sterile 0.9% saline); (iii) “LbSal” group (n = 5; subcutane-
ous injections of 600μg of L. braziliensis promastigote antigen and SGE in 1mL of sterile 0.9%
saline); and (iv) “LbSapSal” group (n = 5; subcutaneous injections of 600μg of L. braziliensis
promastigote antigen plus 1mg of saponin and SGE in 1mL of sterile 0.9% saline). All animals
received three injections in the right flank at 28days intervals. The L. chagasi-experimental
challenge in all dogs was performed after 100 days of vaccination protocol, using intradermal
107 promastigotes during the stationary phase of cultivation. The challenge was performed in
the inner side of the left ear including five Lutzomyia longipalpis salivary gland acini. All the
analyzed dogs were euthanized 885 days after L. chagasi-experimental challenge and the
spleens were collected to evaluate parasite loads. The rationale for choosing such a long end-
point (885 days after challenge) was based on the chronic course of the experimental canine
visceral leishmaniasis after intradermal L. chagasi-challenge as previously reported [27].

Vaccine preparation
The vaccine was obtained as previously described [22]. Briefly, L. braziliensis (MHOM/BR/75/
M2903) promastigotes were obtained by in vitro culture in Neal, Novy, Nicolle/Liver Infusion
Triptose media [20], and the parasite was fully disrupted by ultrasound treatment (40W, 1min,
4°C), aliquoted and stored at −80°C. Protein concentration was determined according to the
method of Lowry [42]. The SGE used in this study as the antigenic component of the vaccine
was obtained from Lutzomyia longipalpis females that were not fed, aged 4 days, and dissected
in slightly hypotonic unbuffered saline 0.8%, as described in [22]. After collection, the glands
were disrupted in a sonicator for 10 seconds and centrifuged at 10,000g for 2min. The superna-
tant was collected and stored in a freezer at -80°C until use.

Blood sample collection and PBMCs culture in vitro
Jugular vein was used for collecting 20mL of peripheral blood in sterile heparinized syringes.
We analyze distinct times: baseline before vaccination (T0), 15 days after third immunization
dose (T3rd) as well as early (90 days—T90) and late (885 days—T885) after experimental L. cha-
gasi-challenge. The PBMCs were isolated as previously described [20]. Briefly, the whole blood
samples were added over 10mL of Ficoll-Hypaque (Histopaque1 1077; Sigma, USA), centri-
fuged at 450g for 40 min at room temperature, and the PBMCs were washed twice with RPMI
1640 (450g for 10 min at room temperature). The PBMCs were resuspended in RPMI 1640 at
107 cells/mL. The PBMCs cultures were performed in 48-well flat-bottom tissue culture plates
(Costar, Cambridge, MA, USA). The in vitro assays were performed using 50μL of PBMCs
(5.0×105 cells/well) with 100μL of vaccine L. braziliensis-soluble antigen (VSA; 25μg/mL) or
100μL of soluble L. chagasi antigen (SLcA; 25 μg/ml). The control cultures (CC; unstimulated)
were analyzed using 100μL of RPMI in place of the antigenic stimulus. Incubation was per-
formed in a humidified 5% CO2 atmosphere at 37°C for 5 days, after which time the superna-
tants were collected and stored in a freezer at −80°C for detection of cytokine and NO.

Quantification of cytokines
The quantification of cytokines was carried out by enzyme-linked immunosorbent assay
(ELISA) according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA),
as previously described [26]. Minimum cytokine sensitivity detection levels were 62pg/mL
(IL-12), 63pg/mL (TNF-α and IFN-γ), 78pg/mL (IL-4 and IL-10) and 31pg/mL (TGF-β). The
analysis of IL-12 (anti-canine IL-12/IL-23 p40, catalog number DY1969), IFN-γ (anti-canine
IFN-γ, catalog number DY781B), tumor necrosis factor (TNF)-α (anti-canine TNF-α/TNFSF1A
immunoassay; catalog number DY1507) and IL-10 (anti-canine IL-10, catalog number DY735)
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cytokines were performed using DuoSet ELISA. Quantikine1 kit (mouse/rat/porcine/canine
TGF-β1 immunoassay, catalog number MB100B) (R&D Systems, Minneapolis, MN, USA) was
used to measure TGF-β levels. The analysis of IL-4 levels employed the capture antibody
(monoclonal anti-canine IL-4 antibody—catalog number MAB7541); the standard curve was
obtained using recombinant canine IL-4 (catalog number 754CL); and streptavidin (DY998;
R&D Systems/USA), biotinylated anti-canine IL-4 antibody (catalog number: BAF754) and sub-
strate solution (1:1 mixture of H2O2 and tetramethylbenzidine; product code 50-76-4) were
used.

All experiments were performed according to the instructions of R&D Systems using
96-well plates (Corning Incorporated, COSTAR1, Washington, DC, USA). The microplate
automatic reader (EL800; Biotek, Winosski, VT, USA) was employed at a wavelength of
450nm.

NO production
The measurement of NO levels in supernatants of PBMCs cultures was performed by indirect
method that quantify the nitrite concentration by Griess reaction [43,44]. Briefly, 100μL of
Griess reagent (1% sulfanylamide, 0.1% naphthylethylene-diamide-dihydrochloride, and 2.5%
phosphoric acid; all from Sigma, USA) was mixed with 100μL aliquot of cell-free culture super-
natant. The microplate reader (Biotek, EL800) was used to analyze the absorbance at 540nm,
after 10 min of incubation at room temperature in the dark.

The final nitrite concentration was determined based on a standard curve interpolation con-
structed by using sodium nitrite solutions in the range of 0–100μM. The interference of nitrites
already present in the culture medium was discounted; data were calculated by taking into
account the blank, as control reaction, assayed by using the PBMCs cultures medium. The data
were expressed as nitrite concentration (μM).

Spleen samples and parasite load measurement by qPCR
The spleen specimens (5mm) were collected during necropsy and stored at -80°C until use for
DNA extraction. The Wizard™ Genomic DNA Purification Kit (Promega, Madison, WI, USA)
was used to extract total genomic DNA in 20mg of spleen following manufacturer’s
recommendations.

Primers that amplified a 90-bp fragment of a single copy of the DNA polymerase gene of
L. chagasi were used to analyze the spleen parasite burden by quantitative polymerase chain
reaction (qPCR). For the q PCR analysis 200nM forward and reverse primers, 5μL of tem-
plate DNA and 16SYBER GREEN reaction master mix (Applied Biosystems, Grand Island,
NY, USA) were used in a final volume of 25μL. As previously described [45], we used the
targets the DNA polymerase gene L. chagasi (GenBank accession: AF009147) and the pair of
primers (forward: 5’ TGT CGC TTG CAG ACC AGA TG 3’; reverse: 5’ GCA TCG CAG GTG
TGA GCA C 3’). The PCR reactions employed an initial denaturation at 95°C (10 min), 40
denaturation cycles at 95°C (15 seconds), in addition to annealing and extension at 60°C
(1min.). The pGEMH T plasmids (Promega) was used for constructing stardart curves, for
each run, containing inserts of interest [46]. The GAPDH gene (115-bp fragment GenBank
accession number AB038240) was used to analyze the integrity of the samples. The primers
5’TTCCACGGCACAGTCAAG 3’ (forward) and 5’ ACTCAGCACCAGCATCAC 3’ (reverse)
were used for GAPDH gene amplification. The spleen parasite load was performed in
duplicate and calculated by interpolation from the standard curve included in the same
experimental batch. The data was expressed as number of L. chagasi organisms/20ng of total
DNA.
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Statistical analysis
The Prism 5.0 software package (Prism Software, Irvine, CA, USA) was used to evaluate data
distribution normality by Kolmogorov-Smirnoff test and for further statistical analyses. One-
way analysis of variance (ANOVA) followed by Tukey's multiple comparison were used for
comparisons of cytokine profiles, NO levels and parasite load amongst the experimental
groups. Student’s t-test was used for intra-group comparisons between the control cultures
(CC) and antigen-stimulated cultures (VSA or SLcA-stimuli in vitro). Pearson correlation anal-
ysis was further applied to evaluate the relationship between spleen parasite burden and NO
profiles. Additionally, the cytokine networks were assembled using Cytoscape software version
2.8.2 (Institute of Systems Biology, Seattle, USA), for each experimental group (“Control”,
“Sal”, “LbSal”, and LBSapSal) in all times analyzed (T0, T3rd, T90, and T885), based on the corre-
lations indices obtained by Pearson correlation analysis. The network constructed using dis-
tinct edges between nodes to identify negative or positive correlations, referred as moderate
(0.37<r>0.67) or strong (r>0.68). In all cases, the significance were considered at P<0.05.

Results

“LbSapSal” immunization induced increased levels of IFN-γ before and
after experimental L. chagasi-challenge
Aiming to verify whether the immunization protocols were able to induce the production of
pro-inflammatory cytokines, we evaluated the profiles of TNF-α, IFN-γ, and IL-12 in CC or
upon VSA or SLcA-stimuli in vitro.

No significant differences were observed amongst the experimental groups at baseline (T0)
(Fig 1A, 1B and 1C, upper panel).

Data analysis performed at (T3rd) post-vaccination did not show any differences in the
TNF-α levels amongst the experimental groups, regardless the culture conditions. Analysis of
IL-12 demonstrated that the “LbSapSal” group displayed increased levels (P<0.05) upon VSA-
stimulation as compared with the same cultures in the “Control”, “Sal”, and “LbSal” groups
(Fig 1B, middle panel). Moreover, the “LbSal” group showed reduced IL-12 levels (P<0.05)
upon SLcA-stimulation as compared with the “Control” group (Fig 1B, middle panel). Interest-
ingly, the analysis of IFN-γ showed that “LbSapSal” group presented increased levels (P<0.05)
in CC as compared to the “Control” group (Fig 1C, middle panel). Additionally, “LbSapSal”
group displayed increased IFN-γ levels (P<0.05) upon VSA and SLcA-stimuli in comparison
with “Control”, “Sal”, and “LbSal” groups (Fig 1C, middle panel).

Analysis of the cytokine profile early after L. chagasi-challenge (T90) demonstrated that
“LbSapSal” group showed a significant increase of TNF-α levels (P<0.05) upon VSA-stimula-
tion as compared to “Sal” and “LbSal” groups (Fig 1A, middle panel). No differences in the IL-
12 levels were observed amongst the experimental groups, regardless the culture conditions.
Analysis of IFN-γ, “LbSapSal” group displayed increased levels (P<0.05) upon VSA-stimula-
tion as compared to “Control” and “LbSal” groups at T90 (Fig 1C, middle panel). Additionally,
“LbSapSal” group showed a significant increase of IFN-γ (P<0.05) upon SLcA-stimulation as
compared with the “Control” group (Fig 1C, middle panel).

Data analysis late after L. chagasi-challenge (T885) demonstrated that the “LbSal” group dis-
played increased TNF-α levels (P<0.05) upon SLcA-stimulation as compared with the “Con-
trol” group (Fig 1A, bottom panel). In addition, the “LbSapSal” group displayed higher levels
of TNF-α (P<0.05) upon VSA-stimulation as compared with “LbSal” group (Fig 1A, bottom
panel). No differences in the IL-12 levels were observed amongst the experimental groups,
regardless the culture conditions. Interestingly, the analysis of IFN-γ revealed that “LbSapSal”
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Fig 1. Impact of distinct immunization protocols on pro-inflammatory cytokine production. The levels of pro-inflammatory cytokine levels were
measured in supernatants from PBMCs cultures maintained upon vaccine-soluble antigen (VSA) or soluble Leishmania chagasi antigen (SLcA)
stimuli in vitro. Data were analyzed at baseline before vaccination (T0), 15 days after third immunization dose (T3rd) as well as early (90 days—T90)
and late (885 days—T885) after experimental L. chagasi-challenge. The groups are represented as follows: C (“Control”; white bars); “Sal” (Lutzomyia
longipalpis salivary glands; light gray bars); “LbSal” (antigen of L. braziliensis plus Lutzomyia longipalpis salivary glands; dark gray bars); and
“LbSapSal” (L. braziliensis antigen plus saponin and Lutzomyia longipalpis salivary glands; black bars). The x-axis displays the different experimental
groups (“Control”, “Sal”, “LbSal”, and “LbSapSal”) according to the in vitro stimuli (control culture [CC], VSA or SLcA). The y-axis represents the
cytokine levels (pg/mL) for TNF-α (A), IL-12 (B) and IFN-γ (C). Data are presented as mean values ± standard deviations. The connecting lines
represent significant difference (P <0.05) between the CC, VSA or SLcA-stimulated cultures. The symbols C, Sal and LbSal indicate significant
differences in comparison to the “Control”, “Sal” and “LbSal” groups, respectively.

doi:10.1371/journal.pone.0161169.g001
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group showed higher levels (P<0.05) upon VSA-stimulation as compared with the “Control”,
“Sal” and “LbSal” groups (Fig 1C, bottom panel).

“LbSapSal” induced lower levels of IL-4 and TGF-β but while
unvaccinated dogs presented higher amounts of IL-10 after L. chagasi-
challenge
Aiming to evaluate whether the immunization protocols would induce regulatory/anti-inflam-
matory cytokines, we further quantified the levels of IL-10, IL-4, and TGF-β upon VSA or
SLcA-stimuli in vitro.

No significant differences were observed amongst the experimental groups at baseline (T0)
(Fig 2B, upper panel).

The results observed at the post-vaccination period (T3rd) demonstrated that the “LbSal”
group showed a significant reduction in the IL-10 levels (P<0.05) upon VSA-stimulation as
compared to the “Sal” group (Fig 2B, middle panel). No differences in IL-4 and TGF-β levels
were observed amongst the experimental groups, regardless the culture conditions.

Data mining performed early after L. chagasi-challenge (T90) revealed no differences in the
IL-10 production amongst the experimental groups, regardless the culture conditions. How-
ever, “LbSapSal” group showed a significant reduction of IL-4 levels (P<0.05) upon SLcA-stim-
ulation as compared to the “Sal” group (Fig 2A, middle panel). Interestingly, “LbSapSal” group
also presented a significant reduction of TGF-β levels (P<0.05) upon SLcA-stimulation as
compared the “Control” group (Fig 3, middle panel).

Analysis carried out late after L. chagasi-challenge (T885) did not differences in IL-10 levels
amongst the experimental groups, regardless the culture conditions. The results showed that
the “LbSal” group presented a significant reduction in the IL-4 levels (P<0.05) upon VSA-stim-
ulation as compared with the “Sal” group (Fig 2B, bottom panel). Interestingly, “LbSapSal”
group displayed a significant reduction of TGF-β levels (P<0.05) upon SLcA-stimulation as
compared with the “Control” group (Fig 3, bottom panel).

The hallmark of the cytokine network in the “LbSapSal” group is a
balanced immune response regarding positive correlation between pro-
inflammatory cytokines (IL-12, IFN-γ, TNF-α) and regulatory cytokines
(IL-10)
Aiming to identify the overall balance of the evaluated cytokines, we have applied machine-
learning approaches to analyze the cytokine network for all immunization protocols generated
upon SLcA and VSA-stimuli in vitro (S1 Fig and Fig 4).

The cytokine balance was calculated as the IFN-γ/IL-4 and IFN-γ/IL-10 ratio for all experi-
mental groups and culture conditions and data provide in the S1 Fig. The results re-enforce
that ability of “LbSapSal” vaccine to induce a long lasting IFN- production over the synthesis of
both IL-4 and IL-10, regardless the antigen-stimuli (S1 Fig).

Data mining by system biology tools were used to generate biomarker networks for each
experimental group using both VSA and SLcA-stimuli. The results demonstrated that upon
VSA-stimulation, the “Control” group presented negative correlations between IL-4 with TNF-
α and IL-10 (VSA stimulus). Positive correlation was also observed between TNF-α and IFN-γ.
Upon SLcA-stimulation, positive correlation was observed between IL-12 and IFN-γ along
with a negative correlation between TNF-α and IL-4 (Fig 4, upper left panel).

The “Sal” group presented, upon VSA-stimulation, a range of positive correlations, includ-
ing TNF-α with IL-12, IFN-γ and IL-10 along IL-12 with IL-10. In addition, negative correla-
tion was observed between IFN-γ and IL-4. Analysis upon SLcA-stimulation demonstrated
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Fig 2. Impact of distinct immunization protocols on regulatory/anti-inflammatory cytokine production.
The levels of regulatory/anti-inflammatory cytokines were measured in supernatants from PBMCs cultures
maintained upon vaccine-soluble antigen (VSA) or soluble Leishmania chagasi antigen (SLcA) stimuli in vitro.
Data were analyzed at baseline before vaccination (T0), 15 days after third immunization dose (T3rd) as well
as early (90 days—T90) and late (885 days—T885) after experimental L. chagasi-challenge.The groups are
represented as follows: C (“Control”; white bars); “Sal” (Lutzomyia longipalpis salivary glands; light gray bars);
“LbSal” (antigen of L. braziliensis plus Lutzomyia longipalpis salivary glands; dark gray bars); and “LbSapSal”
(L. braziliensis antigen plus saponin and Lutzomyia longipalpis salivary glands; black bars). The x-axis
displays the different experimental groups (“Control”, “Sal”, “LbSal”, and “LbSapSal”) according to the in vitro
stimuli (control culture [CC], VSA or SLcA). The y-axis represents the cytokine levels (pg/mL) for IL-4 (A) and
IL-10 (B). Data are presented as mean values ± standard deviations. The connecting lines represent
significant difference (P <0.05) between the CC, VSA or SLcA-stimulated cultures. The symbol Sal indicates
significant differences in comparison to the “Sal” group.

doi:10.1371/journal.pone.0161169.g002
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Fig 3. Impact of distinct immunization protocols on TGF-β production. The levels of TGF-β were
measured in supernatants from PBMCs cultures maintained upon vaccine-soluble antigen (VSA) or soluble
Leishmania chagasi antigen (SLcA) stimuli in vitro. Data were analyzed at baseline before vaccination (T0),
15 days after third immunization dose (T3rd) as well as early (90 days—T90) and late (885 days—T885) after
experimental L. chagasi-challenge. The groups are represented as follows: C (“Control”; white bars) and
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positive correlations amongst the pro-inflammatory cytokines (TNF-α, IFN-γ and IL-12)
along positive correlation of them with IL-10 (Fig 4, upper right panel).

Analysis of the “LbSal” group upon VSA-stimulation demonstrated a single negative corre-
lation between TNF-α and IL-4 (Fig 4, bottom left panel).

“LbSapSal” (L. braziliensis antigen plus saponin and Lutzomyia longipalpis salivary glands; black bars).The x-
axis displays the different experimental groups (“Control” and “LbSapSal”) according to the in vitro stimuli
(control culture [CC] and SLcA). The y-axis represents the TGF-β levels (pg/mL). Data are presented as
mean values ± standard deviations. The connecting lines represent significant difference (P <0.05) between
the CC or SLcA-stimulated cultures. The symbol C indicates significant differences in comparison to the
“Control” group.

doi:10.1371/journal.pone.0161169.g003

Fig 4. Biomarker networks triggered by distinct immunization protocols. Network correlation analysis were assembled for pro-inflammatory and
regulatory cytokines measured in supernatants from PBMCs cultures maintained upon vaccine-soluble antigen (VSA) or soluble Leishmania chagasi
antigen (SLcA) stimuli in vitro. Data were analyzed at baseline before vaccination (T0), 15 days after third immunization dose (T3rd) as well as early (90
days—T90) and late (885 days—T885) after experimental L. chagasi-challenge. The groups are represented as follows: C (“Control”; white nodes); “Sal”
(Lutzomyia longipalpis salivary glands; light gray nodes); “LbSal” (L. braziliensis antigen plus Lutzomyia longipalpis salivary glands; dark gray nodes) and
“LbSapSal” (L. braziliensis antigen plus saponin and Lutzomyia longipalpis salivary glands; black nodes). Each connecting line represents a significant
correlation between a pair of biomarkers. Dashed linesrepresent negative correlations. Solid lines represent positive correlations, and the degree of
significance is represented by the line thickness [moderate correlation (continuous thin lines) for 0.37<r>0.67 or strong correlation (continuous thick lines)
for r>0.68]. Spearman r indexes are used to classify the connecting edges as negative, moderate, or strong positive correlations, as shown.

doi:10.1371/journal.pone.0161169.g004
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Data analysis demonstrated that upon VSA-stimulation, the “LbSapSal” group showed
strong positive correlation among TNF-α and IFN-γ along with positive correlation between
TNF-α and IL-10. Negative correlations were also observed amongst TNF-α and IFN-γ with
IL-4 (Fig 4, bottom right panel). Moreover, upon SLcA-stimulation, positive correlation was
observed between IL-12 with IFN-γ and IL-10 (Fig 4, bottom right panel).

A sustained prominent reduction in spleen parasite load was observed in
“LbSapSal” group later on after L. chagasi-challenge
The parasitological analysis performed in spleen samples later on (T885) following L. chagasi-
challenge and reported as number of L. chagasi organisms/20ng of total DNA in spleen samples
and presented in Table 1. Data analysis demonstrated that all vaccination protocols were able

Table 1. Parasitological analysis in spleen samples late after (T885) L. chagasi-challenge.

Groups Dog number Clinical status Number of amastigotes per20ng of total DNA

Control 6 Asymptomatic 4.9

10 Asymptomatic 6.9

13 Asymptomatic 7.3

29 Asymptomatic 4.7

37 Asymptomatic 6.9

Mean 6.14

Sal 8 Asymptomatic 2.1

9 Asymptomatic 1.5

15 Asymptomatic 1.5

21 Asymptomatic 1.6

34 Asymptomatic 1.1

Mean 1.56a

Reduction in parasite load (%) 74.6

LbSal 16 Asymptomatic 2.9

22 Asymptomatic 1.7

25 Asymptomatic 1.7

32 Asymptomatic 1.9

39 Asymptomatic 2.1

Mean 2.06a

Reduction in parasite load (%) 66.5

LbSapSal 18 Asymptomatic 1.1

23 Asymptomatic 1.1

28 Asymptomatic 1.7

31 Asymptomatic 1.3

38 Asymptomatic 1.3

Mean 1.30a

Reduction in parasite load (%) 78.9

The groups are represented as follows: “Control”; “Sal” (salivary glands of Lutzomyia longipalpis); “LbSal” (antigen of L. braziliensis plus Lutzomyia
longipalpis salivary glands) and “LbSapSal” (antigen of L. braziliensis plus saponin and Lutzomyia longipalpis salivary glands). The letter “a” indicate

significant difference in relation to the Sal, LbSal and LbSapSal groups. Reduction (%) in parasite load was calculated as the proportion of number of

amastigotes organisms/20ng of total DNA observed in “Sal”, “LbSal” and “LbSapSal” groups in relation to “Control” group. No clinical signs and mortality

were observed throughout the experimental design.

doi:10.1371/journal.pone.0161169.t001
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to induce a reduction in the splenic parasite load as compared to the “Control group”. Indeed,
“Sal” and “LbSal” groups yielded 74.6% and 66.5% of reduction in the spleen parasite load
(1.56 and 2.06 amastigotes/20ng of total DNA, respectively) as compared to the “Control”
group (6.14 amastigotes/20ng of total DNA). “LbSapSal” groups showed the lowest parasite
load (1.30 amastigotes/20ng of total DNA), leading to 78.9% of reduction rate in relation to the
“Control” group (Table 1). Moreover, no clinical signs and mortality were observed throughout
the experimental design (Table 1).

“LbSapSal” group showed after L. chagasi-challenge enhanced NO
production with negative association with the spleen parasite load
The levels of nitric oxide produced by PBMCs were evaluated upon VSA or SLcA-stimuli in
vitro early (T90) and late (T885) after L. chagasi-challenge.

Data analysis carried early (T90) after L. chagasi-challenge, demonstrated that the “LbSap-
Sal” group presented upon control culture condition enhanced NO levels (P<0.05) as com-
pared to the “Sal” group (Fig 5, upper left panel). Additionally, “Sal”, and “LbSapSal” groups
showed increase in the NO levels (P<0.05) upon VSA-stimulation as compared to the “Con-
trol” and “LbSap” groups (Fig 5, upper left panel).

The analysis performed late (T885) after L. chagasi-challenge showed the “LbSapSal” group
displayed higher NO levels (P<0.05) upon SLcA-stimulation as compared to the “Control”
group (Fig 5, upper right panel).

Additional analysis revealed that the NO production at T885 displayed a negative correlation
with the spleen parasite load selectively upon SLcA-stimulation (Fig 5, bottom right panel).
Interestingly, it was observed that in the “LbSapSal” group, four out of five animals (80%)
showed simultaneous high NO production and low spleen parasite load, compatible with a
protection profile (Fig 5, bottom right panel). In contrast, in the “Control” group, only one out
of five (20%) showed high NO production but all animals presented high spleen parasitism
(Fig 5, bottom right panel).

Discussion
The control of Leishmania chagasi (syn. Leishmania infantum) infection in dogs is essential to
stop the current spread of zoonotic visceral leishmaniasis. Therefore, a vaccine against VL
would be an important tool for controlling CVL and would dramatically decrease anxiety
regarding L. chagasi infection in humans [18,47]. In this sense, the establishment of biomarkers
of immunogenicity is considered critical in the rational approach for analyzing candidate vac-
cines against CVL, and it contributes to identifying the pattern of immune response in dogs
and the search for vaccine candidates against CVL [48,49]. For this reason, in this work, the
immunogenicity and protective effects of the “LbSapSal” vaccination in dogs were investigated
using levels of NO and cytokines and evaluations related to the spleen parasite load. Further-
more, the addition of sand fly saliva extract to vector-based vaccines can enhance the ability of
the host to control or block Leishmania infection [38,33].

The major results observed after “LbSapSal” immunization revealed a reduction in IL-4 lev-
els during the early (T90) post-challenge period. Importantly, previous studies have identified
that the presence of IL-4 in splenocytes from dogs naturally infected with L. chagasi would be
an important biomarker during ongoing CVL [12,50]. However, in some reports, the role of
IL-4 was related to the resistance profile or susceptibility profile of CVL [50,51]; the higher lev-
els of IL-4 are considered the hallmark of dogs naturally infected with L. chagasi [52] and sus-
tained reduction of IL-4 has been also reported by other immunogen candidates. In fact,
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reduction in the levels of IL-4 after vaccine immunization against CVL has been considered a
biomarker for protection against Leishmania infection [53].

In the present study, the evaluation of IL-10 demonstrated a possible association with events
related to the susceptibility to infection by L. chagasi; the “Control” group has presented
increased amounts during the late (T885) post-challenge period. In fact, this cytokine has been

Fig 5. Impact of distinct immunization protocols on the NO production elicited early and late after L. chagasi-challenge. NO levels (μM) were
determined in supernatants from PBMCs cultures maintained upon vaccine-soluble antigen (VSA) or soluble Leishmania chagasi antigen (SLcA) stimuli
in vitro. Data were analyzed early (90 days—T90) and late (885 days—T885) after experimental L. chagasi-challenge. The groups are represented as
follows: C (“Control”; white bars); “Sal” (Lutzomyia longipalpis salivary glands; light gray bars); “LbSal” (antigen of L. braziliensis plus Lutzomyia
longipalpis salivary glands; dark gray bars); and “LbSapSal” (L. braziliensis antigen plus saponin and Lutzomyia longipalpis salivary glands; black bars).
Top panels: The x-axis displays the different experimental groups (“Control”, “Sal”, “LbSal” and “LbSapSal”) according to the in vitro stimuli (control culture
[CC], VSA or SLcA). The y-axis represents the nitrite levels [μM]. Data are presented as mean values ± standard deviations. The connecting lines
represent significant difference (P <0.05) between the CC, VSA or SLcA-stimulated cultures. The symbols C, Sal and LbSal indicate significant
differences in comparison to the “Control”, “Sal” or “LbSal” groups, respectively. Bottom panels: Correlation between NO levels and spleen parasite load
(# amastigotes/20ng of total DNA) at T885 considering CC (bottom left panel) or the presence of a stimulus (VSA: bottommiddle panel; or SLcA: bottom
right panel) in all groups. The groups are distinguishable by colors as follows: as follows: “C” (white circles); “Sal” (ligh gray circles); “LbSal” (dark gray
circles) and “LbSapSal” (black circles). The quadrants represented in the bottom panels delimit the low and high NO producers (y-axis) and the low and
high spleen parasite load (x axis).

doi:10.1371/journal.pone.0161169.g005
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associated with severity of VL [54] and CVL [12,16,50,52,55,56]. Importantly, the “LbSapSal”
group did not have increased IL-10 production, even after the late L. chagasi-challenge period.

Additionally, analysis of TGF-β revealed reduced production in the “LbSapSal”-immunized
group during the early and late post-challenge periods. Interestingly, the presence of TGF-β
has been associated with inducing immunosuppression characteristics during the course of VL
[57,58]. Moreover, the presence of TGF-β in vitro has a protective effect for amastigotes in
macrophages, favoring the maintenance of parasitism [59]. In addition, Alves et al. [50]
reported high levels of TGF-β associated with increased parasite load in lymph nodes from
symptomatic dogs and concluded that TGF-β is associated with morbidity in CVL. In this con-
text, it is possible to hypothesize that lower levels of TGF-β in the “LbSapSal” group would
indicate the establishment of immunoprotective mechanisms, whereas higher amounts in the
“Control” group would be associated with the susceptibility pattern after L. chagasi-challenge.

Analysis of pro-inflammatory cytokines has been considered a prerequisite for composing
immunogenicity analyses before and after experimental challenge with L. chagasi in clinical tri-
als of anti-CVL vaccines [48,26]. The analysis of TNF-α before vaccine immunization (T0)
demonstrated increased levels in SLcA-stimulated cultures in the “Control” and “LbSapSal”
groups and demonstrated a tendency for enhanced amounts in the “Sal” and “LbSal” groups.
Similar results were observed for IL-12 and IFN-γ at T0. These results seem to indicate that
SLcA stimulation would induce increased levels of these cytokines, pointing to an inherent fea-
ture of the antigenic stimulus. For this reason, we evaluated all groups and analyzed the same
stimulus in each group to identify a cytokine profile regarding type I immune response. This
strategy demonstrated enhanced levels of IL-12 and IFN-γ post-vaccination and sustained pro-
duction of both TNF-α and IFN-γ even after early and late post-challenge periods in the
“LbSapSal” group. Some studies have described TNF-α as being associated with a resistance
profile in CVL [52,60, 61,62,63] or in dogs vaccinated against CVL [53], and has been associ-
ated with susceptibility when associated with high levels of IL-4 and IL-10 [64]. Results
obtained by Strauss-Ayali et al. [65] showed that after stimulation with exogenous IL-12,
PBMCs from L. infantum−infected dogs were able to reverse an apparent state of anergy,
resulting in increased production of IFN-γ. Moreover, Menezes-Souza et al. [62] found that
low levels of IL-12 concomitant with high levels of IL-10 and TGF-β represent a favorable con-
dition for the persistence and replication of parasites in CVL. It has been described that IFN-γ
is linked to a resistance profile in different experimental models for VL [50,61,66,67,68] and in
dogs vaccinated against CVL [21,26,29, 30,53].

Our data regarding the cytokine network indicated a balanced immune response in the
“LbSapSal” group. In this sense, we describe positive (TNF-α versus IFN-γ and IL-10; IL-12
versus IFN-γ and IL-10) and negative (IL-4 versus TNF-α or IFN-γ) correlations demonstrat-
ing a prominent pro-inflammatory immune response in the “LbSapSal” group. In addition to a
non-significant increase in IL-4 or IL-10 levels in the “LbSapSal” group, a balanced immune
response was demonstrated by taking into account the positive correlations between IL-10 and
type I cytokines (IFN-γ, IL-12, TNF-α). These data should be related to the regulation of the
prominent pro-inflammatory immune response induced by the “LbSapSal” vaccination and
should aim to control potential tissue damage by type I cytokines.

The parasitological evaluation revealed in “LbSapSal” group a remarkable reduction in
spleen parasite load (78.9%) after experimental L. chagasi-challenge, in concordance with a
prominent pro-inflammatory immune response induced by this vaccine. In fact, we have been
described a parasite load reduction of 69% in the LBSapSal group [27], indicating the capacity
of this vaccine to control parasite replication even long after challenge (885 days).

Sand fly saliva displays an important role in the first steps of Leishmania infection, due to
the vast repertoire of pharmacologically active molecules that surround host’s hemostatic
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system [69]. The re-exposure to the salivary components seems to display an immunogenic
activity, eliciting antibody production and cell mediated immunity by the host that could be
block or limit the Leishmania infection [70]. Some studies have been shown that L. longipalpis
salivary proteins induce an immune response associated with protection in dogs [22,27]. Fur-
thermore, in a hamster model, salivary proteins of a sand fly protects against the fatal outcome
of visceral leishmaniasis [40]. Similarly, we observed 74.6% parasite load reduction in “Sal”
group, showing that salivary components have a high potential to limit infection in dogs.

The experimental challenge in vaccine studies against canine visceral leishmaniasis is con-
sidered as crucial to analyze the protection performance. Distinct studies have been published
aiming to determine the experimental L. chagasi-challenge plus sand fly saliva using intrader-
mal route in dogs would be more similar to natural infection than intravenous challenge
[71,72]. However, using intradermal challenge, the dogs would be asymptomatic during all the
study, besides to present lower parasitism [71]. Since the “LbSapSal” vaccine presents saliva as
antigenic compound, the ideal experimental challenge to test the protection should ideally be
performed by intradermal route, as analyzed in our study.

Importantly, we observed increased NO levels in the “LbSapSal” group during the early and
late post-challenge periods. Interestingly, four out of five dogs immunized with “LbSapSal” pre-
sented higher NO amounts and low spleen parasite burden during the late post-challenge
period, indicating long-term immunogenicity and resulting in reduction of parasitism. In fact,
we have previously demonstrated that “LbSapSal” induced resistance biomarkers specifically
related to expansion of circulating CD4+ and CD8+ T-cells and Leishmania-specific subsets
and lower levels of parasitism [22,27]. Panaro et al. [73] also observed an increase in NO pro-
duction and anti-leishmanial activity of macrophages, as well as increased levels of IFN-γ in
PBMCs supernatants, in dogs immunized with a vaccine comprising crude antigens of L.
infantum.

Taken together, our major data indicate that immunization with “LbSapSal” is able to
induce a protection profile characterized by enhanced amounts of type I (TNF-α, IL-12, IFN-
γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimental chal-
lenge. The establishment of a polarized type I immune response after “LbSapSal” immuniza-
tion supported increased levels of NO production, favoring a reduction in parasitism and
indicating long-lasting protection against L. chagasi infection. These results encourage further
studies that can provide important information for a better understanding of the effectiveness
of the “LbSapSal” vaccine and strategies for addressing Leishmania antigens in combination
with sand fly proteins such as those present in the saliva in the vector.

Supporting Information
S1 Fig. Impact of distinct immunization protocols on the pro-inflammatory/regulatory
cytokine balance. The balance of inflammatory cytokine IFN-γ and regulatory/anti-inflamma-
tory (IL-4 and IL-10) were analyzed in the supernatant of PBMCs maintained upon vaccine-
soluble antigen (VSA) or soluble Leishmania chagasi antigen (SLcA) stimuli in vitro. Data were
analyzed early (90 days—T90) and late (885 days—T885) after experimental L. chagasi-chal-
lenge. The groups are represented as follows: C (“Control”; white bars); “Sal” (Lutzomyia longi-
palpis salivary glands; light gray bars); “LbSal” (antigen of L. braziliensis plus Lutzomyia
longipalpis salivary glands; dark gray bars); and “LbSapSal” (L. braziliensis antigen plus saponin
and Lutzomyia longipalpis salivary glands; black bars).The x-axis displays the different experi-
mental groups (“Control”, “Sal”, “LbSal” and “LbSapSal”) according to the in vitro stimuli
(control culture [CC], VSA or SLcA). The y-axis represents the cytokine ratio (IFN-γ/IL4 and
IFN-γ/IL-10). Data are presented as mean values ± standard deviations. The connecting lines

Immunoprotection in Dogs after Immunization with LbSapSal Vaccine

PLOS ONE | DOI:10.1371/journal.pone.0161169 August 24, 2016 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161169.s001


represent significant difference (P<0.05) amongst the CC, VSA or SLcA-stimulated cultures.
The symbols C and Sal indicate significant differences in comparison to the “Control” or “Sal”
groups, respectively.
(TIF)
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