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Abstract

Quantitative Systems Pharmacology (QSP) is receiving increased attention. As the momentum 

builds and the expectations grow it is important to (re)assess and formalize the basic concepts and 

approaches. In this short review, I argue that QSP, in addition to enabling the rational integration of 

data and development of complex models, maybe more importantly, provides the foundations for 

developing an integrated framework for the assessment of drugs and their impact on disease within 

a broader context expanding the envelope to account in great detail for physiology, environment 

and prior history. I articulate some of the critical enablers, major obstacles and exciting 

opportunities manifesting themselves along the way. Charting such overarching themes will enable 

practitioners to identify major and defining factors as the field progressively moves towards 

personalized and precision health care delivery.
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Introduction

In recent year there have been numerous reports discussing opportunities, progress and 

successes of Quantitative Systems Pharmacology (Bai 2013; Leil, Bertz 2014; Sorger et al. 

2011), referred to as QSP onwards. Multiple definitions have been provided in the literature 

and, as such, I will refrain from attempting yet another description of the term. It is by now, 

most likely, evident that the term QSP encompasses approaches related to the integrated 

analysis of complex (and simple) models in an attempt to rationalize drug action. The 

implications are expected to be many fold including, but not limited to, predicting an 

individual's response to treatment, assessing efficacy and safety and enabling the rational 

design, and rationalization of results, of clinical trials. QSP modeling approaches most often 

do not address discovery needs and most likely are developed during the later pre-clinical 

stages with the expectation to provide critical insight during the clinical stages of drug 

development (Kimko et al. 2011; Kimko, Duffull 2003; Ermakov et al. 2014).
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While mathematical and computer modeling is at the core of QSP it is most likely not 

appropriate to focus exclusively on those aspects alone when talking about QSP. After all, in 

some shape or form, modeling in pharmacology has been around for decades, likely as far 

back as the 60's with Gerhard Levy's pioneering work on the kinetics of pharmacologic 

effects (Levy 1964, 1966). Models have since increased substantially in complexity not only 

because of our increased fundamental understanding of biology, pharmacology and 

physiology and our improved ability to probe physiological systems and accumulate high-

quality and high-dimension data, but also because of computational sciences and systems 

approaches that were formally adopted by traditional pharmacokineticists, thus rendering the 

process of developing and using complex models tractable, and the interpretation of the 

results more meaningful.

However, it would likely be rather shortsighted to limit the potential contributions of QSP 

strictly to the development of, however more complex, computational models. In fact, the 

purpose of this review is to argue that QSP's main contribution is not whether it could 

deliver “more of the same”, i.e, more complex models, but rather the fact that QSP can act as 

a framework within which we can begin to phrase a suite of questions of increasing 

complexity. QSP as a framework will enable us to place drugs and their pharmacologic 

actions within their proper broader context, which we realize extends beyond the site of 

action. This, I subsequently argue, will become a major and defining factor as we 

progressively move towards personalized and precision health care delivery.

Evolving role of modeling in pharmacology

Without delving into much technical detail, I will simply state that the term modeling, as 

used in the context of this paper, denotes the quantitative description of the dynamics of a 

system of interest using mathematical and computational approaches. I make use of the 

terms “mathematical” and “computational” broad at this point so as not to limit the 

discussion in any way in that respect. In that sense, mathematical models have been 

introduced in pharmacology over half a century ago, likely originating fromith the 

pioneering work of Gerhard Levy, recently published in a summary (Fung, Jusko 2015). 

From that point on, pharmacokinetic and pharmacodynamics models have been used to 

assess how much drug is available following a specific route of administration, whether it 

hits the target, whether it performs the actions it was designed to perform and, finally and 

more importantly, whether it generates the expected outcome (Wright et al. 2011). Along 

with these questions, it also becomes important to assess the extent to which the drug would 

also induce secondary, direct, indirect, synergistic or antagonistic effects – desirable or not. 

The value of modeling was realized early on as, likely, a critical enabler to assess critical 

questions such as identifying dose limits, dose effects and, of course, extrapolation (animals 

to humans, adult to pediatrics, etc) (Csajka, Verotta 2006; Maharaj, Edginton 2014).

The models have therefore, historically, evolved to describe drug levels in circulation, 

connect drug levels directly to outcome using phenomenological expressions, connect drug 

levels to cellular functions, and drug levels to outcome. Developments in pharmacology and 

the development of approaches integrating physiology with pharmacology with models 

evolving from simple pharmacokinetics, to compartment to comprehensive model 
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accounting for physiologic considerations(Aarons 2005) led to development of more 

complete models better accounting for drug liberation, absorption, disposition, metabolism 

and excretion (LADME) to describe drug release from formulation, pharmacokinetics, as 

well as signaling and regulation at the level of cell to capture the pharmacodynamics 

(Bouzom et al. 2012; Rein et al. 2013; Smith 2013). The incorporation of parameters 

reflecting physiology was a critical step in addressing the fundamental issue of extrapolating 

animal data to humans (Mager, Jusko 2008; Sager et al. 2015). The physiological basis of 

PBPK models easily allows to extend these to include PD considerations beyond simple 

receptor binding (Schaller et al. 2013).

The advances in systems biology and pharmacology, both conceptual in terms of network 

analysis as well as experimental in terms of readily generating –omics information, enabled 

researchers to increase the complexity of the analysis by simultaneously accounting for 

multiple complimentary, synergistic and antagonistic pathways, mostly intracellularly 

(Berger, Iyengar 2009; Boran, Iyengar 2010; Wist et al. 2009). As such, we recognized the 

importance of considering drug targets as part of a network of interacting elements (genes, 

proteins or metabolites) and recognized that information is not propagated in a strictly linear 

manner, but in rather convoluted ways as these emerge through complex networks (van der 

Graaf, Benson 2011).

Systems pharmacology approaches enabled us to increase the complexity of our models, by 

expanding the pathways and modes of action, accounting for multiple simultaneous 

interactions (Jusko 2013). Continued advances in high throughput –omics technologies 

facilitated the collection of information at the genomic, transcriptomic, metabolomic and 

proteomic levels, as well as regulatory and epigenomic levels. This wealth of information 

enabled us to further increase the complexity of our models by expanding the chain of events 

activated, or suppressed, as a result of a drug's action (Kamisoglu et al. 2015). High-

throughput analysis enabled us to decipher differences related to, for example, dosing 

(Nguyen et al. 2010) or tissue-dependencies (Nguyen et al. 2014).

In the sections that follow, I wish to address broader issues related to challenges and 

opportunities in of QSP, and its potential to define the future.

QSP: The framework

QSP, as a framework, has emerged and morphed into an integrated and integrative approach, 

which relies heavily on exploring systems analysis and quantitative modeling approaches 

and methodologies for rationalizing the wealth of information generated by in vivo and in 
vitro systems and developing quantitative predictions. QSP capitalized, explored, and in 

some cases introduced novel computational methods formalizing the analysis and modeling 

approaches. The versatility of the available methods was critical in order to appreciate that 

different computational approaches are better suited for different types of pharmacological 

systems and questions. The phenomenal advances in computational and data sciences 

provide flexible and user-friendly computational environments making the use of 

sophisticated tools easily, and seamlessly adopted by a wide range of practitioners, 

addressing a multitude of problems across a broad spectrum of applications from disease 
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models to drug function, to the implications of drug formulation (Allan et al. 2008; Hamberg 

et al. 2015; Koch, Schropp 2013; Lunn et al. 2009; Wright, Duffull 2011; Verotta 2010; 

Sauro et al. 2003; Schmidt et al. 2013; Shoda et al. 2010; Einolf 2007; Rullmann et al. 2005; 

Kostewicz et al. 2014; Shono et al. 2010; Chetty et al. 2014; Mathias, Crison 2012).

From a computational point of view parameter estimation and model selection has, likely, 

been at the top of the list of critical challenges. However, the community has embraced 

systems approaches and has evolved them to a high level of standards (Ashyraliyev et al. 

2009; Baker et al. 2015; Liepe et al. 2014).

It could be argued that a most critical roadblock towards the systematic development of QSP 

models is that apparent lack of standardization of models, and model components (Ghosh et 

al. 2013). This is a fundamental issue which, although receiving increased attention, 

underlies essential difficulties. In more mature science and engineering fields, so-called 

“modular process simulators” enable the automated development of complex structures in 

the form of networked elements, each characterized by its own dynamics. However, each 

component and element of the network is well annotated and described by appropriate 

constitutive equations. Each element of the network can be represented as an appropriate 

object in modular form (Chen, Adomaitis 2006), whereas the equation-oriented formalism 

enables the exact representation of each module by a set of detailed mathematical equations 

(Pattison, Baldea 2014). Assembling of individual models can easily be automated in a 

“drag-and-drop” manner and complex models can therefore be generated and analyzed in 

great detail. However, the so-called “flow sheet optimization” in the chemical process 

industries is an activity which has been in development for decades (Gaines, Gaddy 1976) 

and, furthermore, since it focuses on engineered constructs, the details of the dynamics of 

each constitutive module and element are well understood. As a result, modules are 

interchangeable and complex networks can be built by appropriately linking said modules in 

ways dictated by specific applications, regardless of the complexity or the module or the 

network.

However, QSP models/modules do not have a quality yet comparable to their engineering 

counterparts. In QSP the constitutive modules are often the purpose of the analysis, 

reflective of the fundamental differences between Complex Engineered and Complex 

Biological Systems (Androulakis 2015). Unlike engineered systems, in complex biological 

(and pharmacological) systems, the constitutive elements of the network modules need to be 

identified through perturbations, which will uncover different aspect of their dynamics, 

which need to be quantified depending on the perturbation. At a higher level, indirect 

response modeling replicates this formalism, in the sense that the certain structures (such as 

indirect activation or inhibition of production/synthesis of a mediator, receptor mediated 

processes, transit compartments to name a few) can be made interchangeable with 

appropriately adjusted parameters (Krzyzanski, Jusko 1998; Hazra et al. 2006; Yao et al. 

2006). However, the question is whether the mathematical description of a signaling 

pathway targeted by a drug, for example, can be easily rendered ubiquitous and 

interchangeable as the analysis moves from one drug molecule, or disease, to another. 

Consider for example a critical, and rather pervasive, signaling pathway such as NfκB. Even 

though it represents a relatively common player in model development, numerous alternative 
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representations have emerged (Cheong et al. 2008; Williams et al. 2014). These reflect not 

only differences in the level of complexity that is required, or desired, but also differences in 

the way the elements of the signaling pathway present themselves, depending on the 

perturbation employed to reveal the wiring of the pathway (Androulakis et al. 2013; Kyrmizi 

et al. 2006; Nguyen et al. 2011; Nguyen et al. 2014).

Interestingly, the practitioners have expressed the need for standards as well as the concerns 

outlined above. An insightful discussion based on practitioners' input was presented in 

(Klipp et al. 2007) where the challenges were nicely articulated: “[…] 80% of the 
respondents consider the creation of [modeling] standards necessary or desirable: standards 

are expected to improve model reuse, expandability and integration, and allow for more 

productive collaboration […] standards improve communication between software tools, 

free exchange of information and comparison between different studies […] 

reimplementation of models becomes easier or dispensable, which reduces the duplication of 

work and the possibility of implementation errors. Theoreticians and software developers 

need benchmark data as experimentally verified gold standards to apply and to improve their 

methods […] respondents also expressed the concern that standards should be flexible, not 

become too restrictive and not prevent alternatives or new developments. Those respondents 

who were against standards argued that biology is too complex to be standardized and 

obeying standards may cause practical difficulties.” However, a number of efforts are 

currently under way aiming at developing model standardization frameworks (Drager, 

Palsson 2014; Friedrich 2016; Hucka et al. 2003; Hucka et al. 2004; Klipp et al. 2007; Kohl 

2011; Shapiro et al. 2004; Ermakov et al. 2014).

QSP: The context

Modeling and computation in the context of upgrading the information content of biological 

information defined, in late '70s, what eventually came to be known as “bioinformatics”, 

namely the collective efforts aiming at studying the “informatics processes of biotic 

systems” (Hogeweg 2011). The power of the collective methods that have since emerged, 

and now encompass not only bioinformatics but also systems biology approaches, is that it 

did not simply enable the faster, and more accurate, interpretation of complex data, i.e., 

defining the framework, but really enabled us to approach biological questions (or drug 

actions) from a different, more integrative, perspective, i.e., defining the context (Kidd et al. 

2015). As such, I wish to argue that QSP offers such an opportunity and needs to be 

evaluated and developed along the same lines, in other words the framework that enables us 

to place drug action in its broader context. In fact, this is not a methodology issue (see 

“framework” in preceding section) but it is rather driven by the critical health challenges of 

the future where the systems (host) view will be required to play a major role.

Despite the promise and potential of systems biology, “friendly”, yet constructive, criticism 

has indicated that for it to progress to the next level, physiology (i.e., the broader network of 

defense mechanisms) and environment (socio-economic, life style), in other words the 

system, need to become part of the analysis (Joyner, Pedersen 2011). The idea of extending 

the operating envelope beyond the cell, which by and large has been the focus of most 

Androulakis Page 5

Curr Pharmacol Rep. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systems biology/pharmacology models focusing on complex signaling pathways and/or 

modes of action has gained momentum.

For example, it has been increasingly recognized that large portion of the health challenges 

of the 21st century will be non-communicable conditions with one common, underlying, 

characteristic: persistent, low-grade, systemic inflammation, also known as meta-
inflammation (Egger, Dixon 2014; Libby 2007; Egger 2012; Bauer et al. 2014; Tabas, Glass 

2013). However, inflammation and inflammation related diseases have been difficult to 

control and regulate due to complexity and intertwined character of the response (Laroux 

2004). Inflammation characterizes a reaction critical for survival which evolved to balance 

redundancy, compensation and necessity (Tabas, Glass 2013). The balancing of seemingly 

conflicting objectives is really at the core of what characterizes biological complexity 

(Csete, Doyle 2002). Because the mechanisms orchestrating the inflammatory response are 

redundant, targeting one pathway may, and most likely will, not be enough; inhibiting one 

mechanism may, and most likely will, induce activation of alternatives to compensate; and 

finally inflammation is necessary for defense and survival, therefore the risk/benefit balance 

may, and most likely will, not be easily achieved. Obesity-associated inflammation, for 

example, appears to help to maintain insulin sensitivity, therefore it has also been postulated 

that anti-inflammatory therapies have failed in the treatment of insulin resistance (Gao, Ye 

2012) since inflammation promotes energy expenditure in a feedback manner to counteract 

an energy surplus to regulate energy balance (Ye, Keller 2010) whereas in peripheral tissues 

induces fat mobilization and oxidation to promote energy expenditure. In fact this broader 

(dys)regulation of energy in the context of chronic inflammatory diseases (such as 

rheumatoid arthritis) has been beautifully articulated by Straub in a series of papers 

exploring the systemic implications of chronic inflammation (Straub 2011; Spies et al. 2012; 

Straub et al. 2010; Straub 2012; Straub, Besedovsky 2003).

Considering the major challenges of the future, it has already been recognized that diseases 

such as Alzeihmer's and cancer have strong systemic components acting as either pre-

disposing factor or contributing to the development of the disease (Morris et al. 2014; Krstic, 

Knuesel 2013; Krstic et al. 2012; Redig, McAllister 2013). The systemic nature of cancer is 

not a recent realization (Meyer 1931), however, we may now have the opportunity to 

materialize such ideas for the benefit of drug discovery, disease treatment and improvement 

of health, by understanding the systemic aspect of the response mechanisms, their 

interactions with low-level targets and their reciprocal engagement and activation.

Although the aforementioned analyses point largely to disease etiology, a number of recent 

studies have also identified the potential of “non-obvious (non-targeted) interventions”. The 

“systemic” view is not simply an abstraction to enable the discussion, but it is rather a major 

factor in disease etiology and treatment justifying the role and potential of said interventions. 

Here is a short list of characteristic examples where non-specific “stressors” and 

“interventions” lead to disease and enable treatment:

• social interactions when absent can induce chronic-inflammation 

phenotype, leading to related diseases and all-causes mortality (Cole et al. 

2015); while when present, induce enhanced host's response (wound 
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healing) and in fact mimic a drug's effect (Vitalo et al. 2009). What is 

particularly intriguing, besides the fact that environmental enrichment, or 

lack of it, can impact specific cellular pathways, is that “mood” 

modification, either pharmacologically or behaviorally modified (through 

nest making), has the ability to induce fundamental changes at the cellular 

level of peripheral tissues given the intimate relations between brain and 

the immune system (Quan, Banks 2007) – a concept further explored by 

allostatic approaches (Karatsoreos, McEwen 2011).

• circadian rhythms (central and peripheral) coordinate and integrate a 

number of functional responses and metabolic cues (Asher, Schibler 

2011). The links between reprogramming of peripheral circadian clocks 

and physiological responses (Schibler et al. 2003) were beautifully 

exemplified in series of experiments which aimed at circadian 

reprogramming via time restricted feeding (controlling access to food 

without calorie restriction). It has been shown that timing of access to 

food, effectively setting metabolic rhythms, impacts tumor growth (Li et 

al. 2010), reverses the liver-specific abnormalities in a model of 

Huntington's disease (Maywood et al. 2010), alters high-fat diet 

metabolism impacting obesity factors (Hatori et al. 2012). On the other 

end, shift-work, often associated with disrupted feeding patterns, is a 

known disease pre-disposition factor (Yoon et al. 2012; Barclay et al. 

2012). Similarly well-established are the links between sleep disruption 

and immunity (Besedovsky et al. 2012) whereas the daily (Smolensky et 

al. 2015) and seasonal patterns of inflammation and chronic inflammatory 

diseases (Dopico et al. 2015; Iikuni et al. 2007; Kumar et al. 2007) are 

well established. Well characterized as well are the links between 

circadian disruption, inflammation and mood disorders (Alesci et al. 2005; 

Geoffroy et al. 2015; Quera Salva et al. 2011). In (Sunderram et al. 2014), 

the metabolic engagement of circadian rhythms in support of their health-

promoting role was further argued.

• voluntary regulation of the autonomic nervous system (ANS) often 

achieved by means of modulating breathing patterns (biofeedback) has 

clear impact on the inflammatory response (Lehrer et al. 2010). The links 

between “relaxation” activities, such as yoga, and impact on ANS-related 

disease (such as epilepsy, depression, post-traumatic stress disorder) is 

becoming more clear (Streeter et al. 2012), while ANS-engagement (yoga 

training) improved response to pharmaceutical treatment in a pulmonary 

tuberculosis study (Visweswaraiah, Telles 2004). Therefore, a seemingly, 

non-specific systemic modulation has clearly identifiable impact on 

cellular, disease-related, pathways affecting outcome.

• expectation of a positive outcome was found to induce dopamine release 

likely impacting manifestation of placebo effect (de la Fuente-Fernandez 

et al. 2001). Interestingly, genomic studies confirmed genetic pre-

disposition of likely activation of up-/down-stream dopamine pathway 
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which may help predict predisposition to positive response to placebo 

(Hall et al. 2015). On the other end, expectation of negative outcome was 

found to be a strong inducer of low-grade, chronic inflammation resulting 

in heart health decline (von Kanel 2015)

The aforementioned list, certainly partial and incomplete, points to a significant realization: 

response to treatment and development of disease is the result of the orchestrated 

coordination, and convolution, of a vertically and horizontally integrated network of 

pathways and function working in tandem. This realization becomes particularly important 

as we begin to delve deeper into the etiology of chronic disease which is not necessarily the 

result of a single genetic modification or initiating factor. Thus, this is clearly a major 

opportunity for QSP to adjust the context of the broader analysis. The implications could be 

significant not only because the integrated -systemic - approaches will shed light on the 

pathology, as the result of multiple low-level failures, but will also point to alternative 

pharmacological interventions supporting peripheral (causative) mechanisms leading to the 

symptoms and not only treating the symptoms.

QSP: Towards a framework for context

At the core of personalized medicine lies our ability to control the factors influencing 

disease processes and therapy. Simply put “steering [the right] patients to the right drug at 

the right dose at the right time”(Hamburg, Collins 2010). Key contributors in assessing and 

predicting drug effects are the drug's properties; the physiological characteristics guiding the 

processes of liberation, absorption, distribution, metabolism, and excretion (LADME)

(Kostewicz et al. 2014) and; the way the drug interacts, affects, and is affected by systemic 

defense mechanisms maintaining overall health aside from disease state. Among the most 

critical factors are the patient's sex (male vs. female) and age. Major breakthroughs will 

result not only from our ability to forecast such physiological implications during the early 

stages of the development of a drug (Kambayashi et al. 2013) but also how these would 

interact beyond the local site of action. The consequences are twofold: to streamline the drug 

development process by increasing the likelihood of success and reducing time to market 

through optimal design of formulations; and to enable the development of patient-specific 

formulations increasing the likelihood of treatment success targeting specific patient sub-

populations (Dickschen et al. 2014).

Earlier QSP efforts enabled us to extend and expand the concept of context in two ways: 

extending the “simpler” receptor-ligand effect model toward detailed signaling networks – 

with the help of pharmacogenomics (Jin et al. 2003; Yao et al. 2008); whereas PBPK 

enabled us to better understand the mechanisms and processes that enable the drug to reach 

its target PBPK (Sager et al. 2015; Berlin et al. 2015). Both conceptual approaches have 

proven extremely successful and systems models are gaining ever increased acceptance, 

slowly getting to the point where model predictions are emerging in the regulatory arena 

(Peterson, Riggs 2015).

The multifactorial and complex nature of the disease challenges of the future will require 

innovative therapeutic paradigms integrating pathology with therapeutic intervention. QSP 
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can form the foundation of such an approach (Leil, Bertz 2014). I previously argued 

(Androulakis 2015), and wish to re-emphasize in this review that the integrated approach, 

allowing us to move beyond the local site of action of a drug, would likely define the way 

forward for QSP. The concept of allostasis (McEwen 2000; Sterling 2012, 2003) enabled us 

to realize that pharmacologic restoration of low-level parameter targets, such a cytokine 

levels, to rather ill defined, “appropriate” levels can potentially have dire implications, since 

clamping such physiological parameters makes them insensitive to their systemic role. 

Furthermore, suppressed signals may induce compensatory actions and contribute to 

deficient responses while the network nature of the defense mechanisms will induce lateral 

changes due to blocking specific low-level mechanisms. Underlying these effects is the fact 

that pharmacological treatment of low-level targets may preclude, prevent or hamper the 

engagement of broader mechanisms (at the systemic level) leading to associate 

comorbidities, or act as predisposition factors (Brame, Singer 2010). As discussed earlier, 

unexpected results, such as placebo effects, can likely be explained by recognizing the 

beneficial implications of activating peripheral (higher-level and non-specific) indirect 

defense mechanisms (Sterling 2003).

Moving forward, QSP can not only provide the framework for model development, but also, 

more importantly, help us define the context within which a drug is expected to function. 

Given the health challenges of the future, I expect that a more integrated understanding of 

disease etiology and drug function would be required to approach the health challenges of 

the future. I propose therefore, that QSP can help define the context as the intellectual tools 

needed to advance the field.
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