
Simultaneous Quantitation of Oxidized and Reduced Glutathione 
via LC-MS/MS: An insight into the redox state of hematopoietic 
stem cells

Dustin Carroll1, Diana Howard2, Haining Zhu3, Christian M. Paumi4, Mary Vore1, Subbarao 
Bondada5, Ying Liang1, Chi Wang6, and Daret K. St Clair1

1Department of Toxicology and Cancer Biology, University of Kentucky, College of Medicine, 
Lexington, KY

2Hematology and Oncology Comprehensive Cancer Center, Wake Forest Baptist Medical Center, 
Wake Forest University, Winston-Salem, NC

3Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, 
Lexington, KY

4Department of Chemistry, Eastern Kentucky University, Richmond, KY

5Department of Microbiology and Molecular Genetics, University of Kentucky, College of 
Medicine, Lexington, KY

6Division of Cancer Biostatistics, Markey Cancer Center, University of Kentucky, College of 
Medicine, Lexington, KY

Abstract

Cellular redox balance plays a significant role in the regulation of hematopoietic stem-progenitor 

cell (HSC/MPP) self-renewal and differentiation. Unregulated changes in cellular redox 

homeostasis are associated with the onset of most hematological disorders. However, accurate 

measurement of the redox state in stem cells is difficult because of the scarcity of HSC/MPPs. 

Glutathione (GSH) constitutes the most abundant pool of cellular antioxidants. Thus, GSH 

metabolism may play a critical role in hematological disease onset and progression. A major 

limitation to studying GSH metabolism in HSC/MPPs has been the inability to measure 

quantitatively GSH concentrations in small numbers of HSC/MPPs. Current methods used to 

measure GSH levels not only rely on large numbers of cells, but also rely on the chemical/

structural modification or enzymatic recycling of GSH and therefore are likely to measure only 

total glutathione content accurately. Here, we describe the validation of a sensitive method used 

for the direct and simultaneous quantitation of both oxidized and reduced GSH via liquid 

chromatography followed by tandem mass spectrometry (LC-MS/MS) in HSC/MPPs isolated 

from bone marrow. The lower limit of quantitation (LLOQ) was determined to be 5.0 ng/mL for 

GSH and 1.0 ng/mL for GSSG with lower limits of detection at 0.5 ng/mL for both glutathione 
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species. Standard addition analysis utilizing mouse bone marrow shows that this method is both 

sensitive and accurate with reproducible analyte recovery. This method combines a simple 

extraction with a platform for the high-throughput analysis, allows for efficient determination of 

GSH/GSSG concentrations within the HSC/MPP populations in mouse, chemotherapeutic 

treatment conditions within cell culture, and human normal/leukemia patient samples. The data 

implicate the importance of the modulation of GSH/GSSG redox couple in stem cells related 

diseases.
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Introduction

Glutathione, γ-L-glutamyl-L-cysteinylglycine, (GSH) is an endogenous tripeptide involved 

in many cellular processes including apoptosis, cellular detoxification, and redox 

signaling[1, 2]. Currently, GSH is thought of as a major cellular reducing agent, with high 

intracellular concentrations reported to range from 0.5–10 mM, that aids in protection from 

ROS mediated injury [3–5]. GSH/GSSG homeostasis is tightly regulated with depletion or 

oxidation of the cellular GSH pool leading to the activation of anti-oxidant signaling 

pathways, gene transcription, and GSH synthesis accomplished via glutamate-cysteine ligase 

(GCL) activity. Oxidizing cellular conditions lead to the heterodimerization of the GCL 

subunits, GCLC (GCL catalytic subunit) and GCLM (GCL modifier subunit) [6, 7] which, 

results in increased GCL activity. GSH activity is subsequently regulated via cycling the 

cysteinyl thiol (pKa= 9.2) through oxidized and reduced states. GSH-mediated cellular 

detoxification may be accomplished by the direct conjugation of GSH, to xenobiotics and 

other endogenously produced small molecules via glutathione-S-transferase (GST) activity 

or through the action of glutathione peroxidase (GPx), which reduces hydrogen peroxide 

while GSH is co-oxidized to its disulfide form (GSSG)[1, 2, 7, 8]. Additionally, GSH may 

reversibly modulate cellular redox signaling via direct glutathionylation of thiol groups 

within redox sensitive signaling proteins. This post-translational modification may also 

protect thiol groups within redox sensitive signaling proteins from permanent modification 

under oxidizing conditions[9, 10]. Similarly, GSH functions to protect mitochondrial 1-Cys 

peroxiredoxins from damaging oxidation as the resolving thiol group in thioredoxin 

catalyzed peroxidase activity in saccharomyces cerevisiae [11]. These functions and aspects 
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of GSH homeostasis demonstrate the importance of the GSH/GSSG redox pair in the 

maintenance of the cellular redox state.

The cellular redox state is commonly characterized by examining the ratio of reduced to 

oxidized species within cellular redox pairs. High intracellular concentrations and redox 

buffer capacity makes this especially true of the GSH/GSSG redox couple[1, 12–14]. 

Biochemically, GSH and GSSG may be thought of as components of an electrochemical 

half-cell in which the flux of single electron transfers can be quantified by their electrical 

potential or electromotive force, characterizing the proclivity of the GSH/GSSG pair to 

donate or accept electrons in varying redox states. As a result, defining the individual 

absolute cellular concentrations of GSH and GSSG and applying these concentrations, along 

with measured values for intracellular pH (pHi) and cellular volume to the Nernst equation 

allows for a more specific analysis of the 2GSH/GSSG redox state, the electrical half-cell 

reduction potential (Ehc)[12, 13]. Although living biological systems never rest at a state of 

equilibrium, characterization of the 2GSH/GSSG reduction potential provides a practical 

snapshot of cellular redox balance[12, 15]. Furthermore, evaluation of the 2GSH/GSSG Ehc 

is a strong indicator of the existing redox state of thiol-containing signaling proteins 

regulated by glutathione.

The cellular GSH/GSSG ratio is characterized by the equilibrium half-cell reaction of 

glutathione species resulting in the synthesis of two moles of GSH from the reduction of one 

mole of GSSG, thus the glutathione based redox state is dependent on cellular GSH 

concentrations[12, 13]. Alternatively, the individual concentrations of GSH and GSSG may 

be considered when characterizing small dynamic changes in the cellular redox state over 

time. Consequently, an effective evaluation of the glutathione based redox state requires a 

sensitive and accurate method for the quantitation of absolute concentrations for both GSH 

and GSSG. This is particularly important for evaluation of the cellular redox state within 

hematopoietic malignancies manifesting in hematopoietic stem-progenitor cells (HSC/

MPPs); a tissue that has inherently limited availability for study in vivo. For example, in our 

experience, purification of murine bone marrow typically results in the isolation of 

approximately 20,000 HSC/MPPs from a single animal that demonstrate the Lin−, Sca-1+, c-

kit+ (LSK) phenotype.

HSC/MPP location and function require cellular quiescence and protection from oxidative 

insult[16–18]. Thus, antioxidant defense is vital to stem cell function. This concept is 

demonstrated by the increase in stem cell function resulting from treatment with the anti-

oxidant and GSH precursor N-acetylcystiene (NAC)[19]. This is further demonstrated by the 

major cellular regulator of transcriptional anti-oxidant signaling Nrf2; wherein, Nrf2−/ − 

mice are characterized by an increase in HSC/MPP differentiation and a decrease in stem 

cell function, indicating that a loss of cellular antioxidant machinery is detrimental to the 

maintenance of HSC/MPP pools in vivo[20]. These observations indicate a potential role for 

glutathione metabolism and maintenance in the regulation of redox balance and the resulting 

effect on differentiation and self-renewal, within normal and malignant HSC/MPPs.

It is well recognized that regulation of glutathione metabolism is significantly affected by 

the expression and activity of the ABC transporter ABCC1/MRP1 (multi-drug resistance 
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protein 1)[21–24]. MRP1 demonstrates general ubiquitous tissue expression with the 

exception of the liver hepatocyte, functioning to efflux GSH, GSSG, and glutathione 

adducted metabolites with a km in the low mM range for GSH and nM to μM range for GS-

X adducted metabolites[21–26]. While the role of MRP1 in metabolism within peripheral 

and specialized tissues has been well documented, the function of MRP1 and its effect on 

glutathione concentrations as well as the HSC/MPP redox state within primitive HSC’s is 

less understood. This is partially due to the inherently limited availability of lineage 

primitive hematopoietic tissues, which display low glutathione concentrations in vivo, and is 

compounded by the lack of sensitive methodologies capable of discerning small dynamic 

changes in glutathione concentrations within these specialized hematopoietic populations. 

However, the ability to accurately quantitate cellular GSH pools within these rare tissues is 

needed because aberrant GSH metabolism may lead to an alteration of the HSC/MPP redox 

state. These changes in HSC/MPP redox balance are closely associated with genetic 

instability as well as proliferation, differentiation, and mobility within the HSC/MPP 

populations in which hematopoietic disorders are thought to initiate and reside[18, 27–29]. 

As such, examining the GSH/GSSG based HSC/MPP redox state may provide insight to the 

role of MRP1 and the glutathione redox pair in the onset and progression of hematopoietic 

neoplasms. Additionally, many cancer therapies, including radiation and chemotherapeutics, 

such as the anthracyclines, are known to exert a portion of their tumor killing effect through 

the production of ROS, which may be remediated by adduction of GSH and efflux via 

MRP1 further altering the malignant cell redox state. Together, these facets indicate that 

accurate measurement of GSH/GSSG will aid interpretation of MRP1 function in HSC/

MPPs and how alterations in the cellular redox state may affect hematopoietic disease onset, 

progression, and treatment.

Many current methodologies utilized for GSH and GSSG quantitation are based on free thiol 

conjugation followed by the observation of a fluorescent product, enzymatic reduction of 

glutathione disulfide pools, and the chemical derivation of parent glutathione molecules 

allowing for chromatographic separation[30–34]. These methodologies require complicated 

chemical reactions, which may not reach completion, and large amounts of sample tissue. 

Moreover, some methodologies may only accurately measure total glutathione content and 

are not effective or ideal for accurately quantitating GSH/GSSG in small cell populations in 
vivo, such as HSC/MPP’s. However, emerging methods which combine high performance 

liquid chromatography with single or tandem mass spectrometry (LC-MS, LC-MS/MS) with 

and without post column sample modification have quantitated GSH/GSSG in physiological 

fluids[35, 36]. While these methods demonstrate the potential power of LC-MS/MS 

analysis, they do so within an effectively unlimited sample population. Here we describe the 

development and validation of a simple tissue extraction combined with a robust and 

sensitive LC-MS/MS method, demonstrating high throughput potential, for the direct and 

simultaneous quantitation of oxidized and reduced forms of glutathione in small HSC/MPP 

populations. The application of this methodology is demonstrated in cell culture systems as 

well as mouse bone marrow, including purified Lin−, c-kit+, Sca-1+ (LSK) populations. 

Validation procedures performed were based on the recommended guidelines for LC-

MS/MS based analysis of small molecules in industry as set forth by the United States Food 

and Drug Administration[37]. As a method and model control we examine cell populations 
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demonstrating differential expression of MRP1 resulting in the characterization of MRP1 

functional effect on glutathione concentrations within primitive HSC/MPP populations in 
vivo. This control allows us to evaluate the ability of our LC-MS/MS method to detect fine 

variations in glutathione concentrations with both in vitro and in vivo systems. We have 

found that the over expression of MRP1 in MCF7 cells results in decreased intracellular 

GSH/GSSG concentrations, while loss of Mrp1 expression in Mrp1−/− HSC/MPPs resulted 

in the cellular accumulation of GSH and GSSG. These results indicate that MRP1 

expression may have a direct impact on the cellular redox state of the HSC/MPP population. 

Additional evaluation of the utility for this methodology is completed through the 

quantitation of glutathione within cultured MDSL cells treated with chemotherapeutics 

(Doxorubicin and Lenalidomide) that have been previously used for the treatment of 

hematopoietic disorders such as acute myeloid leukemia (AML) or myelodysplastic 

syndromes (MDS). Furthermore, we characterize glutathione concentrations in normal 

human bone marrow as well as mononuclear cells isolated form patients afflicted with acute 

myeloid leukemia. We found that acute myeloid leukemic cells derived from human bone 

marrow demonstrate elevated levels of GSH, indicating a potential mechanism by which 

leukemic stem cells balance elevated levels of oxidative stress produced during proliferation.

LC-MS/MS Materials

γ-L-Glutamyl-L-Cysteinyl-Glycine (GSH), γ-glutamyl-L-cyteinyl-glycine disulfide 

(GSSG), ethylenediaminetetraacetic acid (EDTA), were purchased from Sigma-Aldrich (St. 

Louis, MO). Trichloroacetic acid purchased from J. T. Baker (Center Valley, PA). 

Chromatographic columns were purchased from Phenomenex (Torrance, CA). HPLC grade 

solvents were purchased from Fisher Scientific (Pittsburgh, PA). Formic acid and 

ammonium formate were purchased from Acros Organic (Pittsburgh, PA).

Cell Culture

MDSL cells were cultured in IMDM media (ATCC; Manassas, VA) supplemented with 20% 

FBS (GE Healthcare; Pittsburgh, PA), 1% penicillin/streptomycin (Life Technologies; Grand 

Island, NY), and 15 ng/mL recombinant human IL-3 (Peprotech; Rocky Hill, NJ). MDSL 

cells were cultured at both 5% and 21% O2, 5% CO2, at 37° C. MCF7 cells were cultured in 

DMEM media (Life Technologies; Grand Island, NY) supplemented with 10% FBS and 1% 

penicillin/streptomycin in 5% CO2 at 37°C. MRP1 overexpressing MCF7 (MRP1-10, a gift 

from Dr. Charles Morrow, National Institute of Health, Bethesda, Washington DC) cells 

were cultured in DMEM media supplemented with 10% FBS and 1% penicillin/

streptomycin, 1.0 mg/mL G418, in 5% CO2 at 37°C.

LC-MS/MS Methodology

Mass spectrometric analysis was performed on a TSQ Vantage triple quadrupole mass 

spectrometer (Thermo Fisher Scientific, Waltham MA) coupled with an ion max 

electrospray ionization source containing a HESI II probe operated in positive ion mode. 

The GSH/GSSG MS/MS method development was accomplish by direct infusion of a GSH/

GSSG standard (10 μg/mL) into the mass spectrometer at a flow rate of 5 μL/min. Single 

reaction monitoring (SRM) was used to simultaneously analyze samples for GSH and 

GSSG. The SRM’s for GSH (m/z 308.022 → m/z 84.056 + 162.002) and GSSG (m/z 
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613.99 → m/z 231.034 + 354.993) were completed with collision energies and S-lens 

voltages optimized for each individual transition. Other MS/MS method settings follow: Q1 

and Q3 resolution at 0.7 FWHM, scan width at 0.1 amu, scan rate at 0.1 seconds, and 

collision gas pressure at 1.0 mTorr. Tune parameters were as follows: spray voltage at 2700 

V, vaporizer temperature at 200° C, capillary temperature at 250° C, sheath and auxiliary gas 

pressures at 35 and 10 arbitrary units respectively. Liquid chromatography was performed on 

a Shimadzu LC system containing a CMB-2A controller, a SIL-2A auto sampler, and two 

LC-20 AD pumps (Canby, OR). Liquid chromatographic separation of 10 μL sample 

injections were achieved on a Phenomenex Luna PFP(2) analytical column (100 mm x 2.0 

mm, 3 μm) and completed under isocratic conditions, 99% mobile phase A (H2O, 0.75mM 

ammonium formate, 0.01% formic acid), 1% solvent B (methanol) at 250 μL/minute over an 

11 minute total run time.

Calibration Standards and Quality Control’s

Stock solutions of GSH and GSSG were prepared at 1 mg/mL by dissolving 1.0 mg of pure 

powder stock in 1.0 mL of 2% TCA (1mM EDTA). One hundred μL aliquots were then 

frozen at −80° C for no more than 7 days. Working stock solutions were created by 1:10 

serial dilutions of the 1.0 mg/mL stock solutions in 2% TCA (1mM EDTA). A working 

GSH/GSSG stock solution was mixed at 10 μg/mL and subsequently used to dilute working 

standard concentrations of 500.0, 250.0, 100.0, 50.0, 25.0, 10.0, 7.5, 5.0, 2.5, 1.0, 0.5 ng/mL 

for simultaneous GSH/GSSG standardization of the LC-MS/MS system. QC solutions of 

5.0, 25.0, and 250.0 ng/mL (five injections at each concentration) were also diluted from the 

10 μg/mL working GSH/GSSG stock solution. Standard curves and QC’s were prepared and 

run on each day of analysis. Data acquisition and sample peak integration analysis was 

completed with Xcalibur software, version 2.1 (Thermo Fisher). Standard, QC, and sample 

concentrations were calculated with sample peak areas and linear equations (form y = mx + 

b) generated by external standard curves for both GSH and GSSG.

Sample Extraction Methodology

Samples, prepared as described below were pelleted in a 5 mL round bottom tube by 

centrifugation in a swinging bucket rotor at 1300 rpm for five minutes. Supernatants were 

carefully discarded by vacuum aspiration. Cells were then re-suspended in 75 μL of 

extraction buffer (2% TCA; 1.0 mM EDTA) and incubated on ice for 15 minutes after which 

samples were vortexed for 45 seconds and incubated on ice for a further 15 minutes. Sample 

pH was adjusted to 2.0 by mixing 50 μL of sample lysate with 50 μL of Mobile phase A 

(HPLC grade H2O, 0.75 mM ammonium formate, 0.01% formic acid, pH=3.0) and cellular 

debris was subsequently pelleted by centrifugation at 4,000 x g for 10 minutes. Supernatants 

were collected for LC-MS/MS analysis.

Method Validation

The linear range of detection for both GSH and GSSG was determined and validated by the 

analysis of the standard curve and QC samples generated as described above (n=3). A linear 

regression was used to determine the correlation coefficient (r2 value) after plotting the 

analyte peak area over the standard concentration. The inter-day slope precision was 
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expressed as the percent of the coefficient of variance ( ). Analyte stability at 

various temperatures was determined by repeat analysis at the lowest QC concentration 

(n=5) and is presented as percent of the concentration originally measured. Inter and intra-

day precision was determined by repeat standard and QC evaluation at three different 

concentrations within the determined linear range in replicates of five (n=3). Again, 

precision is presented as %CV. The lower limit of detection (LLOD) was determined by the 

lowest peak height that generated a signal to noise ratio (S/N) greater than or equal to three 

(S/N ≥ 3) for both GSH and GSSG. The lower limit of quantitation (LLOQ) for both analyte 

species was identified as the minimum analyte concentration required to generate a signal to 

noise ratio greater than or equal to five (S/N ≥ 5) as determined by standard addition 

analysis described below.

Because GSH and GSSG are produced endogenously, the cellular lysates produced during 

sample extraction serve as the biological matrix. Thus, precision, accuracy and percent 

recovery were evaluated by standard addition of known analyte concentrations to whole cell 

lysates which were extracted at 30,000 cells per aliquot of lysate. Mouse whole bone 

marrow was used for cross validation. Here, individual lysates of 30,000 cells/sample were 

spiked with known amounts of standard GSH/GSSG solution. To accomplish standard 

addition of MDSL cell lysates, 1.2 million MDSL cells were lysed in 3.0 mL of extraction 

buffer (30,000 cells/ 75 μL of extraction buffer). Then, 75 μL of lysate was added to 75 μL 

of blank extraction buffer or extraction buffer containing four times the target analyte (GSH/

GSSG) concentration and samples were then incubated on ice for 30 minutes. After 

incubation, sample pH was adjusted to 2.0 by mixing 50 μL of sample containing the blank 

lysate, +/− standard with 50 μL of mobile phase A. Samples were then spun down as 

previously described and analyzed via LC-MS/MS. Standard addition of mouse whole bone 

marrow was completed by preparing individual aliquots of 30,000 cells to which 75 μL of 

either blank extraction buffer or extraction buffer containing two times the target analyte 

concentration of GSH/GSSG was added. Samples were then incubated on ice for 15 minutes 

after which the samples were vortexed for 45 seconds each, followed by another 15 minute 

incubation period on ice. Cellular debris was then pelleted by centrifugation at 4,000 x g, 

and the supernatants were collected for LC-MS/MS analysis. Standard addition for both cell 

types was completed at 4 concentrations; 0.0, 5.0, 50.0, 250.0 ng/mL for GSH and 0.0, 1.0, 

5.0, 50.0 ng/mL for GSSG. Each standard addition concentration was evaluated in replicates 

of n=5. Target analyte concentrations were evaluated by subtracting the basal GSH/GSSG 

concentrations obtained by LC-MS/MS analysis of the blank samples from the GSH/GSSG 

concentrations calculated from the standard addition samples. Precision values at each 

standard addition concentration are expressed as % CV, described above. Accuracy values 

are expressed as % bias, which is taken as the percent deviation of the determined 

experimental concentration from the proposed theoretical concentration 

( ). The percent recovery values were determined as the 

[ ].

GSH/GSSG Analysis of Cultured Cells

MRP1 protein expression in MCF7 WT and MRP1 overexpressing MCF7 (MRP1-10) cells 

was evaluated by flowcytometry analysis after incubation with a FITC conjugated antibody 
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targeted to the first nucleotide binding domain (amino acids 617-932) of human ABCC1/

MRP1. MCF7 and MRP1-overexpressing MCF7 (MRP1-10) cells were plated at 100,000 

cells per well in 12 well plates and were subsequently incubated in 5% CO2 at 37° C for 24 

hours to allow for cellular attachment. Cells were then mechanically harvested, counted by 

hemocytometer and 50,000 cells per sample were aliquoted into 500 μL of PBS (pH=7.0 for 

LC-MS/MS analysis of GSH/GSSG as described above. Similarly, prior to analysis, MDSL 

cells were plated at 200,000 cells/mL in a 24 well plate and were then incubated in 5% or 

21% O2, 5% CO2, at 37° C for 24 hours. Cells were then counted by hemocytometer and 

samples were diluted in 500 μL of PBS (pH=7.0) prior to LC-MS/MS analysis of GSH/

GSSG. Total GSH and GSSG concentrations (ng/mL) were converted to ng/sample by 

multiplying by total sample volume, sample concentrations were then divided by the total 

number of cells extracted, normalized to 20,000 cells per sample and reported as [GSH] and 

[GSSG] in ng/20,000 cells.

LSK Purification by FACS Analysis

Femurs and tibias were harvested from wild type (WT) and Mrp1 knock out (KO) mice of 

the C57BL/6 background. Subsequently, bone marrow was aspirated with FACS buffer 

(PBS, 2% HI-FBS pH=7.4) using a 2 mL syringe and a 27.5 gauge needle (BD biosciences, 

San Jose, CA). Whole bone marrow was then pelleted by centrifugation at 1600 rpm for 3 

minutes and the supernatant was discarded. Cells were then washed twice with FACS buffer. 

Whole bone marrow was then re-suspended in red blood cell lysis buffer (150 mM NH4Cl, 

10mM NaHCO3, 1 mM EDTA), filtered through a 5 mL (12 x 75 mm) polystyrene round-

bottom tube with a cell strainer cap (BD Falcon, San Diego, CA) and incubated on ice for 5 

minutes. Cells were then spun down at 1600 rpm for 3 minutes and the supernatant was 

discarded. Cells were then washed twice with FACS buffer and re-suspended in 100 μL of 

FACS buffer. After re-suspension cells were incubated with 2 μL (1:50 ratio) of conjugated 

antibody corresponding to cell surface markers used for sorting Lin−, Sca-1+, c-kit+ 

hematopoietic stem cells (LSKs) on ice for 60 minutes. The antibodies used for sorting 

LSK’s were as follows: Sca-1, Ly-6A/E-PE-Cy7; c-kit, CD-117-PerCP-Cy5.5; Lineage, 

Cd45R-APC-Cy7, Cd3e-APC-Cy7, Ter199-APC-Cy7, Cd19-APC-Cy7, and Cd11b-APC-

Cy7 (all Abs listed are raised in rat, anti-mouse and were purchased at 0.2 mg/mL from BD 

Pharmigen, San Diego, CA). Subsequent to incubation, cells were washed and then re-

suspended in 500 μL of FACS buffer for fluorescence assisted cell sorting of LSKs at the 

University of Kentucky flow cytometry facility. There, Lin−, Sca-1+, c-kit+ HSC/MPP’s 

form both WT and Mrp1 KO mice were sorted such that LSKs from two mice were pooled 

as one animal for GSH/GSSG analysis. Thus, six mice of each genotype were sorted as three 

separate animals. LSKs were then taken directly to the University of Kentucky proteomics 

core for analysis of absolute GSH/GSSG concentrations via LC-MS/MS.

Cell Viability

MDSL cells were plated at a density of 200,000 cells/mL in complete MDSL cell medium 

containing either vehicle or drug (10 μM Lenalidomide, Cayman Chemical, Ann Arbor MI; 

or 25 nM Doxorubicin, Pfizer, New York, NY) in a 24 well plate and were incubated for 48 

hours. Cells were then transferred to 5 mL round bottom tubes and washed twice with warm 

HBSS (pH=7.4)(Gibco-Thermo Fischer, Waltham, MA). Cells were then re-suspended in 
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MTT solution (0.5 mg/mL 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, 

Sigma Aldridge St. Louis, MO; in RPMI media with no phenol red Gibco-Thermo Fischer, 

Waltham, MA), aliquoted into a 96 well plate, and incubated at 37°C for 4 hours. Equal 

volumes of lysis buffer (50/50, v/v, isopropanol/DMSO) were added to each well followed 

by a 30 minute incubation at 37°C. Samples were then evaluated for absorbance at 560 and 

690 nm using a Molecular Devices SpectraMax Plus 384 plate reader with SoftMax Pro 

software.

Therapeutic Drug Treatments

MDSL cells were plated at a density of 200,000 cells/mL in complete MDSL cell medium 

containing either vehicle or drug (10 μM Lenalidomide, Cayman Chemical, Ann Arbor MI; 

or 25 nM doxorubicin, Pfizer, New York, NY) in a 24 well plate and were incubated for 6 

hours. Samples were then transferred to 5 mL round bottom centrifuge tubes, extracted, and 

GSH/GSSG concentrations were analyzed via LC-MS/MS as previously described.

Patient Sample Collection and Analysis

Peripheral blood and bone marrow samples were obtained by Dr. Diana Howard, from the 

Markey Cancer Center after individuals gave informed consent for tissue donation. White 

blood cells were isolated by ficol gradient centrifugation as follows; patient tissue (21 mL of 

blood or bone marrow) was diluted to 50 mL with phosphate buffered saline (sigma 

Aldridge). Samples were then layered over 13 mL of Histopaque (Sigma Aldridge) and 

centrifuged at 1400 rpm for 45 minutes. The white blood cell layer was then carefully 

removed, diluted in freezing media (IMDM, 10% FBS, 1% penicillin/streptomycin, 10% 

DMSO) and stored in liquid nitrogen (−180° C) until the time of LC-MS/MS analysis as 

described above.

Results

LC-MS/MS Method Development and Validation

Past liquid chromatographic separation of glutathione has been accomplished with common 

reverse phase C18 columns. However, we have found that GSH retention on these analytical 

columns is minimal. Recently, Squellerio et al., described utilization of the Luna PFP-2 

reverse phase column (Phenomenex) for the efficient retention of both glutathione species in 

the LC-MS/MS analysis of GSH and GSSG from human whole blood samples. In agreement 

with their findings, we found the Luna PFP-2 column to the optimal tool for 

chromatographic retention and separation of the oxidized and reduced glutathione species. 

While previous mass spectrometric based methodologies for the analysis of GSH/GSSG in 

physiological fluids have been characterized, these methods are applied to the analysis of 

samples for which there effectively is a nearly unlimited supply[35, 36]. To our knowledge, 

none have examined the limits of sensitivity and potential for analysis of fine changes in 

GSH/GSSG concentrations within rare and limited tissue populations, such as hematopoietic 

stem cells in vivo.

To determine the quantitative limit for tissue sample analysis of GSH/GSSG concentrations 

in vitro and demonstrate the effectiveness and sensitivity of these analytical parameters in 
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vivo, we developed a modified LC-MS/MS method for direct and simultaneous GSH/GSSG 

quantitation. The product ion spectra obtained were evaluated by the comparison to product 

ion spectra acquired from the direct infusion of pure GSH/GSSG standard (figure 1A). The 

chromatographic resolution of GSH and GSSG was confirmed by the collection and 

evaluation of full product ion spectra resulting from the analysis of GSH and GSSG from a 

biological sample (figure 1B). Upon completion of the LC-MS/MS SRM method 

development, the average retention times for GSH and GSSG elution from the Luna-PFP2 

reverse phase column, calculated from QC analysis were 2.69 +/− 0.02 and 4.37 +/− 0.03 

minutes respectively (mean +/− SD, n=15). A typical extracted ion chromatogram obtained 

from LC-MS/MS analysis of a 25 ng/mL standard is shown in Figure 2. Figure 3 

demonstrates the typical results obtained from GSH/GSSG standard curve analysis. 

Although separate external GSH and GSSG standard curves are generated, standard data 

acquisition occurred simultaneously.

The method validation summary (Table 1) includes all parameters for LC-MS/MS method 

validation as recommended by the USFDA[37]. The lower limit of detection for both GSH 

and GSSG was 0.5 ng/mL as demonstrated by chromatographic peaks that have a signal to 

noise ratio greater than 3. Precision, lower limits of quantitation (LLOQ) as determined by 

accuracy measurements at various QC concentrations, and analyte recovery were all 

determined by standard addition analysis. The lower limits of analyte quantitation were 5.0 

ng/mL for GSH and 1.0 ng/mL for GSSG.

The USFDA recommends that accuracy values, which are defined as the closeness of a 

concentration value obtained by the analytical method to the actual concentration value, and 

precision values, defined as the closeness of individual measures of an analyte when the 

procedure is applied to multiple aliquots of a single homogenous solution of biological 

matrix, must be evaluated at three different concentrations within the analyte’s linear range 

and must have five repeat evaluations at each concentration. These analyte evaluations must 

have mean coefficient of variance values within 15% at medium and high concentrations 

within the analyte’s linear range, and 20% at the LLOQ[37]. Table 1 summarizes the results 

of this LC-MS/MS method validation. Analyte stability was evaluated at the lowest QC 

concentration (5 ng/mL) for storage at 3 different temperatures. Our results agree with those 

previously reported, demonstrating good GSH/GSSG stability within 15%, at +4° C and 

−80° C. However, GSH stability, at the LLOQ, was slightly diminished (−23%) at room 

temperature after a period of 24 hours. Slope and inter/intra-day precision values had 

coefficient of variance values less than 10% (Table 1). A full method validation was 

completed in MDSL cell lysates in which the accuracy values were all within 20% at the 

LLOQ (GSH, 17.4%; GSSG, −1.6%) and medium to high concentrations demonstrated CV 

values of less than 5% (Table 1). Precision %CV values were less than 15% at all 

concentrations for both GSH and GSSG. Analyte recovery values, evaluated by standard 

addition, were all within 10% of full analyte recovery for both GSH and GSSG. Finally, a 

method cross validation by evaluation of accuracy and precision via standard addition was 

completed in the mouse whole bone marrow biological matrix. Accuracy and precision 

coefficient of variance values were determined to be within 15% at all concentrations for 

both GSH and GSSG.
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Biological Method Evaluation

To test the potential for this method to evaluate varying glutathione levels in biological 

systems, we utilized a system with altered expression of Multidrug Resistance-associated 

Protein 1 (ABCC1/MRP1). We first measured GSH/GSSG levels in MCF7 wild type cells, 

known to not express MRP1, and compared these results to the GSH/GSSG measurement 

within MCF7 cells overexpressing MRP1 (MRP1-10 cells). Differential MRP1 expression 

levels within the two MCF7 cell lines was confirmed by flow cytometometric analysis of 

FITC conjugated antibody directed to the first nucleotide binding domain of human 

MRP1(data not shown). Figure 4 shows that overexpression of MRP1 resulted in a 

significant decrease in cellular GSH and GSSG concentrations, −0.50 ng/20k cells for GSH, 

and −0.13 ng/20k cells for GSSG (p=0.001), and that these changes lead to a significant 

increase in the GSH/GSSG ratio, +8.42 (p=0.01, data not shown).

This method was then used to evaluate GSH/GSSG concentrations in the absence of MRP1 

in vivo. Both WT and Mrp1−/ − C57BL/6 mice were obtained and their hematopoietic stem 

cells (Lin−, sca-1+, c-kit+; LSK’s) were isolated via fluoresce assisted cell sorting (Figure 5). 

The typical yield for this isolation was approximately 20,000 cells from a single animal. The 

results demonstrated that the LSK cells from Mrp1−/ − mice had a significant increase in 

cellular GSH concentrations (+4.6 ng/20k cells, p=0.01). Interestingly, although differences 

in the GSSG concentration were observed in LSK cells isolated from Mrp1−/ − and WT 

mice, these changes were not judged to be statistically significant (Figure 6). These results 

demonstrate the robustness and sensitivity of our LC-MS/MS methodology and its ability to 

detect fine differences in GSH/GSSG concentrations within very limited tissue populations.

Both the over expression and knock out of Mrp1 expression within various cell types 

resulted in an increase of the GSH/GSSG ratio. This indicates that the evaluation of the 

individual cellular concentrations of GSH and GSSG and not only their concentration ratio 

is useful for an accurate interpretation of the GSH/GSSG based cellular redox state.

To further validate the utility of the methodology, MDSL cells were evaluated for GSH and 

GSSG concentrations after treatment in vitro with two clinically relevant chemotherapeutic 

agents, Doxorubicin (Adriamycin) and Lenalidomide (Revlimid). Traditionally, high risk 

MDS patients presenting with blast crisis have been treated with high dose Cytarabine plus 

an additional course of an anthracycline such as Doxorubicin. Because Doxorubicin is a 

known ROS inducer, due its metabolic formation of an intermediate semi-quinone structure, 

we compare the treatment effect and generation of ROS via doxorubicin to that of 

Lenalidomide. Lenalidomide is known to act as an anti-inflammatory agent as well as a 

stimulant of lymphocytes and erythropoiesis [38–41]. However, there is evidence that 

suggests Lenalidomide can, itself, induce oxidative stress. This is observed in the use of 

Lenalidomide for the treatment of a multiple myeloma model in which the combination of 

Lenalidomide and the spin trap, ROS scavenger, phenyl-N-t-butylnitrone (PBN) effectively 

modulates the transcriptional activation of AP-1 family transcription factors [42]. Recently, 

Lenalidomide has been proven to be effective in the treatment of MDS mouse models and 

has a significant cytotoxic effect in vitro, at 10 μM [43]. Doxorubicin (25 nM) and 

Lenalidomide (10 μM) treatment of MDSL cells results in 21% (p=0.04) and 18% (p=0.02) 

decreases in MDSL cell viability respectively (figure 7). Similar treatment effects are also 
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demonstrated on cellular GSH and GSSG concentrations in vitro. A 6 hour treatment of 

MDSL cells with Doxorubicin resulted in a 19% depletion of GSH (−5.72 ng/20k cells, 

p=0.03) and a 15% (−0.019 ng/20k cells, p=0.03) depletion of GSSG compared to vehicle 

control (figure 8). Similarly, 6 hour in vitro treatment of MDSL cells with Lenalidomide 

resulted in a 10% (−2.09 ng/20k cells, p=0.01) depletion of GSH and a 15% (−0.013 ng/20k 

cells, p=0.02) compared to vehicle controls (figure 8). Because the decreases in GSH and 

GSSG upon treatment were very fine, there was no significant difference in the GSH/GSSG 

ratio’s between treatment and control groups (data not shown). This again points to the 

importance of individual species concentration determination rather than the examination of 

the ratio between the reduced and oxidized forms of glutathione alone. Furthermore, the 

elucidation of such minor, yet significant, changes in analyte concentration demonstrates the 

sensitivity and robust nature of this methodology.

Patient Sample Evaluation

Because cellular GSH/GSSG concentrations could play a significant role in disease onset 

and progression, changes in cellular GSH/GSSG concentrations and the cellular redox state 

may potentially serve as a biological marker for disease onset or severity. As such, we set 

out to evaluate GSH/GSSG concentrations in ficol purified white blood cell populations 

from patient samples donated by healthy individuals or those who had a confirmed case of a 

hematopoietic malignancy. We measured GSH/GSSG concentrations in 5 samples collected 

from healthy bone marrow (NBM), and 6 samples from patients diagnosed with acute 

myeloid leukemia (AML). Figure 9 shows a significantly higher GSH levels in AML 

compared to the NBM samples (+ 18.57 ng/mL), resulting in an increased GSH/GSSG ratio 

(+2.87). This elevated GSH/GSSG redox state may compensate for the elevated oxidative 

stress levels that malignant cells utilize for proliferation and disease progression.

Discussion

Recently, several mass spectrometric based methodologies have directly evaluated oxidized 

and reduced glutathione extracted from physiological fluids. These methods have 

demonstrated the ability to measure GSH/GSSG concentrations without the need for the 

enzymatic reduction or chemical derivation of glutathione or glutathione disulfide prior to 

endpoint detection[31, 33, 35, 36]. While effective, previous methods have been applied 

only to large sample pools in which the limits of sample volume and method sensitivity are 

not an issue. Following the USFDA Guidance for Industry on Bioanalytical LC-MS/MS 

Method Validation, we have developed and described the validation of a sensitive and robust 

LC-MS/MS method for the simultaneous and direct quantitation of the oxidized and reduced 

forms of glutathione. We apply this methodology to the quantitation of GSH and GSSG at 

the cellular level, and we use this method to determine the lower limit of tissue volume 

required for accurate cellular GSH/GSSG quantitation. We have demonstrated the 

quantitation of cellular GSH/GSSG within the murine stem cell populations and the 

potential for GSH/GSSG analysis within HSCs derived from an individual animal. Our 

analyses enable the determination of the physiologically relevant, functional effect of MRP1 

expression on the glutathione based redox state within primitive HSC populations. Here, loss 

of MRP1 expression results in an increase in cellular glutathione concentrations creating a 
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more reducing intracellular environment. This result indicates that MRP1 may play an 

important role in regulating redox balance within HSC’s and thus influencing the ability or 

proclivity for HSCs to self-renew or differentiate into downstream functional populations. 

Additionally, the ability to detect fine clinically relevant treatment induced variations in 

glutathione concentrations within hematopoietic tissues, as demonstrated by the treatment of 

MDSL cells with Doxorubicin and Lenalidomide, show that this methodology may be 

capable of providing valuable insight to treatment toxicity as well as efficacy as it pertains to 

the modulation of the cellular redox state in vivo.

Because of the critical role of glutathione in cellular redox balance and signaling, we believe 

that the tissue extraction and LC-MS/MS method described here will become an important 

tool for examining how the cellular redox state may affect or be affected by the development 

and treatment of hematopoietic neoplasms. Based on the data obtained from human samples, 

we speculate that elevated redox stress within malignant hematopoietic cells may be 

compensated with elevated levels of GSH and that the altered redox state may support 

disease onset as well as drive disease progression[44]. The results suggest that there is a 

potential for the future use of cellular GSH/GSSG concentrations as a bio-marker for 

hematopoietic cancer; however, a much larger patient cohort must be evaluated.

GSH concentrations in the nucleus account for 10–15% of total cellular GSH, and 1–2% of 

this total cellular GSH pool residing in the nucleus may be resistant to depletion by chemical 

agents such as L-buthionine-[S,R]-sulfoximine (BSO)[45–49]. Thus, characterization of 

nuclear GSH concentration and function can indicate GSH utility in nuclear protection from 

oxidant insult, resulting in the faithful conservation of DNA replication and improved DNA 

repair capabilities. Similarly, mitochondrial GSH may account for up to 30% of cellular 

GSH[1, 8, 50, 51]. This mitochondrial pool of GSH protects other sulfhydryl containing 

proteins and may partially regulate the function of ATPases, transporters, and 

dehydrogenases by buffering the cellular redox status in the face of oxidative challenge[8]. 

Due to its sensitivity, our method may be utilized for the evaluation of GSH/GSSG 

concentrations within separate subcellular fractions, such as nuclear extracts and purified 

mitochondrial preparations. Future efforts to characterize subcellular GSH pools within rare 

tissue populations may be accomplished by adopting this LC-MS/MS methodology into an 

ultra-high pressure liquid chromatographic (UHPLC) system. The features of UHPLC-

MS/MS analysis result in tighter peak widths and greater peak heights resulting in improved 

overall analyte sensitivity and higher throughput potential. Utilization and further 

development of the methods we describe here can have an important impact on redox 

biology research as it pertains to the development of hematopoietic malignancies in limited 

and rare tissue populations as well as the impact of redox balance on subcellular function.
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Highlights

• LC-MS/MS method for the simultaneous analysis of oxidized and 

reduced glutathione.

• The method is validated based on FDA guidelines in vitro and in vivo 
systems.

• Detection of glutathione in rare HSPCs and drug induced variations of 

GSH levels.

• ABCC1 expression alters intracellular glutathione concentrations 

within HSPCs.

• Evaluation of glutathione as a potential biomarker for hematopoietic 

malignancy.
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Figure 1. 
A.) Both GSH (top) and GSSG (Bottom) were infused in line with a 50% solvent A, 50% 

solvent B LC flow (200 μL/min) at a rate of 5 μL/min and at concentrations of 10μg/mL. 

The resulting product ion spectra were obtained from GSH and GSSG parent ions. B.) The 

chromatograms and spectra above resulted from the injection of a cellular extract isolated 

from mouse LSK cells. The spectra below each chromatogram display the product ion 

spectrum for the highlighted chromatographic peak above. Comparison of these spectra with 

the infusion spectra (A) shown above confirm the presence of GSH and GSSG.
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Figure 2. 
The chromatograph above demonstrates the simultaneous separation of reduced (GSH, 

middle) and oxidized (GSSG, bottom) forms of glutathione. This injection sample consisted 

of 10 μl of a 25 ng/mL QC sample (0.25 ng on column) routinely run during instrument 

standardization.
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Figure 3. 
The linear plots above are examples of typical standard curves for both GSH and GSSG. 

Although separate curves are generated, GSH and GSSG standardization of the LC-MS/MS 

system takes place simultaneously. 1 mg/mL standards for GSH and GSSG are prepared in 

1% TCA (1.0 mM EDTA, 50% solvent A). These standards are then mixed at 10 μg/mL 

each and are subsequently diluted down in a stepwise fashion with 1%TCA (1.0 mM EDTA, 

50% solvent A) to create the working solutions of standard and QC concentrations displayed 

in the linear range above. Fresh standards and QC’s are prepared the day sample analysis 

takes place.
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Figure 4. 
Mean GSH/GSSG concentrations were evaluated in MCF7 WT and MCF7 cells 

overexpressing MRP1 (MRP1-10). Significant differences in GSH concentration between 

MCF7 (1.37 ng/20k cells) and MRP1-10 cells (0.87 ng/20k cells) were determined 

(p=0.001). Additionally, significant differences in GSSG concentration between MCF7 (0.19 

ng/20k cells) and MRP1-10 cells (0.06 ng/20k cells) were determined (p=0.001). These 

changes resulted in a significant alteration to the GSH/GSSG ratio between the two cell lines 

7.4 (MCF7) vs 15.82 (MRP1-10) (p=0.01).
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Figure 5. 
Fluorescence Assisted Cell Sorting (FACS) purification of Lin−, Sca-1+, c-kit+ (LSK) 

hematopoietic stem cells (HSC’s). Bone marrow from C57BL6 wild type (WT, Bottom) and 

Mrp1 knock out (KO, Top) mice used for GSH/GSSG analysis. This analysis routinely 

resulted in the purification of approximately 20,000 cells per mouse.
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Figure 6. 
The concentrations of GSH, GSSG and their cellular ratio determined in WT and Mrp1 KO 

mouse LSK cells purified as described earlier. The graph depicts the differences in analyte 

concentrations between genotypes. A significant difference in mean GSH concentration is 

demonstrated between the Mrp1 KO (5.64 ng/20k cells) and WT (1.04 ng/20k cells) animals 

(p=0.01). A difference in the GSSG concentration between genotypes was found (KO, 1.07 

ng/20k cells vs WT, 0.17 ng/20k cells) but this difference was not statistically significant. 

Similarly no significant difference in GSH/GSSG ratios was determined (KO, 8.56 vs WT, 

6.16).
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Figure 7. 
MDSL cell viability was evaluated via MTT assay after 48 hour treatment with 25 nM 

Doxorubicin and 10 μM Lenalidomide in vitro. Both treatments resulted in a significant 

decrease of cell survival, 21% for Doxorubicin (p=0.04) and 18% for Lenalidomide 

(p=0.02). Results are expressed as percent cell survival normalized to the vehicle control.

Carroll et al. Page 24

Free Radic Biol Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
MDSL cell GSH (A) and GSSG (B) concentrations were analyzed after 6 hour drug 

treatment in vitro. Both Doxorubicin (25 nM) and Lenalidomide (10 μM) caused significant 

depletion of GSH and GSSG (Dox GSH −5.72 ng/ 20k cells, p=0.03; Dox GSSG −0.019 

ng/20k cells, p=0.03; Len GSH −2.09 ng/20k cells, p=0.02; Len GSSG −0.013 ng/20k cells 

p=0.01).
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Figure 9. 
Mean GSH, GSSG concentrations and their cellular concentration ratio analyzed within 

lymphocytes purified from the peripheral blood of AML patients as was the bone marrow 

obtained from normal patient donors. LC-MS/MS analysis revealed a significant increase in 

GSH concentrations within the AML (28.15 ng/mL) vs NBM (9.58 ng/mL) sample 

populations (p=0.03), resulting in a significant increase in the GSH/GSSG ratio, 3.94 in 

AML vs 1.16 in NBM patients (p=0.04). No significant difference was determined in GSSG 

concentrations between patient groups (AML, 8.77 ng/mL vs NBM, 7.73 ng/mL).
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Table 1

The table above summarizes the results of the LC-MS/MS method validation for the simultaneous analysis of 

reduced and oxidized forms of glutathione. The Lower Limit of Detection and Quantitation were taken as the 

concentrations which exhibit a signal greater than or equal to that of three (LLOD) and five (LLOQ) times the 

intensity of a blank matrix injection respectively. All standards and QC’s had an injection volume of 10 uL and 

were analyzed using the LC-MS/MS method previously summarized. Inter-day standard and slope analysis 

was completed over 3 days with a linear range of 0–500 ng/mL. QC’s levels evaluated were at 5, 25, and 250 

ng/mL over 3 days for inter-day precision analysis. Intra-day precision analysis was completed with an n=5 for 

each concentration on the same day.

Method Validation Summary

Stability (%) GSH GSSG

RT (24 hr) 77 91

+4 Deg C (24 hr) 111 94

−80 Deg C (7 Days) 91 95

LLOD (ng/mL) 0.5 0.5

LLOQ (ng/mL) 5.0 1.0

Inter-day St. Curve Slope Precision (%CV) 6.2 3.5

Intra-day QC Precision (% CV)

GSH 5 ng/mL; GSSG, 5 ng/mL 4.9 6.5

GSH 50 ng/mL; GSSG, 50 ng/mL 2.0 3.3

GSH 250 ng/mL; GSSG, 250 ng/mL 2.0 2.4

Inter-day QC Precision (%CV)

GSH 5 ng/mL; GSSG, 5 ng/mL 4.3 8.7

GSH 50 ng/mL; GSSG, 50 ng/mL 3.0 3.5

GSH 250 ng/mL; GSSG, 250 ng/mL 1.4 2.3

Accuracy (Mean % Bias Relative to Theoretical Standard Concentration)

MDSL Cell Line

GSH 5 ng/mL; GSSG, 1 ng/mL 17.4 (5.87 ng/mL) −1.6 (0.98 ng/mL)

GSH 50 ng/mL; GSSG, 5 ng/ 1.1 (50.55 ng/mL) 1.8 (5.09 ng/mL)

GSH 250 ng/mL; GSSG, 50 ng/mL 1.2 (253.06 ng/mL) 0.1 (50.94 ng/mL)

Mouse Whole Bone Marrow

GSH 5 ng/mL; GSSG, 5 ng/mL 2.1 (5.10 ng/mL) 0.4 (5.07 ng/mL)

GSH 50 ng/mL; GSSG, 50 ng/mL −9.7 (45.16 ng/mL) 0.2 (50.09 ng/mL)

GSH 250 ng/mL; GSSG, 250 ng/mL −2.4 (243.95 ng/mL) 0.5 (251.28 ng/mL)

Precision (% CV)
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Method Validation Summary

Stability (%) GSH GSSG

MDSL Cell Line

GSH 5 ng/mL; GSSG, 1 ng/mL 11.3 14.5

GSH 50 ng/mL; GSSG, 5 ng/mL 4.3 2.4

GSH 250 ng/mL; GSSG, 50 ng/mL 1.1 1.7

Mouse Whole Bone Marrow

GSH 5 ng/mL; GSSG, 5 ng/mL 13.2 5.1

GSH 50 ng/mL; GSSG, 50 ng/mL 7.6 1.9

GSH 250 ng/mL; GSSG, 250 ng/mL 5.0 2.1

Recovery (% Compared to Measured Blank Concentration)

MDSL Cell Line

GSH 5 ng/mL; GSSG, 1 ng/mL 101.5 99.6

GSH 50 ng/mL; GSSG, 5 ng/mL 100.9 102.4

GSH 250 ng/mL; GSSG, 50 ng/mL 105.1 101.2
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