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Abstract

Asthma’s a problem of inhaling too much Hyperinflation, air trapping, and such. But physicians 

find themselves just as aghast When a patient finally exhales his last. So which deserves the 

frowning pout: Breathing in or breathing out? So it is with the mitochondrion, Which is better, 

fission or fusion? Both out and in make good respiration Ditto for mitochondrial undulation. 
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I. Introduction

Mitochondria can present many different faces depending on environmental conditions and 

cellular requirements. They change their structure, their proteome, their metabolism, and 

even their genome, in response to cellular and environmental cues. As they remodel, they in 

turn alter cellular programs and capabilities. Mitochondrial remodeling is a component of 

the pathophysiology of diverse diseases, including neurological, cardiovascular, metabolic 

and oncologic. In this setting, mitochondrial alterations may be either secondary processes 

or primary mechanisms due to mutations in genes that regulate mitochondrial remodeling. 

However, the role of mitochondrial remodeling in normal physiological processes is gaining 

increased recognition. In this review we will cover structural remodeling, comprising fusion 

and fission; mitochondrial turnover accomplished by mitophagy and biogenesis; proteomic 

alterations and posttranslational modifications; metabolic alterations; reactive oxygen 

species; and retrograde signaling whereby mitochondria modify the nuclear program.
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II. Mitochondrial Structural Remodeling: rearranging and recycling

The dynamic nature of mitochondrial morphology was apparent even to the 19th century 

scientists who first proposed the name: mitos (thread-like) and chondrion (granule-like) (1, 

2). Mitochondrial dynamics are those processes that regulate mitochondrial morphology, 

including: (a) Mitochondrial fission: the process that creates more numerous, smaller and 

more circular mitochondria; (b) Mitochondrial fusion: the process that creates fewer, larger 

and more elongated mitochondria; (c) Mitophagy: the process of removing damaged 

mitochondria; and (d) Mitochondrial biogenesis: the process that increases mitochondrial 

number and/or volume through increased expression of both mitochondrial and nuclear 

transcripts. This is illustrated in Fig. 1.

A. Mitochondrial fission is mediated by dynamin-1-like protein (Drp1), a member of the 

dynamin superfamily, consisting of a GTPase and GTPase effector domain separated by a 

helical segment. Fission occurs when Drp1 is translocated from the cytosol to the outer 

mitochondrial membrane (OMM) leading to a complex, and as yet still not fully understood, 

interaction with three integral OMM proteins, Fis1, Mff, and MIEF1.

1. Fis-1. Fis1 is the most evolutionarily conserved pathway, and is a major 

regulator of fission in yeast. In yeast cells, two adapter proteins (Mdiv1 

and Caf4) link Drp1 and Fis1, although similar adapters have not been 

found in mammalian cells. The role of Fis1 in fission in mammalian cells 

is still controversial, with some studies supportive (overexpression of Fis1 

induces fragmentation; knockdown of Fis1 results in elongation (3–5)), yet 

others arguing against a role (the absence of bridging proteins; Fis1 is 

uniformly distributed on the OMM, whereas when Drp1 is translocated, it 

localizes to punctate structures; altering the level of Fis1 does not affect 

the distribution of Drp1 on the OMM (5, 6); ablation of Fis1 does not alter 

mitochondrial morphology or block fission (7)). It is possible, therefore, 

that Fis1 may play a role in recruitment of Drp1 in certain cell types and 

under certain stressors, but not others (8, 9). Some of the strongest 

evidence confirming the role of Fis1 in mammalian cells comes from 

studies showing that a peptide designed to specifically inhibit the Drp1-

Fis1 interaction can block fission in both cardiomyocytes and neuronal 

cells, attenuating ischemic injury or neurodegeneration, respectively (10–

12).

2. Mff is an OMM protein not found in yeast. Knockdown of Mff leads to 

increased mitochondrial fusion whereas overexpression leads to 

fragmentation. However, Mff and Fis1 are located in different complexes 

on the OMM (13) and Mff-mediated fission is independent of Fis1 (7, 14), 

suggesting that these two proteins play different roles or activate fission in 

response to different stressors.

3. MIEF1 (mitochondrial elongation factor 1). Also known as MiD51 and 

MiD49 (mitochondrial dynamic proteins), MIEF1 is co-localized with 

Drp1 in punctate structures on the OMM. Overexpression of MIEF1 
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recruits Drp1 but, intriguingly, induces mitochondrial elongation rather 

than fragmentation; similarly, knockdown of MIEF1 leads to 

fragmentation. As well, the recruitment of Drp1 by MIEF1 is independent 

of Drp1 phosphorylation or its GTPase activity (15). The current paradigm 

is that although MIEF1 recruits Drp1, it sequesters it from interaction with 

Fis1, thus inhibiting its activity. MIEF1 also associates with Fis1 in a 

Drp1-independent manner (15), competing for MIEF1 binding with Drp1, 

and thus attenuating the inhibitory effects of MIEF1 on Drp1.

4. Post-translational modifications (PTMs) are key to the regulation of 
mitochondrial dynamics. Drp1 is activated/deactivated via several post-

translational modifications (16, 17): Phosphorylation at Ser637 by PKA 

inhibits fission, whereas phosphorylation at Ser616 by the cell cycle 

regulator cyclin B1/Cdk1 activates fission (18). Intracellular Ca2+ 

modulates fission at two sites: calcineurin-mediated dephosphorylation 

(pro-fission) at Ser637 (19, 20) and CaMK phosphorylation (pro-fission) 

at Ser616 (21). Additional PTMs regulating fission include Drp1 

sumoylation (pro-fission) by SUMO1, MAPL and SENP5 (22–24); and S-

nitrosylation by nitric oxide (25). The ubiquitin-proteasomal system also 

plays a role in regulation of fission, with Drp1 ubiquitinated by Parkin 

(26) and by RING-CH protein MARCH5 (27, 28).

B. Mitochondrial fusion is mediated by the coordinated interaction of mitofusins on the 

OMM and OPA1 on the inner mitochondrial membrane (IMM).

1. Mitofusin exists in two isoforms, Mfn1 and Mfn2, anchored in the OMM 

by two transmembrane domains and containing an N terminal GTPase 

domain. Mitofusins form homo- or heterodimers that tether together 

adjacent mitochondria, promoting fusion, a process requiring activation of 

the GTPase and the presence of Opa1. The roles of the two isoforms are 

not identical, as knockout of Mfn1 results in more fragmentation than does 

Mfn2. Knockout of both results in embryonic lethality (29). Mfn2 is also 

critical for the tethering of mitochondrial to the sarcoplasmic reticulum in 

cardiomyocytes, enhancing mitochondrial Ca2+ signaling (30).

2. Opa1 (Mgm1p in yeast) is a dynamin-related GTPase located in the IMM, 

containing a mitochondrial targeting sequence (MTS) at its N-terminal 

which is cleaved after import. There are eight different isoforms, both long 

and short, with the short form lacking the transmembrane anchor. 

Processing of OPA1 between long and short forms helps to regulate the 

balance between fusion and fission. Two IMM peptidases OMA1 and 

YME1L, convert long OPA1 into short isoforms, with fusion dependent on 

long OPA1, and fission dependent on the short isoforms (31–33). Opa1 

activity requires Mfn1, but not Mfn2. In yeast, Ugo1p acts as an anchor 

between the Mfn equivalent (Fzo1p) and Opa1 equivalent (Mgm1p), 

however, no such homologue has been found in mammalian cells. 
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Knockout of Opa1 in cultured cells results in fragmentation, whereas 

knockout in mice is embryonic lethal (33).

3. MIEF1(mitochondrial elongation factor 1): In addition to inhibiting Drp1 

(above), MIEF1 promotes fusion, even in the absence of Mfn2, and 

overexpression of MIEF1 can reverse the fragmentation associated with 

Mfn2 deficiency (34).

C. Mitophagy is a process for clearing damaged mitochondria, and a critical component of 

normal mitochondrial quality control (35). Traditionally, mitochondrial fragmentation has 

been associated with pathologic insults such as ischemia (36, 37) or diabetes (38), and 

thought to be deleterious, due to the propensity for fragmented mitochondria to produce 

greater reactive oxygen species (ROS) and have lower mitochondrial membrane potential 

(Δψm) (10, 39). In this setting, fission is asymmetrical, segregating portions of mitochondria 

with low membrane potential (Δψm) from those with normal Δψm. The low Δψm daughter 

mitochondrion is then marked for elimination by mitophagy (40) through accumulation of 

PINK1 and recruitment of Parkin (41, 42), resulting in autophagic sequestration, lysosomal 

fusion and degradation.

In addition to the role of PINK1 and Parkin in regulating mitophagy, both proteins play a 

role in mitochondrial functional regulation by directing the localized translation of nuclear-

encoded respiratory chain complex mRNAs on the OMM. This process, mediated by 

displacement of translational repressors, links dynamic regulation of mitochondrial quality 

control and oxidative phosphorylation (OXPHOS) (43, 44). Parkin-dependent mitophagy has 

also been implicated in metabolic programming, e.g. that which occurs in the heart during 

the transition from fetal (carbohydrate-based) to post-natal (fatty acid-based) metabolism 

(45).

1. PINK1 (PTEN-induced putative kinase 1) is a OMM serine/threonine 

kinase with an N-terminal mitochondrial targeting sequence (MTS), a 

transmembrane domain and a cytosolic-facing C-terminal kinase domain. 

However, PINK1 is also located in the cytoplasm and its recruitment to the 

OMM is thought to be a mechanism by which cells distinguish functional 

vs. dysfunctional mitochondria. Healthy mitochondria maintain Δψm, 

which enhances the import of PINK1 to the IMM, where it is cleaved by 

PARL and cleared. When mitochondria are stressed or damaged, Δψm 

decreases, leading to decreased PINK1 import and accumulation on the 

OMM, where it can recruit Parkin. PINK1 may also function as a vesicular 

trafficking pathway, segregating oxidized and damaged proteins for 

lysosomal degradation, another mechanism by which it regulates 

mitochondrial quality control (46).

2. Parkin is a cytosolic E3 ubiquitin ligase, which translocates to damaged 

mitochondria when PINK1 accumulates on the OMM, ubiquitinating 

OMM proteins and inducing engulfment of mitochondria by 

autophagosomes (mitophagy) through p61 and LC3 (41, 42). Parkin also 

regulates mitochondrial dynamics by the ubiquitination and degradation of 
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other fission and fusion proteins: Mfn1/2, Drp1 and Fis1(26, 47–49). 

Knockdown of either PINK1 or Parkin leads to mitochondrial 

fragmentation (50, 51).

3. Other proteins such as Nix and Bnip3 (BH-3 pro-apoptotic proteins), can 

also function as autophagy receptors by binding to LC3 on the 

autophagosome and targeting mitochondria to autophagosomes (52, 53).

D. Mitochondrial biogenesis

Mitochondrial biogenesis is controlled by the PPARγ coactivator (PGC) family of 

transcriptional coactivators, most importantly PGC-1α, PGC-1β, and the PGC-related 

coactivator PRC. PGC-1α works in tandem with nuclear respiratory factor 2 (NRF-2) to co-

activate NRF-1 (54). NRFs direct transcription of nuclear encoded mitochondrial proteins, 

the mitochondrial protein import machinery, and co-factors required for assembly of the 

respiratory chain complexes, as well as the regulatory factors required for mitochondrial 

DNA transcription and translation, most importantly mitochondrial transcription factor A 

(Tfam), which is also responsible for maintenance of mtDNA copy number (55). 

Overexpression of PGC-1α is sufficient to drive mitochondrial biogenesis (56). While 

acetylation of PGC1α suppresses its transcriptional coactivator activity, histone deacetylase 

sirtuin 1 (Sirt1) can activate PGC1α and mito-biogenesis (57). PGC-1α also responds to a 

variety of exogenous cues including ROS/RNS, cold exposure, endurance exercise, and 

intracellular signaling downstream of cAMP.

Mitochondrial biogenesis requires coordinated synthesis and assembly of nuclear-encoded 

and mitochondrial-encoded subunits of the OXPHOS complexes. Excess or unincorporated 

subunits are degraded by matrix proteases, and the resulting peptides have been shown (in 

yeast and C. elegans) to trigger the mitochondrial unfolded protein response (see Section 

VIIA). Nuclear-encoded mRNAs are translated on ribosomes in cytosol or associated with 

the mitochondrial outer membrane, and in most cases, are co-translationally imported 

through the TOM (translocase outer membrane) and TIM (translocase inner membrane) 

complexes. Import of some, but not all, proteins requires adequate mitochondrial membrane 

potential, ensuring that newly-synthesized proteins are not delivered to senescent 

mitochondria (58). Information contained in the 3′UTR and in the mitochondria-targeting 

sequences of the protein-encoding portion of the mRNA is sufficient to target the mRNA or 

nascent protein to the mitochondria. Additional information, usually in a cleavable pre-

sequence, directs the protein to the outer membrane, the intermembrane space, the inner 

membrane, or the matrix. Peptidases may cleave the signal sequence and additional 

chaperone machinery assists with protein folding and insertion of prosthetic groups such as 

FAD, Fe-S clusters, and heme groups (59). Codon usage in mitochondria differs from 

cytosolic ribosomes, and mitochondria encode their own tRNAs as well as rRNAs. There are 

13 mitochondria-encoded proteins that are essential subunits of Complexes I, III, IV, and V. 

Mitochondrial mRNAs are generated by a mitochondrial RNA polymerase; translation of 

individual mRNAs is governed by specific and rate-limiting translational activators which 

may govern several subunits of a Complex (60). The resulting mRNAs are translated on 

ribosomes associated with the inner mitochondrial membrane Specific assembly factors for 

OXPHOS complexes are nuclear-encoded and facilitate the assembly of the various nuclear 
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and mitochondrial-encoded subunits into functional complexes (61–63). The complexes are 

then arranged into supercomplexes or respirasomes, for instance I+III2+IV (64).

There is also post-transcriptional control of mitochondrial biogenesis. Nuclear-encoded 

mRNAs destined for the mitochondria are associated with ribosomes located in proximity to 

the mitochondrial outer membrane. Many mitochondrial-targeted mRNAs have a half-life in 

excess of 24h (65) and may be stored on mitochondria-associated polysomes, in stress 

granules, or cytosolic processing bodies (P-bodies) (66). Stress granules and P-bodies are 

known for their role in RNA degradation; the related GW-bodies are important role for 

mRNA storage (67). Interestingly, P-bodies have been described to interact frequently with 

mitochondria (68) and more recently, both miRNAs and Ago2, a key protein in P-bodies, 

have been identified in mitochondria and mitoplasts, where they have been shown to regulate 

mitochondrial mRNA translation (69). During muscle differentiation, muscle-specific miR-1 

enhanced translation of mitochondrial transcripts. Protein levels of ND1 and COX1 

increased during differentiation without a significant increase in mRNA levels or mtDNA 

copy number. In the absence of the P-body scaffold protein GW182, miRNAs interacting 

with Ago2 can enhance translation by binding to an mRNA target lacking a 5′cap and 

3′poly-A tail, features characteristic of mitochondrial transcripts. As GW182 has not been 

detected in mitochondria, it seems plausible that miRNAs present in mitochondria may 

enhance rather than suppress translation of mitochondrial transcripts.

E. The balance between fission and fusion in the mitochondrial response to stress

That both fission and fusion are critical to normal cellular function is highlighted by the 

lethality induced by knockout of Mfn1/2, Opa1 or Drp1 (70–76) and the severe diseases 

caused by mutations in these proteins (77–79). Mitophagy is also critical for metabolic 

remodeling (45). The effects of inhibiting fission, however, have been variable, depending 

on the method used and cell type. Cardiac-specific Drp1 knockouts show preservation of 

mitochondrial function, but increased mitophagy and eventual heart failure due to opening of 

the mitochondrial permeability transition pore (MPTP) (71). In contrast, the Drp-1 inhibitor 

Mdivi decreases mitophagy and rescues heart failure induced by pressure overload (80). 

Others have shown that disruption of fission decreases mitophagy but results in the 

accumulation of dysfunctional mitochondria (35, 50, 81). Thus, any disruption of baseline 

dynamics appears to be deleterious. However, as all of these studies have relied on genetic 

manipulation of dynamic regulators, the role of fission in normal “healthy” physiologic 

adaptation is still unknown (82).

Mitochondrial dynamics may also be coupled to respiratory chain function by altering the 

structure of OXPHOS supercomplexes, controversial protein superstructures that are thought 

by some to play a role in vivo regulating respiratory function (83). For example, ablation of 

the IMM fusion regulator Opa1 results in disruption of normal cristae architecture, impairs 

the assembly of respiratory chain supercomplexes, and alters mitochondrial metabolism 

(84). The formation of respiratory supercomplexes may themselves alter Opa1 

oligomerization, for example during starvation, resulting in narrowing of the cristae, and 

increasing ATP synthase activity (85).
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F. Mitochondrial dynamics and human disease

Pathologic alterations in mitochondrial dynamics can result in impaired bioenergetics and 

mitochondrial-mediated cell death, and are associated with a wide spectrum of pathologies, 

including ischemic cardiomyopathy, diabetes, pulmonary hypertension, Parkinson’s and 

Huntington’s diseases and skeletal muscle atrophy (37, 39, 86–92). Diseases where specific 

mutations of genes encoding mitochondrial dynamic regulators have been found include 

Mfn2 in Charcot-Marie-Tooth neuropathy (93) and OPA1 in autosomal optic atrophy (94). 

Alzheimer’s disease has been associated with amyloid-β mediated S-nitrosylation of Drp1 

(SNO-Drp1) and resultant mitochondrial fragmentation. Neurons are particularly sensitive to 

changes in mitochondrial function due to their limited capacity for glycolysis and high level 

of energetic use. Cardiomyocytes, which have one of the highest volume fractions of 

mitochondria due to the high energy requirements of rhythmic contraction, are also uniquely 

sensitive to mitochondrial dynamic alterations. The compact organization of the 

cardiomyocyte sarcomeric structure has led some to suggest that mitochondrial morphologic 

changes are minimal in the heart, and that dynamic regulators are mostly important for 

maintaining quality control (95, 96). Although the degree of mitochondrial fragmentation is 

less in the cardiomyocyte compared to many other cell types, there is still abundance 

evidence for active mitochondrial structural dynamics in the heart (37, 97–100). In normal 

physiology, fission plays a role in the post-natal closure of the ductus arteriosus, where 

redox sensing in the arterial smooth muscle wall is dependent on Drp1 activation (101). 

Mitochondrial dynamic alterations also play a role in many cancers, where fusion can reduce 

the susceptibility of cells to apoptotic signaling, and inducing aerobic glycolysis (the 

Warburg effect) (102, 103). These alterations are thought to be a direct effect of cancer-

causing mutations, a secondary effect of tumor hypoxia, or a potentially a mechanism to 

enhance cancer cell growth by reducing apoptotic cell death.

G. Alterations in mitochondrial dynamics as a normal physiologic response to stress

Studies in skeletal muscle during exercise suggest a role for mitochondrial fragmentation in 

maintaining energetic homeostasis, evidenced by an increase in Fis1 (104, 105). During 

recovery, fusion is activated (increased Mfn1/2), and with chronic exercise, mitochondrial 

biogenesis (PGC-1α) (106–108). However, as none these studies have examined 

mitochondrial morphology or function, the data remain incomplete. Similar cycles of fission 

and fusion induce mitochondrial metabolic reprogramming, as seen after starvation and re-

feeding (109). Cardiac mitochondrial biogenesis has been demonstrated in chronic exercise 

conditioning (110, 111). Our preliminary data in the heart suggest that mitochondrial fission 

may be a component of the normal adaptation to increased energetic demand, such as occurs 

during exercise, a process we call “physiologic fragmentation” (112). In contrast to 

pathologic fragmentation, exercise-induced fragmentation is associated with normal or 

enhanced, rather than degraded, mitochondrial function, maintenance of normal Δψm and 

ROS production, and repression, rather than activation, of mitophagy.
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III. Post-translational modification (PTM) of the mitochondrial proteome 

(redecorating): regulation of both mitochondrial function and dynamics

A. Role of calcium in mediating mitochondrial dynamics and function

Ca2+ is a major regulator of both ATP production and mitochondrial dynamics (113, 114). In 

organs like the heart, where energy needs can rapidly change, β1-adrenergic receptors (ARs) 

increase [Ca2+]i in response to increased workload, mediated through activation of L-type 

Ca2+ channels, increasing extracellular Ca2+ import and also by post-translational 

modification of proteins that control exchange of Ca2+ across the sarcoplasmic reticulum 

(e.g. ryanodine receptors [RyR] and the sarcoplasmic reticulum calcium transport ATPase 

[SERCA]). Changes in [Ca2+]i are rapidly sensed by mitochondria, the consequence of peri-

mitochondrial microdomains where local [Ca2+] can be many-fold higher than the rest of the 

cytosol, although this relationship varies dramatically between cell types (115, 116). In 

excitable cells such as cardiomyocytes, Mfn2 tethers mitochondria to the sarcoplasmic 

reticulum (30), the microdomain where Ca2+-induced Ca2+ release is localized. Additional 

mechanisms for Ca2+-mediated alterations in mitochondrial structure and function include 

through PKA-AKAP, Ca2+-induced post-translational modifications and the mitochondrial 

Ca2+ uniporter (MCU) (113, 114, 117, 118) (see below).

Mitochondria also serve as a major buffer for intracellular Ca2+, protecting cells against 

Ca2+ overload, and as a mechanism for Ca2+ compartmentalization within cellular 

microdomains (115). In pancreatic acinar cells, for example, mitochondria prevent the cell-

wide propagation of Ca2+ signaling away from the apical region (119). Mitochondrial Ca2+ 

uptake occurs through the MCU, but given the low affinity of this uniporter, uptake is 

dependent on localization of mitochondria near high Ca2+ microdomains. Uptake through 

the MCU is also highly dependent on Δψm, which is in turn driven by mitochondrial 

respiration, and is inhibited by magnesium, and by the OXPHOS uncouplers dinitrophenol 

and carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (120). Mitochondrial 

Ca2+ uptake is also mediated by the Letm1 Ca2+/H+ antiporter, coupling Ca2+ uptake to 

mitochondrial alkalinization, and functioning at much lower (nanomolar) concentrations 

than the MCU (121).

Mitochondrial release of Ca2+ is mediated in excitable (but not in non-excitable) cells, by 

the mitochondrial Na+-Ca2+ exchanger, NCX (122), although in pathological conditions, 

such as ischemia, this exchanger may operate in reverse mode, increasing mitochondrial 

Ca2+ overload (123, 124). Ca2+ is also extruded via opening of the MPTP (125), which is 

usually associated with mitochondrial stress and the initiation of apoptotic cell death. 

Although ablation of the MCU does not alter mitochondrial morphology, it does reduce 

exercise capacity (114), suggesting that altering mitochondrial Ca2+ does affect oxidative 

function, at least under stress conditions. Increased Ca2+ enhances mitochondrial function 

by activating pyruvate (126), isocitrate and oxoglutarate dehydrogenases (127). As well, 

increasing Ca2+ increases mitochondrial fragmentation (128) through calcineurin (removing 

an inhibitory phosphate on Drp1) or CaMK (phosphorylating Ser600) (21, 129). This 

process, although generally associated with pathologic stress, may also play a role in the 

response to normal physiologic stresses (see below (112)). In contrast, excessive Ca2+ opens 
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the MPTP and can trigger cell death (36), highlighting the danger of excessive Ca2+, a 

consequence of chronic β-AR signaling in diseases such as heart failure (130).

B. Post-translational modifications of the mitochondrial proteome

These have been described during both physiologic (fasting) and pathologic (ischemia/

reperfusion) stress. As described above, PTMs of Drp1 are a major regulator of the balance 

between fission and fusion (19, 21, 24, 131). PTM of mitochondrial proteins differs between 

low vs. high level stresses, e.g. normal levels of ROS act as a signaling second messenger, 

but excessive ROS leads to oxidative PTMs (oxPTMs) (132). Phosphorylation is also a 

regulator of mitochondrial function, including complexes I, IV and V, VDAC and ANT, 

targeted by β-AR-regulated kinases, e.g. PKA, PKC and GSK3β. Modern proteomic 

techniques, e.g. multiple-reaction monitoring (133–135), have identified >200 different 

phospho-transitions of proteins in the TCA cycle, and pyruvate dehydrogenase and 

branched-chain α-keto acid dehydrogenase complexes (118, 133, 135–138). Bioinformatic 

site analysis suggests the involvement of PKA, PKC, casein kinase II, DNA-dependent 

kinase, tyrosine kinase, Src kinase, GSK-3, ERK1/2, and EGFR (118). Several of these 

kinases and phosphatases are either tethered to or are translocated to the OMM where they 

target membrane proteins such as Bcl-2, BAD, VDACs 1–3 and TOM70 (118). For example, 

the A kinase anchoring protein (AKAP) family of scaffolding proteins localize cAMP-

dependent PKA to the OMM (139). Finally, there are many mitochondrial proteins with 

oxPTMs, some of which can modulate the phosphorylation status and activity of target 

proteins, such as ATP synthase (140–143).

PTM of subunits of ATP synthase (complex V) have also been shown to play a role in 

enhancing mitochondrial respiration. Many of these PTMs are altered during the metabolic 

remodeling that is associated with diseases such as heart failure, leading to an increase in 

anaerobic metabolism and a shift from fatty acid utilization to glucose utilization. Whether 

this shift represents a component of the more global “recapitulation of fetal pathways” (144) 

or is a mechanism to improve energy economy (145) is still being debated, and there are 

even contradictory studies showing an increase, not a decrease, in fatty acid oxidation in 

human heart failure (146, 147). Phosphorylation of the E1 subunit of the pyruvate 

dehydrogenase complex by pyruvate dehydrogenase kinase (PDK) results in its inactivation, 

one of the first demonstrations of the role of PTMs in mitochondrial energetics (148). 

Pyruvate dehydrogenase phosphatase, which mediates activation of this complex, is 

regulated by intracellular Ca2+ (149). Other Ca2+-mediated phosphatases, targeted to 

mitochondria, include regulators of branched-chain amino acid catabolism (150).

Post-translational control of mitochondrial function may also be mediated directly by 

intramitochondrial PKA. Activation of soluble adenylyl cyclase directly in the mitochondrial 

matrix by [Ca2+]mt has been shown to increase mitochondrial cAMP formation, which in 

turn increases mitochondrial ATP production (60–63). However, the role of direct 

mitochondrial PKA in these processes is still debated. The identification of true 

mitochondrial-associated signaling systems is complicated by the difficulty in separating 

mitochondrial membranes from mitochondrial-associated membranes containing 
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endoplasmic reticulum (ER)-associated signaling molecules, and by conflicting results, as 

has been the case for the putative mitochondrial angiotensin system (64, 151).

Therapeutic maneuvers can reverse many disease-specific deleterious PTMs. In heart failure, 

cardiac resynchronization therapy (CRT) induces dramatic changes in the mitochondrial 

proteome, including increases in expression and PTM of most respiratory chain enzymes, 

and in metabolic pathway enzymes responsible for replenishing Krebs cycle intermediates, 

including pyruvate carboxylase, pyruvate dehydrogenase, α-keto acid dehydrogenase, 

ferredoxin and fatty acid-binding protein (142). Phosphorylation of the ATP synthase-β 
subunit has been shown to be a major regulator of complex V activity. Additional pathways 

that were upregulated included proteins that mediate mitochondrial protein synthesis and 

import, mitochondrial membrane channels, and ROS scavenging proteins such as 

thioredoxin-dependent peroxide reductase (142).

IV. Metabolic alterations in fuel utilization

Mitochondria, as the major site of ATP production, both respond to fuel availability and 

determine the extent and type of fuel utilization in the cell. Mitochondria can utilize glucose, 

fatty acids, amino acids, and ketone bodies for fuel, and there are complex inter-regulatory 

mechanisms that determine fuel choices. These choices will result in global metabolic 

alterations to the cell, with far-reaching consequences.

A. Glucose utilization

Glucose may be metabolized through anaerobic glycolysis, siphoned off for the hexose 

monophosphate shunt, or directed into oxidative phosphorylation in the mitochondria. When 

oxidative phosphorylation is inhibited (e.g., by oligomycin), the cell rapidly switches to 

anaerobic glycolysis, resulting in the buildup of lactate. When glucose is directed by the 

rate-controlling enzyme glucose-6-phosphate dehydrogenase (G6PD) into the cytosol-

located hexose monophosphate shunt (also known as the pentose phosphate pathway), it 

generates reducing equivalents in the form of NADPH and ribose 5-phosphate, an essential 

precursor for nucleotide biosynthesis. G6PD is activated by NADP+ and inhibited by acetyl-

CoA. G6PD is also activated by deacetylation mediated by SIRT2. Hexokinase II plays a key 

role in glucose utilization: when this enzyme is associated with the mitochondrial outer 

membrane, glucose is utilized for glycolysis; when it is free in the cytosol, glucose is stored 

as glycogen (152). A key enzyme complex linking glycolysis to mitochondrial oxidative 

phosphorylation is the pyruvate dehydrogenase complex, responsible for converting pyruvate 

into acetyl-CoA in the mitochondrial matrix, where it is used in the tricarboxylic acid cycle 

for oxidative phosphorylation. The pyruvate dehydrogenase complex is regulated by 

phosphorylation mediated by pyruvate dehydrogenase kinase, which inactivates it. Calcium 

affects the rate of mitochondrial oxidative phosphorylation through multiple sites including 

dehydrogenases, the cytochrome chain, the F(1)F(o) ATPase, and substrate delivery to the 

mitochondrial matrix (153).
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B. Fatty acid oxidation

As mitochondria can generate ATP from a variety of fuels, the ability to dynamically tune 

fuel utilization will increase cellular adaptability and is known as metabolic flexibility. The 

pyruvate dehydrogenase complex and its regulatory kinases and phosphatases are key 

determinants of metabolic flexibility. Phosphorylation of PDC will shift the mitochondria 

towards fatty acid oxidation, whereas its dephosphorylation will restore glucose oxidation. 

The generation of malonyl-CoA from acetyl CoA by acetyl CoA carboxylase will prevent 

fatty acid oxidation through inhibition of carnitine palmitoyltransferase I, the major shuttle 

for fatty acids into the mitochondria (154). Thus this critical mitochondrial enzyme complex 

influences glycolysis, glucose oxidation, fatty acid oxidation, lipid storage, and redox poise.

V. Metabolic output

Production of ATP is the prime metabolic output. Additional consequences of glycolysis and 

oxidative phosphorylation include shifts in pH and the redox poise. Reactive oxygen species, 

a byproduct of oxidative phosphorylation will be discussed in the next section.

A. ATP production

Approximately 80% of the high-energy phosphates (ATP and creatine phosphate) in the 

heart are derived from oxidative phosphorylation of fatty acids, with the remainder coming 

from glucose oxidation, to a small extent, amino acid oxidation. In ischemia, glycolysis may 

be called into play, utilizing stored glycogen and generating lactic acid (more on this later). 

Early reports suggested that amino acid supplementation might be beneficial in the ischemic 

and reperfused heart (155); replenishing amino acid precursors of Krebs’ cycle intermediates 

(e.g., glutamate, aspartate) was felt to be needed to ensure more effective oxidative 

metabolism to produce energy for cellular repair and subsequent mechanical function (156); 

subsequent work showed that glutamate could be metabolized anaerobically to contribute up 

to 20% of the ATP in the ischemic dog heart (157). A subsequent study using NMR 

phosphate spectroscopy concluded that supplementation with aspartate/glutamate did not 

improve myocardial bioenergetics (158). However, the aspartate/glutamate-supplemented 

group had higher intracellular pH at every time point; while they did not find it to be 

statistically significant in their small sample size (two pig hearts per group), it may hint at a 

degree of lactate sparing that could have been shown to be beneficial in a larger sample size. 

Thus the potential benefit of glutamate in ischemic metabolism might be under-appreciated. 

More pertinent to the present review, cell metabolism that is well-adapted to support 

anaerobic metabolism of amino acids could demonstrate greater benefit from amino acid 

availability. Thus metabolic flexibility is important to ischemic tolerance of the myocardium.

B. Consequences of fuel selection on pH and intracellular Ca2+

Under conditions of normal blood flow, fuel utilization carries little consequence and is 

likely related to the mix of available substrates. In the failing or borderline ischemic heart, 

fuel utilization is thought to shift to glucose oxidation as the oxygen cost for ATP production 

is lower than for fatty acids. However, anaerobic glycolysis comes at a high price beyond its 

inefficiency (2 ATP per molecule of glucose vs. 30 ATP via aerobic metabolism): lactic acid 

must be eliminated from the cell; the protons are removed via the Na+/H+ exchanger, but the 
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increased intracellular Na+ then competes with Ca2+ for extrusion via the Na+/Ca2+ 

exchanger, resulting in a steady rise in intracellular Ca2+. Calcium doesn’t have to rise by 

much in order to wreak havoc, as acidosis increases the calcium sensitivity of some 

enzymes. For instance, the actin capping protein gelsolin binds phosphatidylinositol 4,5-

bisphosphate (PIP2) in the presence of microM Ca2+, but the Ca2+ requirement is reduced 

further as the pH drops (159). Similarly, phospholipase C activity is increased at low pH in 

the absence of Ca2+ (58). An alternate method for extruding H+ is via the vacuolar proton 

ATPase, which can pump the protons into autophagolysosomes or across the plasma 

membrane. Although it consumes ATP, it is Ca2+-sparing. Ischemic preconditioning, which 

induces autophagy, activates the vacuolar proton ATPase and limits acidification and 

calcium overload (160, 161). To the extent that mitochondrial dysfunction (.e.g, in the face 

of hypoxia) forces the cell to rely on glycolysis, there is the likelihood that calcium overload 

may ensue. Mitochondria play an important role in calcium homeostasis, as discussed above.

C. Redox poise

Mitochondria determine the relative balance of reducing equivalents in the cell through 

conversion of NADH to NAD+ in Complex I. The mitochondria govern redox poise (NAD+/

NADH, NADP+/NADPH) and acetyl-CoA levels; in this way they indirectly regulate 

countless processes through histone acetyltransferases (HATs) and deacetylases (HDACs) 

that modify cytosolic enzymes to control their activity, transcription factors such as 

PGC-1α, and histones whose acetylation status determines chromatin structure and access of 

transcription factors to specific regions (162). Interestingly, there is a close relationship 

between histone acetylation and intracellular pH: as intracellular pH decreases, histones are 

globally deacetylated by HDACs, and the acetate anions are exported along with protons 

through monocarboxylate transporters. As intracellular pH rises, histone acetylation also 

increases. Interestingly, inhibition of HDACs or monocarboxylate transporters limits acetate 

export and results in intracellular acidification, a potentially problematic side effect of 

HDAC inhibitors (163). Availability of acetyl-CoA will determine the extent of histone 

acetylation; however, the activity of acetyl-CoA carboxylase will determine whether acetyl-

CoA is directed into fatty acid biosynthesis versus leaving it available for histone acetylation 

(164). The HDACs are influenced by both the ratio and absolute levels of NAD+; therefore 

its biosynthesis, particularly the activity of the rate-limiting enzyme nicotinamide 

phosphoribosyl transferase (NAMPT), is an important determinant of HDAC activity. 

NAMPT expression can increase by 2–3 fold with fasting or caloric restriction (165).

VI. Reactive oxygen species

Byproducts of oxidative phosphorylation are reactive oxygen species (ROS), predominatly 

superoxide, which is rapidly dismuted to hydrogen peroxide by superoxide dismutase and 

thence to water by the action of catalase. Hydrogen peroxide represents 1–2% of oxygen 

consumed in the process of oxidative phosphorylation.

A. Mitochondria generate ROS but have antioxidant defenses

Mitochondria are both a source and a target of ROS, which are generated in the 

mitochondria at Complex I, Complex II, and Complex III (166–168). Under ordinary 
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circumstances, mitochondrial antioxidant defenses (MnSOD, catalase, glutathione 

peroxidase) convert the superoxide to hydrogen peroxide and then to water, but this may be 

impaired in certain settings. First, the production of superoxide may be high enough to 

overwhelm normal defenses. Catecholamine overstimulation increases mitochondrial ROS 

production due to signaling through protein kinase A (169) or Ca2+ (170). Secondly, normal 

defenses comprising glutathione and glutathione S-transferase P (GSTP) may be attenuated. 

Polymorphisms of human GSTP are associated with increased susceptibility to doxorubicin 

cardiomyopathy (171). A variety of stressors can cause depletion of glutathione, or the 

failure to regenerate reduced glutathione (GSH) from its oxidized counterpart (GSSG). 

Importantly, there is a dynamic interplay of ROS, GSH, and mitochondrial Ca2+ handling. 

In the absence of Ca2+-induced stimulation of the tricarboxylic acid cycle, NADH and 

NADPH become more oxidized and are unable to regenerate the GSH antioxidant system. 

This leads to an unstable system wherein small increases in hydrogen peroxide result in 

exaggerated ROS emission with increased workload (172).

B. Oxidative damage to mitochondrial proteins

Mitochondria undergo reversible S-nitrosylation, in which nitric oxide modifies the thiol 

moiety of cysteine. S-nitrosylation of mitochondrial proteins has been demonstrated in the 

setting of cardioprotection where it often inhibits OXPHOS components (173, 174). 

Interestingly, S-nitrosylation increases the activity of parkin, the E3 ubiquitin ligase 

important for mitophagy (175). Other forms of oxidative protein modifications such as thiol 

oxidation to sulfonic or sulfinic acid are less reversible. Nitration of tyrosine and 

carbonylation of cysteine are additional oxidative posttranslational modifications of proteins, 

many of which are detected in mitochondria. These lesions are repaired through distinct 

enzymatic systems including denitrosylating enzymes and mitochondrial proteases (AAA 

proteases including Lon). Alternatively, the entire organelle may also be eliminated via 

mitophagy, a process discussed above.

C. Lipid peroxidation

Lipid peroxidation is also a common consequence of mitochondrial ROS generation, often 

resulting in hydroxyl-alkenals such as 4-hydroxy-2-nonenal (HNE), commonly derived from 

linoleic acid and arachidonic acid, 4-hydroxyhexenal (HHE), and malondialdehyde (MDA). 

HHE can trigger mitochondrial permeability transition pore opening. These aldehydes can 

form covalent adducts on proteins by reacting with lysine amino groups, cysteine sulfhydryl 

groups, and histidine imidazole groups (176). As a result, they can modify protein structure 

and in many instances can trigger mitochondrial dysfunction. These aldehydes can form 

adducts on ethanolamine phospholipids, and unsaturated lipids can undergo lipid 

peroxidation, thereby altering membrane fluidity with myriad effects on cellular processes.

D. Oxidized mitochondrial DNA

Mitochondrial DNA is a common target of oxidative damage, resulting in oxidation of 

guanine residues (8-oxoG) at levels 2–3 fold higher than nuclear DNA (nDNA) (177). These 

are recognized and removed by oxoguanine glycosylase (OGG1), one of the few DNA repair 

enzymes localized to mitochondria (178). Sirt3 is also reported to interact with OGG1. 

Deacetylation by Sirt3 prevents degradation of OGG1 protein and controls its incision 
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activity (179). Thus, oxidative stress elicits a coordinated repair response including both 

protein folding and DNA base excision. Failure to clear 8-oxoG lesions will result in 

mispairing with A, resulting in a G:C→A:T transversion (180). When mtDNA was isolated 

from fibroblasts of humans of various ages, mutations in the control region were found to be 

more common in older individuals, although the relationship was far from linear (181). It is 

unknown whether the age-related mtDNA mutations can be attributed to cumulative damage, 

to age-related deterioration in DNA repair processes, increased production of ROS, or age-

related impaired autophagy. If the mtDNA mutations affect mitochondrial function, they 

would be cleared by mitophagy. Mitochondrial quality control (fission, fusion, mitophagy, 

and biogenesis) has been suggested to be sufficient for mitochondrial homeostasis even in 

the presence of ongoing mtDNA damage and limited repair (182). However, autophagy 

diminishes with age, which could contribute to the increase in mtDNA mutations with age 

(183, 184). Dysfunctional mitochondria left behind by inadequate mitophagy might also 

explain the increased ROS production seen with aging. Thus the extent of mtDNA damage 

seen with increased age might be a consequence of diminished autophagy in the face of a 

constant burden of DNA damage over a lifespan. There is abundant evidence linking 

autophagy to longevity (185, 186). Recently CISD2, a protein localized to mitochondria 

(187) has been linked to longevity through autophagy and regulation of Ca2+ homeostasis 

(188, 189). One also wonders whether the age:mtDNA damage relationship makes sense, 

since the very oldest individuals have probably survived that long in part because they had 

effective quality control mechanisms; one might expect the very oldest patients to exhibit 

less mtDNA damage. A more comprehensive investigation of the age-relatedness of mtDNA 

mutations, covering both coding and the control regions of the genome, may reveal 

additional insights.

VII. Nuclear–mitochondrial cross-talk

Nuclear instructions for mitochondrial biogenesis primarily driven by PGC-1α represent the 

best instance of nucleus-to-mitochondria signaling. Mitochondria “talk back” to the nucleus, 

a phenomenon called retrograde signaling, in which mitochondrial signals alter nuclear gene 

expression. This can occur through the mitochondrial unfolded protein response (UPRmt), 

through mitochondrial-derived peptides, and through metabolic milieu shifts. In addition to 

nuclear signaling, mitochondria alter the cellular and metabolic milieu in multiple ways as 

outlined above and diagrammed in Figure 2.

A. The mitochondrial unfolded protein response

This pathway was first characterized in yeast and C. elegans and is under active investigation 

in mammals. Mitochondria possess machinery for responding to an imbalance between 

imported nuclear-encoded proteins and mitochondrial-encoded proteins. The correct 

stoichiometry of OXPHOS subunits is essential for assembly of functional respiratory 

complexes. Excess or unincorporated subunits are degraded to short peptides by matrix 

proteases of the AAA+ family (ATPases associated with a variety of cellular activities); Lon 

protease is responsible for the largest share of intramitochondrial protein degradation. In C. 

elegans, the peptide fragments generated by the related protease ClpP are extruded into the 

cytosol through the transporter Haf1. The mammalian homolog is thought to be ABCme10. 
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The extruded peptides are recognized by transcription factors CHOP, C/EBPβ, and cJun/

AP1, which direct expression of mitochondrial chaperone hsp60 and proteases ClpP, 

Yme1L1, and MPPβ. Upregulation of these factors reduces protein aggregation in the 

mitochondrial matrix. Additional proteins upregulated in the UPRmt include Tim17A, 

NDUFB2, and EndoG, but not ER stress proteins Bip, Grp94, calreticulin, or calnexin (190). 

PKR (double-stranded RNA-activated protein kinase) phosphorylates eIF2α and cJun, with 

the resulting suppression of translation and import of nuclear-encoded mitochondrial 

proteins (reviewed in CM Haynes and D Ron)(191). There is much less known about the 

significance of the UPRmt in mammalian systems or its connection to mitophagy and 

mitochondrial biogenesis. However, agents such as chloramphenicol and rapamycin, which 

induce mitophagy/autophagy, are also reported to be potent inducers of UPRmt (192). 

Chloramphenicol inhibits mitochondrial protein synthesis, which would result in an excess 

of nuclear-encoded subunits over mitochondrial subunits and would therefore trigger 

UPRmt. In contrast, rapamycin, which suppresses cytosolic protein synthesis via inhibition 

of mTOR, would result in an excess of mitochondrial subunits over nuclear-encoded 

proteins. Thus an imbalance in either direction is sufficient to trigger UPRmt, which may 

also be linked to activation of mitophagy. Interestingly, over a decade ago we identified 

mitochondrial elongation factor Tu (mtEF-Tu) as a major target of phosphorylation during 

ischemic preconditioning (193). In bacteria, phosphorylation of EF-Tu suppresses protein 

synthesis. Subsequent large-scale proteomic analyses documented phosphorylation of mtEF-

Tu at Thr273 and Ser312 (194). Phosphorylation of these residues in the tRNA-binding 

region is believed to destabilize tRNA binding and thereby inhibit protein synthesis at the 

elongation step (195, 196). Thus a kinase signaling pathway activated during 

preconditioning converges on mitochondrial protein synthesis and the UPRmt. mtEF-Tu is 

also a target of acetylation at K88 and K256 (197). While the significance of acetylation of 

mtEF-Tu is unknown, mitochondrial SIRT3 deacetylates mitochondrial ribosomal protein 

L10 (MRPL10) to suppress mitochondrial protein synthesis (197).

B. Apoptotic signaling

Although this topic has been covered by many reviews (188, 189), it is important to mention 

the release of cytochrome c (190) and endonuclease G (191) as two proteins released from 

the intermembrane space and matrix, respectively, that trigger programmed cell death. 

Apoptosis Inducing Factor 1 (AIFM1) is an NADH oxidoreductase in the intermembrane 

space which also triggers DNA fragmentation, activates caspase-7, and inhibits protein 

synthesis through interaction with EIF3G (192–196). Permeabilization of the outer 

membrane to release intermembrane space factors (cytochrome c and AIFM1) is governed 

by the balance of pro-and anti-apoptotic members of the Bcl-2 family (reviewed in (197–

199)). Calcium overload can activate calpains resulting in proteolytic activation of 

proapoptotic factors including Bid and AIFM1 (200, 201). Programmed cell death can also 

be accomplished via the mitochondrial permeability transition pore (MPTP), a large-

conductance channel of the inner membrane that can be activated by Ca2+ overload or 

excessive ROS. Recently MPTP opening was shown to involve dimerization of the F0F1 

ATPase and regulated by cyclophilin D (202). MPTP opening results in matrix swelling, loss 

of Ca2+ homeostasis, depletion of ATP and pyridine nucleotides, and outer membrane 

rupture with release of proapoptotic factors (203).
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C. Mitochondrial-derived peptides

These short mitochondrial-encoded peptides represent an additional mechanism by which 

mitochondria communicate with the nucleus. MDPs are short peptide sequences hidden 

within the rRNA sequence of mtDNA. Two such peptides, humanin and MOTS-c, have been 

identified to date, and more may exist within the rRNA sequences (187). These peptides can 

act on intracellular targets including Bax (198) to suppress apoptosis, but can also act as 

paracrine factors; reports differ as to the specific receptors responsible (199) but in the case 

of humanin, signaling through STAT3 has been implicated (200). Within the mitochondria, 

the a humanin analog has been reported to reduce hydrogen peroxide production (201). 

MOTS-c has been shown to regulate metabolism and mitigate insulin resistance (202, 203). 

Both mitochondrial derived peptides are associated with longevity (204, 205).

D. Shifts in the metabolic milieu

Metabolic alterations represent a profound and global mechanism by which mitochondria 

accomplish retrograde signaling. By altering substrate utilization and electron flow, 

mitochondria can profoundly alter NADH/NAD+, or acetyl-CoA, thereby activating sirtuins/

HDACS or HATS, respectively, with corresponding epigenetic alterations and global 

transcriptional responses. Mitochondria are responsible for the lion’s share of ROS 

production, and also regulate Ca2+ uptake/release, thereby accomplishing global shifts in 

various signaling pathways.

E. Impact of differing mitochondrial genomes

Differences in mitochondrial genome remodel the cell through altered metabolic milieu 

eliciting global changes in the nuclear-encoded transcriptome. Recent work exploring 

mitochondrial haplogroups (ethno-ancestrally distinct patters of SNPs in mtDNA) in an 

isogenic nuclear background has revealed the profound importance of relatively modest 

differences in mtDNA. Different mitochondrial haplogroups have been shown to exhibit 

differences in mitochondrial oxygen consumption, membrane potential, and mitochondrial 

number (206, 207). These haplogroup differences also result in broad changes in the 

transcriptome (208, 209). Moreover, mitochondrial haplogroups also modify susceptibility 

to disease (210–218). This has been elegantly dissected in a mouse model in which the 

mitochondrial genome of C3H/HeN mice has been placed into the C57Bl/6J nuclear 

background and vice versa (219). Using these mitochondrial-nuclear exchange (MNX) mice, 

Ballinger’s group was able to show that the mitochondrial genome determined susceptibility 

to the pathological stress of cardiac volume overload. Thus, mtDNA, which is maternally 

transmitted, plays an important role in complex multigenic diseases. It seems likely that the 

future of precision medicine will be required to take mitochondrial function into account in 

order to optimize patient-specific therapy.

VIII. Conclusions

Mitochondria adapt to a wide range of cellular requirements, adjusting fuel utilization, 

meeting ATP requirements, regulating ROS output, and titrating the redox poise of the cell. 

Each metabolic shift results in a corresponding shift in nuclear chromatin, epigenetic marks, 

the transcriptome, and ultimately, the proteome. Short-term alterations in energy 
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requirements may be met by post-translational modifications or reorganization of 

mitochondrial structure by fission/fusion, while long-term alterations, especially those due to 

diseases such as myocardial ischemia or diabetes, are accomplished by mitophagy to 

eliminate mitochondria ill-suited to the new requirements, followed by biogenesis which 

often involves alterations in the mitochondrial proteome, accomplished by changes in 

expression of nuclear-encoded genes. These responses are coordinated across genomes to 

accomplish a synchronized metabolic remodeling. Although not discussed here, this 

includes circadian alterations as well as developmental changes or those elicited in response 

to pathologic conditions. While some may argue that the mitochondrial genome is a tiny tail 

to wag the dog, one should recall there are ~1000 mitochondria per cardiomyocyte that may 

all be wagging in synchrony.
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Highlights

• Mitochondrial dynamics: fission and fusion

• Mitochondrial turnover: mitophagy and biogenesis

• Metabolism

• Reactive oxygen species and mitochondria

• Mitochondrial unfolded protein response

• Retrograde signaling
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Figure 1. Mitochondrial dynamics
The opposing processes of mitochondrial fission and fusion are both involved mitochondrial 

quality control and the maintenance of normal cellular homeostasis. Fission is regulated by 

interaction of mitochondrial proteins (Fis1 or MPP) with the cytosolic protein Drp1, after its 

translocation to the mitochondria fraction. Post-translational modifications (phosphorylation, 

sumoylation, s-nitrosylation and ubiquitination) regulate this process in response to 

intracellular cues, including alterations in Ca2+. When fission occurs as a result of 

pathologic stress, mitochondria with low membrane potential are marked for mitophagy by 

accumulation of Pink1, recruitment of Parkin, and then eliminated through autophagic 

sequestration, lysosomal fusion and degradation. Fusion is regulated by the interaction of 

mitochondrial inner (Opa1) and outer membrane proteins (Mfn1/2). Biogenesis is the 

process that results in synthesis of new mitochondrial components and is regulated by the 

PPARγ coactivator (PGC) family of transcriptional coactivators, PGC-1α, PGC-1β, and the 

PGC-related PRC. (Based in part on Archer et al. NEJM 2013 (91)).
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Figure 2. How mitochondria alter the cellular milieu
Mitochondrial ROS production at low levels stimulates proliferation, but at high levels 

triggers damage to lipids, proteins, and DNA, triggering cell death. Superoxide can interact 

with NO produced locally or in neighboring cells, generating peroxynitrite and impairing 

endothelial function. Metabolites including NAD+, NADP, Acetyl-CoA, and S-adenosyl-

methionine affect HDAC activity, histone acetylation and succinylation, and DNA 

methylation, resulting in chromatin remodeling and transcriptional shifts. The ratio of ATP 

to AMP regulates AMPK which in turn activates autophagy and suppresses mTOR (when 

AMP is high). Mitochondria take up Ca2+ rapidly and release it more slowly, supporting ER 

homeostasis and helping to buffer changes in cytosolic Ca2+. Mitochondria can release 

cytochrome c to trigger programmed cell death. Mitochondrial-derived peptides such as 

humanin elicit transcriptional responses and can have broad paracrine effects. Thus 

mitochondria impact broad signaling pathways with profound consequences.
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