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Abstract

Park and Casella (2008) provided the Bayesian lasso for linear models by assigning scale mixture 

of normal (SMN) priors on the parameters and independent exponential priors on their variances. 

In this paper, we propose an alternative Bayesian analysis of the lasso problem. A different 

hierarchical formulation of Bayesian lasso is introduced by utilizing the scale mixture of uniform 

(SMU) representation of the Laplace density. We consider a fully Bayesian treatment that leads to 

a new Gibbs sampler with tractable full conditional posterior distributions. Empirical results and 

real data analyses show that the new algorithm has good mixing property and performs 

comparably to the existing Bayesian method in terms of both prediction accuracy and variable 

selection. An ECM algorithm is provided to compute the MAP estimates of the parameters. Easy 

extension to general models is also briefly discussed.
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1 Introduction

In a normal linear regression setup, we have the following model

(1)

where y is the n × 1 vector of centered responses; X is the n × p matrix of standardized 

regressors; β is the p × 1 vector of coefficients to be estimated and ε is the n × 1 vector of 

independent and identically distributed normal errors with mean 0 and variance σ2.

The classical estimator in linear regression is the Ordinary Least Squares (OLS) estimator 

βÔLS = (X′X)−1X′y, which is obtained by minimizing the residual sum of squares (RSS) = 

(y − Xβ)′(y − Xβ). It is well known that the OLS estimator is highly unstable in the presence 

of multicollinearity. Also, if p ≫ n, it is known to produce a non-unique estimator as X is 

less than full rank. To improve upon the prediction accuracy of OLS, least squares regression 

methods with various penalties have been developed. Ridge regression (Hoerl and Kennard, 
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1970) minimizes RSS subject to a constraint . While ridge regression often 

achieves better prediction accuracy by shrinking OLS coefficients, it cannot do variable 

selection as it naturally keeps all the predictors. Frank and Friedman (1993) introduced 

bridge regression which minimizes RSS subject to a constraint , α ≥ 0. It 

includes ridge regression with α = 2 and subset selection with α = 0 as special cases. 

Among other developments, Fan and Li (2001) proposed the Smoothly Clipped Absolute 

Deviation (SCAD) penalty and Zhang (2010) introduced the minimum concave penalty 

(MCP), both of which result in consistent, sparse and continuous estimators in linear models 

(Fan and Li, 2001; Zhang, 2010).

Among penalized regression techniques, probably the most widely used method in statistical 

literature is the Least Absolute Shrinkage and Selection Operator (LASSO), which is a 

special case of bridge estimator with α = 1. The lasso of Tibshirani (1996) is obtained by 

minimizing

(2)

Compared to ridge regression a remarkable property of lasso is that it can shrink some 

coefficients exactly to zero, which facilitates automatic variable selection. Various 

computationally efficient algorithms have been proposed to obtain the lasso and related 

estimators (Efron et al., 2004; Wu and Lange, 2008; Friedman et al., 2010). Given the tuning 

parameter(s), these algorithms are extremely fast. However, none of these algorithms 

provide a valid measure of standard error (Kyung et al., 2010), which is arguably a major 

drawback of these approaches.

Very recently, much work has been done in the direction of Bayesian framework. Tibshirani 

(1996) suggested that lasso estimates can be interpreted as posterior mode estimates when 

the regression parameters are assigned independent and identical Laplace priors. Motivated 

by this, different approaches based on scale mixture of normal (SMN) distributions with 

independent exponentially distributed variances (Andrews and Mallows, 1974) have been 

proposed (Figueiredo, 2003; Bae and Mallick, 2004; Yuan and Lin, 2005). Park and Casella 

(2008) introduced Gibbs sampling using a conditional Laplace prior specification of the 

form

(3)

and non-informative scale-invariant marginal prior on σ2, i.e. π(σ2) ∝ 1/σ2. Park and 

Casella (2008) devoted serious efforts to address the important unimodality issue. They 

pointed out that conditioning on σ2 is important for unimodality and lack of unimodality 

might slow down the convergence of the Gibbs sampler and make the point estimates less 
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meaningful (Kyung et al., 2010). Other methods based on Laplace prior include Bayesian 

lasso via reversible-jump MCMC (Chen et al., 2011) and Bayesian lasso regression (Hans, 

2009). Unlike their frequentist counterparts, Bayesian methods usually provide a valid 

measure of standard error based on a geometrically ergodic Markov chain (Kyung et al., 

2010). Moreover, an MCMC-based Bayesian framework provides a flexible way of 

estimating the tuning parameter along with other parameters in the model.

In this paper, along the same line of Park and Casella (2008), we propose a new hierarchical 

representation of Bayesian lasso. A new Gibbs sampler is put forward utilizing the scale 

mixture of uniform (SMU) representation of the Laplace density. Empirical studies and real 

data analyses show that the new algorithm inherits good mixing property and yields 

satisfactory performance comparable to the existing Bayesian method. All statistical 

analyses and illustrations were conducted in R - 3.0.2 for Windows (64-bit). The remainder 

of the paper is organized as follows. In Section 2, we briefly review the SMU distribution. 

The Gibbs sampler is presented in Section 3. Some empirical studies and real data analyses 

are presented in Sections 4 and 5 respectively. Section 6 describes the ECM algorithm and 

easy extension to GLM is provided in Section 7. In Section 8, we provide conclusions and 

further discussions in this area. Some proofs and related derivations are included in an 

appendix.

2 Scale Mixture of Uniform Distribution

Proposition

A Laplace density can be written as a scale mixture of uniform distribution, the mixing 
density being a particular gamma distribution, i.e.

(4)

Proof of this result is straightforward and included in Appendix A.

SMU distribution for regression models has been used in a few occasions in literature. 

Walker et al. (1997) used SMU distribution in normal regression models in non-Bayesian 

framework. Qin et al. (1998) provided Gibbs sampler by using SMU in variance regression 

models and also to derive Gibbs sampler for autocorrelated heteroscedastic regression 

models (Qin et al., 1998a). Choy et al. (2008) used it in stochastic volatility model by using 

a two-stage scale mixture representation of the student-t distribution. However, its use has 

been limited in penalized regression setting. We explore this fact by observing that the 

penalty function in lasso corresponds to a scale mixture of uniform distribution, the mixing 

distribution being a particular gamma distribution. Following Park and Casella (2008), we 

consider conditional Laplace priors of the form (3) on the coefficients and scale-invariant 

marginal prior on σ2. Rewriting the Laplace priors as scale mixtures of uniform distributions 

and introducing the gamma mixing densites result in a new hierarchy. Under this new 

hierarchical representation, the posterior distribution of interest p(β, σ2|y) is exactly same as 

the original Bayesian lasso model of Park and Casella (2008) and therefore, the resulting 
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estimates should exactly be same ‘theoretically’ for both Bayesian lasso models. We 

establish this fact by simulation studies and real data analyses. Conditioning on σ2 ensures 

unimodal full posteriors in both Bayesian lasso models.

3 The New Bayesian Lasso

3.1 Model Hierarchy and Prior Distributions

Using (3) and (4), we formulate our hierarchical representation as follows:

(5)

3.2 Full Conditional Posterior Distributions

Introduction of u = (u1, u2, …, up)′ enables us to derive the tractable full conditional 

posterior distributions, which are given as

(6)

(7)

(8)

where, I(․) denotes an indicator function. The derivations are included in Appendix A.
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3.3 MCMC Sampling for the New Bayesian Lasso

3.3.1 Sampling Coefficients and Latent Variables—(6), (7) and (8) lead us to an 

exact Gibbs sampler that starts at initial guesses for β and σ2 and iterates the following 

steps:

1. Generate uj from the left-truncated exponential distribution (7) using 

inversion method which can be done as follows:

a. Generate  from an exponential distribution with rate 

parameter λ.

b.

Set, .

2. Generate β from a truncated multivariate normal distribution proportional 

to (6). This step can be done by implementing efficient sampling 

technique developed by Li and Ghosh (2013).

3. Generate σ2 from a left-truncated inverse-gamma distribution proportional 

to (8). This step can be done by utilizing the fact that the inverse of a left-

truncated inverse-Gamma distribution is a right-truncated Gamma 

distribution. By generating σ2*
 from the right-truncated gamma 

distribution proportional to

and replacing , we can mimic sampling from the targeted left-

truncated inverse-Gamma distrbution (8).

3.3.2 Sampling Hyperparameters—To update the tuning parameter λ, we work directly 

with the Laplace density marginalizing out the latent variables uj’s. From (5), we observe 

that the posterior for λ given β is conditionally independent of y and takes the form

Therefore, if λ has a Gamma(a,b) prior, its conditional posterior will also be a gamma 

distribution, i.e.
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Thus, we update the tuning parameter along with other parameters in the model by 

generating samples from .

4 Simulation Studies

4.1 Prediction

In this section, we investigate the prediction accuracy of our method (NBLasso) and 

compare its performance with both original Bayesian lasso (OBLasso) and frequentist lasso 

(Lasso) across varied simulation scenarios. LARS algorithm of Efron et al. (2004) is used 

for lasso, in which 10-fold cross-validation is used to select the tuning parameter, as 

implemented in the R package lars. For Bayesian lassos, we estimate the tuning parameter λ 
by using a gamma prior distribution with shape parameter a = 1 and scale parameter b = 0.1, 

which is relatively at and results in high posterior probability near the MLE (Kyung et al., 

2010). The Bayesian estimates are posterior means using 10, 000 samples of the Gibbs 

sampler after burn-in. To decide on the burn-in number, we make use of the potential scale 

reduction factor (Gelman and Rubin, 1992). Once R̂ < 1.1 for all parameters of interest, we 

continue to draw 10,000 iterations to obtain samples from the joint posterior distribution. 

The response is centered and the predictors are normalized to have zero means and unit 

variances before applying any model selection method. For the prediction errors, we 

calculate the median of mean squared errors (MMSE) for the simulated examples based on 

100 replications. We simulate data from the true model

Each simulated sample is partitioned into a training set and a testing set. Models are fitted on 

the training set and MSE’s are calculated on the testing set. In all examples, detailed 

comparisons with both ordinary and Bayesian lasso methods are presented.

Example 1 (Simple Example - I)—Here we consider a simple sparse situation which 

was also used by Tibshirani (1996) in his original lasso paper. Here we set β40×1 = (0T, 2T, 
0T, 2T)T, where 010×1 and 210×1 are vectors of length 10 with each entry equal to 0 and 2 

respectively. The design matrix X is generated from the multivariate normal distribution with 

mean 0, variance 1 and pairwise correlations between xi and xj equal to 0.5. We experiment 

with four different scenarios by varying the sample size and σ2. We simulate datasets wih 

{nT, nP} = {100, 400} and {200,200} respectively, where nT denotes the size of the training 

set and nP denotes the size of the testing set. We consider two values of σ : σ ∈ {9, 25}. The 

simulation results are summarized in Table 1 which clearly suggest that NBLasso 

outperforms both Lasso and OBLasso across all scenarios of this example.

Example 2 (Difficult Example - I)—In this example, we consider a complicated model 

which exhibits a substantial amount of data collinearity. This example was presented in the 

elastic net paper by Zou and Hastie (2005). Here we simulate Z1, Z2 and Z3 independently 

from N(0,1). Then, we let xi = Z1 + εi, i = 1(1)5; xi = Z2 + εi, i = 6(1)10; xi = Z3 + εi, i = 

11(1)15 and xi ~ N(0, 1), i = 16(1)30, where εi ~ N(0, 0.01), i = 1(1)15. We set β30×1 = (3T, 
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3T, 3T, 0T)T where 35×1 and 015×1 are vectors of length 5 and 15 with each entry equal to 3 

and 0 respectively. We experiment with the same values of σ2 and {nT, nP} as in Example 1. 

The simulation results are presented in Table 2. It can be observed that NBLasso is 

competitive with OBLasso in terms of prediction accuracy in all the scenarios presented in 

this example.

Example 3 (High Correlation Example - I)—Here we consider a sparse model with 

strong level of correlation. We set β8×1 = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ2 = {1, 9}. The 

design matrix X is generated from the multivariate normal distribution with mean 0, variance 

1 and pairwise correlations between xi and xj equal to 0.95 ∀ i ≠ j. We simulate datasets 

with nT = {20, 50, 100, 200} for the training set and nP = 200 for the testing set. Table 3 

summarizes our experimental results for this example. We can see that both Bayesian lassos 

yield similar performance and usually outperform their frequentist counterpart. As nT 

increases, all the three methods yield equivalent performance.

Example 4 (Small n Large p Example)—Here we consider a case where p ≥ n. We let 

β1:q = (5, …, 5)T, βq+1:p = 0, p = 20, q = 10, σ = {1, 3}. The design matrix X is generated 

from the multivariate normal distribution with mean 0, variance 1 and pairwise correlations 

between xi and xj equal to 0.95 ∀ i ≠ j. We simulate datasets with nT = {10, 20} for the 

training set and nP = 200 for the testing set. It is evident from the results presented in Table 4 

that the proposed method performs better than both OBLasso and Lasso in most of the 

situations. In one situation, OBLasso performs slightly better. Overall, Bayesian lassos 

significantly outperform frequentist lasso in terms of prediction accuracy.

4.2 Variable Selection

In this section, we investigate the model selection performance of our method (NBLasso) 

and compare its performance with both original Bayesian lasso (OBLasso) and frequentist 

lasso (Lasso). Note that, the lasso was originally developed as a variable selection tool. 

However, in Bayesian framework, this attractive property vanishes as Bayesian lassos 

usually do not set any coefficient to zero. One way to tackle this problem is to use the 

credible interval criterion as suggested by Park and Casella (2008) in their seminal paper. 

However, it brings the problem of threshold selection. Moreover, credible intervals are not 

uniquely defined. Therefore, we will seek out an alternative strategy here. In Bayesian 

paradigm, it is a standard procedure to fully explore the posterior distribution and estimate λ 
by posterior median or posterior mean. Therefore, we can plug in the posterior estimate of λ 
in (2) and solve (2) to carry out variable selection. This strategy was recently used by Leng 

et al. (2014). For the optimization problem (2), we make use of the LARS algorithm of 

Efron et al. (2004).

For each simulated dataset, we apply three different lasso methods viz. NBLasso, OBLasso 

and Lasso and record the frequency of correctly-fitted models over 100 replications. For the 

Bayesian lassos, we assign a Gamma (1, 0.1) prior on λ to estimate the tuning parameter. 

Based on the posterior samples (10, 000 MCMC samples after burn-in), we calculate two 

posterior quantities of interest, viz. posterior mean and posterior median. Then we plug-in 

either posterior mean or posterior median estimate of λ in (2) and solve (2) to get the 
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estimates of the coefficients. We refer to these different strategies as NBLasso-Mean, 

OBLasso-Mean, NBLasso-Median and OBLasso-Median, where NBLasso-Mean refers to 

NBLasso coupled with λ estimated by posterior mean, OBLasso-Median refers to OBLasso 

coupled with λ estimated by posterior median and so on. LARS algorithm is used for 

frequentist lasso, in which 10-fold cross-validation is used to select the tuning parameter. 

The response is centered and the predictors are normalized to have zero means and unit 

variances before applying any model selection method.

Example 5 (Simple Example - II)—This example was used in the original lasso paper to 

systematically compare the predictive performance of lasso and ridge regression. Here we 

set β8×1 = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ2 = 9. The design matrix X is generated from the 

multivariate normal distribution with mean 0, variance 1 and pairwise correlations between 

xi and xj equal to 0.5|i−j| ∀ i ≠ j. We simulate datasets with nT = {20, 50, 100, 200} for the 

training set and nP = 200 for the testing set. The simulation results are summarized in Table 

5. From Table 5 we can see that NBLasso performs reasonably well outperforming both 

frequentist and original Bayesian lasso.

Example 6 (Simple Example - III)—We consider another simple example from 

Tibshirani’s original lasso paper. We set β8×1 = (5, 0, 0, 0, 0, 0, 0, 0)T and σ2 = 9. The design 

matrix X is generated from the multivariate normal distribution with mean 0, variance 1 and 

pairwise correlations between xi and xj equal to 0.5|i−j| ∀ i ≠ j. We simulate datasets with nT 

= {20, 50, 100, 200} for the training set and nP = 200 for the testing set. The simulation 

results are presented in Table 6. For this example, we see that NBLasso always performs 

better than OBLasso although outperformed by frequentist lasso in many situations. The 

reason might be contributed to the fact that not much variance is explained by introducing 

the priors which resulted in poor model selection performance for the Bayesian methods.

Example 7 (Difficult Example - II)—Here we consider a situation where lasso does not 

give consistent model selection. This example is taken from the adaptive lasso paper by Zou 

(2006). Here we set β4×1 = (5.6, 5.6, 5.6, 0)T and the correlation matrix of X is such that 

Cor(xi, xj) = −0.39, i < j < 4 and Cor(xi, x4) = 0.23, i < 4. Zou (2006) showed that for this 

example lasso is inconsistent regardless of the sample size. The experimental results are 

summarized in Table 7. None of the methods performed well for this example. Both 

Bayesian lassos yield similar performance and behave better than frequentist lasso in 

selecting the correct model.

Example 8 (High Correlation Example - II)—Here we consider a simple model with 

strong level of correlation. We set β8×1 = (5, 0, 0, 0, 0, 0, 0, 0)T and σ2 = 9. The design 

matrix X is generated from the multivariate normal distribution with mean 0, variance 1 and 

pairwise correlations between xi and xj equal to 0.95 ∀ i ≠ j. We simulate datasets with nT = 

{20, 50, 100, 200} for the training set and nP = 200 for the testing set. Table 8 summarizes 

our experimental results for this example. It can be seen from the table that both Bayesian 

lassos yield similar performance and outperform frequentist lasso.
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4.3 Some Comments

We have considered a variety of experimental situations to investigate the predictive and 

model selection performance of NBLasso. Most of the simulation examples considered here 

have previously appeared in other lasso and related papers. From our extensive simulation 

experiments it is evident that NBLasso performs as well as, or better than OBLasso for most 

of the examples. For the simple examples, NBLasso performs the best whereas for other 

examples, NBLasso provides comparable and slightly better performance in terms of 

prediction and model selection. Note that, superiority of Bayesian lasso and related methods 

is already well-established in literature (Kyung et al., 2010; Li and Lin, 2010; Leng et al., 

2014). We have found similar conclusion in this paper. For all the simulated examples, 

convergence of the corresponding MCMC chain was assessed by trace plots of the generated 

samples and calculating the Gelman-Rubin scale reduction factor (Gelman and Rubin, 1992) 

using the coda package in R. For n ≤ p situation, none of the methods performed well in 

model selection. Therefore, those results are omitted. In summary, based on our 

experimental results, it can be concluded that NBLasso is as effective as OBLasso with 

respect to both model selection and prediction performance.

5 Real Data Analyses

In this section, two real data analyzes are conducted using the proposed and the existing 

lasso methods. Four different methods are applied to the datasets: original Bayesian lasso 

(OBLasso), new Bayesian lasso (NBLasso), frequentist lasso (Lasso) and ordinary least 

squares (OLS). For the Bayesian methods, posterior means are calculated as estimates based 

on 10, 000 samples after burnin. To decide on the burn-in number, we make use of the 

potential scale reduction factor (Gelman and Rubin, 1992). Once R̂ < 1.1 for all parameters 

of interest, we continue to draw 10,000 iterations to obtain samples from the joint posterior 

distribution. The tuning parameter λ is estimated as posterior mean with a gamma prior with 

shape parameter a = 1 and scale parameter b = 0.1 in the MCMC algorithm. The 

convergence of our MCMC is checked by trace plots of the generated samples and 

calculating the Gelman-Rubin scale reduction factor (Gelman and Rubin, 1992) using the 

coda package in R. For the frequenstist lasso, 10-fold cross-validation (CV) is used to select 

the shrinkage parameter. The response is centered and the predictors are normalized to have 

zero means and unit variances before applying any model selection method.

5.1 The Diabetes Example

We analyze the benchmark diabetes dataset (Efron et al., 2004) which contains n = 442 

measurements from diabetes patients. Each measurement has ten baseline predictors: age, 

sex, body mass index (bmi), average blood pressure (map) and six blood serum 

measurements (tc, ldl, hdl, tch, lth, glu). The response variable is a quantity that measures 

progression of diabetes one year after baseline. Figure 1 gives the 95% equal-tailed credible 

intervals along with posterior mean Bayesian lasso estimates of Diabetes data covariates 

along with frequentist lasso estimates, overlaid with OLS estimates with corresponding 95% 

confidence intervals. The estimated λ’s are 5.1 (2.5, 9.1) and 4.0 (2.2, 6.4) for NBLasso and 

OBLasso respectively. Figure 1 shows that two Bayesian lassos behave similarly for all the 

coefficients of this dataset. The 95% credible intervals are also similar. Any observed 
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differences in parameter estimates can be contributed (up to Monte Carlo error) to the 

properties of the different Gibbs samplers used to obtain samples from the corresponding 

posterior distributions. The histograms of the Diabates data covariates based on posterior 

samples of 10,000 iterations are illustrated in Figure 2 (bottom panel). These histograms 

reveal that the conditional posterior distributions are in fact the desired stationary truncated 

univariate normals.

The mixing of an MCMC chain shows how rapidly the MCMC chain converges to the 

stationary distribution (Gelman et al., 2003). Autocorrelation function (ACF) plots and trace 

plots are good visual indicators of the mixing property. These plots are shown in Figures 2 

(top panel) and 3 for the Diabetes data covariates. It is highly satisfactory to observe that for 

this benchmark dataset the samples traverse the posterior space very fast and the 

autocorrelations decay to zero rapidly. We also conduct the Geweke’s convergence diagnosis 

test and all the individual chains pass the tests. All these illustrate that the new Gibbs 

sampler has good mixing property.

5.2 The Prostate Example

The data in this example is taken from a prostate cancer study (Stamey et al., 1989). 

Following Zou and Hastie (2005), we analyze the data by dividing it into a training set with 

67 observations and a test set with 30 observations. Model fitting is carried out on the 

training data and performance is evaluated with the prediction error (MSE) on the test data. 

The response of interest is the logarithm of prostate-specific antigen. The predictors are 

eight clinical measures: the logarithm of cancer volume (lcavol), the logarithm of prostate 

weight (lweight), age, the logarithm of the amount of benign prostatic hyperplasia (lbph), 

seminal vesicle invasion (svi), the logarithm of capsular penetration (lcp), the Gleason score 

(gleason) and the percentage Gleason score 4 or 5 (pgg45). Figure 4 shows the 95% equal-

tailed credible intervals for regression parameters of Prostate data based on the posterior 

mean Bayesian lasso estimates with point estimates of frequentist lasso and OLS estimates 

with corresponding 95% confidence intervals. The estimated λ’s are 3.5 (1.6, 7.3) and 3.1 

(1.5, 5.3) for NBLasso and OBLasso respectively. The predictors in this dataset are known to 

be more correlated than those in the Diabetes data. Even for this dataset, the proposed 

method performs impressively. Figure 4 reveals that the two Bayesian lasso estimates are 

strikingly similar and the 95% credible intervals are almost identical for this dataset. Also, it 

is interesting to note that for this dataset all the estimates are inside the credible intervals 

which indicates that the resulting conclusion will be similar regardless of which method is 

used. Moreover, the new method outperforms both OBLasso and Lasso in terms of 

prediction accuracy (Table 9).

The trace plots and ACF plots shown in Figures 5 and 6 (left panel) demonstrate that the 

autocorrelations decay to zero very fast and the sampler jumps from one remote region of 

the posterior space to another in relatively few steps. Here also, we conduct Geweke’s 

convergence diagnosis test and all the individual chains pass the tests. All these establish 

good mixing property of the proposed Gibbs sampler. The histograms of the Prostate data 

covariates based on 10,000 posterior samples (Figure 6 right panel) reveal that the 
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conditional posterior distributions are the desired stationary distributions viz. truncated 

univariate normals, which further validate our findings.

6 Extensions

6.1 MCMC for General Models

In this section, we briefly discuss how NBLasso can be extended to several other models 

(e.g. GLM, Cox’s model, etc.) beyond linear regression. Our extension is based on the least 

squares approximation (LSA) by Wang and Leng (2007). Recently, Leng et al. (2014) used 

this approximation for Bayesian lasso. Therefore, here we only describe the algorithm for 

NBLasso. The algorithm for OBLasso can be found in Leng et al. (2014). Let us denote by 

L(β) the negative log-likelihood. Following Wang and Leng (2007), L(β) can be 

approximated by LSA as follows

where β̃ is the MLE of β and Σ̂−1 = σ2L(β)/γβ2. Therefore, for a general model, the 

conditional distribution of y is given by

Thus, we can easily extend our method to several other models by approximating the 

corresponding likelihood by normal likelihood. Combining the SMU representation of the 

Laplace density and the LSA approximation of the general likelihood, the hierarchical 

presentation of NBLasso for general models can be written as

(9)

The full conditional distributions are given as
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(10)

(11)

(12)

As before, an efficient Gibbs sampler can be easily carried out based on these full 

conditionals.

6.2 Simulation Examples for General Models

We now assess the performance of NBLasso in general models by means of two examples. 

For brevity, we only report the performance of various methods in terms of prediction 

accuracy. Three different lasso methods are applied to the simulated datasets. For the 

frequentist lasso, we use the R package glmnet which implements the coordinate descent 

algorithm of Friedman et al. (2010), in which 10-fold cross-validation is used to select the 

tuning parameter. We normalize the predictors to have zero means and unit variances before 

applying any model selection method. For the prediction errors, we calculate the median of 

mean squared errors (MMSE) for the simulated examples based on 100 replications. The 

design matrix X is generated from the multivariate normal distribution with mean 0, variance 

1 and pairwise correlations between xi and xj equal to 0.5|i−j| ∀ i ≠ j. We simulate datasets 

with nT = {200, 400} for the training set and nP = 500 for the testing set.

Example 9 (Logistic Regression Example)—In this example, observations with 

binary response are independently generated according to the following model (Wang and 

Leng, 2007)

where β9×1 = (3, 0, 0, 1.5, 0, 0, 2, 0, 0)T. The experimental results are summarized in Table 

10, which shows that NBLasso performs comparably with OBLasso. As the size of the 

training data increases, all the three methods yield equivalent performance.

Example 10 (Cox’s Model Example)—In this simulation study, independent survival 

data are generated according to the following hazard function (Wang and Leng, 2007)
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where ti is the survival time from the ith subject and β8×1 = (0.8, 0, 0, 1, 0, 0, 0.6, 0)T. Also, 

independent censoring time is generated from an exponential distribution with mean u 

, where u ~ Uniform(1, 3). The experimental results are summarized in Table 11, 

which shows that both Bayesian lassos perform comparably, outperforming frequentist lasso. 

Thus, it is evident from the experimental results that NBLasso is as effective as OBLasso 

even for the general models.

7 Computing MAP Estimates

7.1 ECM Algorithm for Linear Models

It is well known that the full conditional distributions of a truncated multivariate normal 

distribution are truncated univariate normal distributions. This fact motivates us to develop 

an ECM algorithm to estimate the marginal posterior modes of β and σ2. At each step, we 

treat the latent variables uj ’s and the tuning parameter λ as missing parameters and average 

over them to estimate βj’s and σ2 by maximizing the expected log conditional posterior 

distributions.

The complete data log-likelihood is

(13)

We initialize the algorithm by starting with a guess of β and σ2. Then, at each step of the 

algorithm, we replace u and λ in the log joint posterior (13) by their expected values 

conditional on the current estimates of β and σ2. Finally, we update β and σ2 by maximizing 

the expected log conditional posterior distributions. The algorithm proceeds as follows:

E-Step:
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CM-Steps: ,

At convergence of the algorithm, we summarize the inferences using latest 

estimates of β and σ2 and variances (Johnson et al., 1994).

7.2 ECM Algorithm for General Models

Similarly, an approximate ECM algorithm for general models can be given as follows:

1. E-Step:

2.

CM-Steps: 

3. Repeat 1 & 2 until convergence.

8 Concluding Remarks

In this paper, we have introduced a new hierarchical representation of Bayesian lasso using 

SMU distribution. It is to be noted that the posterior distribution of interest p(β, σ2|y) is 

exactly same for both original Bayesian lasso (OBLasso) and new Bayesian lasso (NBLasso) 

models. As such, all inference and prediction that is based on the posterior distribution 

should be exactly same ‘theoretically’. Any observed differences must be attributed (up to 

Monte Carlo error) to the properties of the different Gibbs samplers used to obtain samples 

from the corresponding posterior distributions. We establish this fact by real data analyses 

and empirical studies. Our results indicate that both Bayesian lassos perform comparably in 
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different empirical and real scenarios. In many situations, the new method is competitive in 

terms of either prediction accuracy or variable selection. Moreover, NBLasso performs quite 

satisfactorily for general models beyond linear regression. Furthermore, the proposed Gibbs 

sampler inherits good mixing properties as evident from both empirical studies (data not 

shown due to too many predictors) and real data analyses. Note that, we do not have a 

theoretical result on the posterior convergence of our MCMC. Therefore, despite our 

encouraging findings, theoretical research is needed to investigate the posterior convergence 

of the proposed MCMC algorithm.

One should be aware that both non-Bayesian and Bayesian lasso are essentially optimization 

methods with the common goal of determining the model parameters that maximize some 

objective function. Therefore, a Bayesian approach can often lead to very different results 

than a traditional penalized likelihood approach (Hans, 2010). Apart from the advantages 

discussed above, the proposed Bayesian lasso also has some limitations as it carries forward 

all the drawbacks of frequentist lasso (Kyung et al., 2010). To overcome those limitations, 

one can easily adopt the adaptive lasso (Zou, 2006) by choosing variable-specific tuning 

parameter in the MCMC step. However, adopting the new hierarchical representation based 

on SMU distribution to other regularization methods viz. bridge estimator (Frank and 

Friedman, 1993), group lasso (Yuan and Lin, 2006; Meier et al., 2008), elastic net (Zou and 

Hastie, 2005), group bridge (Huang et al., 2009), adaptive group bridge (Park and Yoon, 

2011) and adaptive elastic net (Zhou et al., 2010; Ghosh, 2011) remains an active area for 

future research.
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A Appendix Section

Proof of Proposition

It is well known that

Therefore, the pdf of a Laplace distribution with mean 0 and variance  can be written 

as

Hence the proof (4).

Mallick and Yi Page 15

Stat Interface. Author manuscript; available in PMC 2016 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Posterior Distributions

Assuming that priors for different parameters are independent, we can express the joint 

posterior distribution of all parameters as:

Conditional on y, X, u, λ, σ2, the posterior distribution of β is

Hence,

(6)

Similarly,

Therefore,

(7)

Similarly,

Therefore,
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(8)
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Figure 1. 
Posterior mean Bayesian lasso estimates (computed over a grid of λ values, using 10,000 

samples after burn-in) and corresponding 95% credible intervals (equal-tailed) of Diabetes 

data (n = 442) covariates. The hyperprior parameters were chosen as a = 1, b = 0.1. OLS 

estimates with corresponding 95% confidence intervals are also reported. For the lasso 

estimates, the tuning parameter was chosen by 10-fold CV of the LARS algorithm.
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Figure 2. 
ACF plots and histograms based on posterior samples of Diabetes data covariates.
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Figure 3. 
Trace plots of Diabetes data covariates.
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Figure 4. 
Posterior mean Bayesian lasso estimates (computed over a grid of λ values, using 10,000 

samples after burn-in) and corresponding 95% credible intervals (equal-tailed) of Prostate 

data (n = 67) covariates. The hyperprior parameters were chosen as a = 1, b = 0.1. OLS 

estimates with corresponding 95% confidence intervals are also reported. For the lasso 

estimates, the tuning parameter was chosen by 10-fold CV of the LARS algorithm.
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Figure 5. 
Trace plots of Prostate data covariates.
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Figure 6. 
ACF plots and histograms based on posterior samples of Prostate data covariates.
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Table 1

Median mean squared error (MMSE) based on 100 replications for Example 1

{nT, nP} σ2 Lasso OBLasso NBLasso

{200, 200} 225 279.72 249.79 244.4

{200, 200} 81 101.2 93.89 92.93

{100, 400} 225 354.19 268.74 259.85

{100, 400} 81 131.62 104.17 102.32
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Table 2

Median mean squared error (MMSE) based on 100 replications for Example 2

{nT, nP} σ2 Lasso OBLasso NBLasso

{200, 200} 225 242.97 240.85 240.35

{200, 200} 81 90.01 88.98 88.92

{100, 400} 225 250.35 254.71 253.84

{100, 400} 81 93.36 95.34 94.49
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Table 3

Median mean squared error (MMSE) based on 100 replications for Example 3

nT σ Lasso OBLasso NBLasso

20 3 11.61 10.4 10.4

50 3 10.03 9.8 9.8

100 3 9.6 9.55 9.54

200 3 9.4 9.29 9.29

20 1 1.79 1.6 1.6

50 1 1.28 1.27 1.27

100 1 1.19 1.18 1.18

200 1 1.1 1.1 1.1
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Table 4

Median mean squared error (MMSE) based on 100 replications for Example 4

nT σ Lasso OBLasso NBLasso

10 3 91.39 77.0 77.4

10 1 81.4 69.47 68.81

20 3 86.04 41.66 41.59

20 1 46.94 30.98 30.71
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Table 9

Prostate Cancer Data Analysis - Mean squared prediction errors based on 30 observations of the test set for 

four methods : New Bayesian Lasso (NBLasso), Original Bayesian Lasso (OBLasso), Lasso and OLS

Method NBLasso OBLasso Lasso OLS

MSE 0.4696 0.4729 0.4856 0.5212
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Table 10

Simulation Results for Logistic Regression

nT Lasso OBLasso NBLasso

200 0.004 0.006 0.006

400 0.003 0.004 0.003
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Table 11

Simulation Results for Cox’s Model

nT Lasso OBLasso NBLasso

200 0.41 0.3 0.3

400 0.15 0.1 0.1
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