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Summary

Semi-competing risks data are often encountered in chronic disease follow-up studies that record 

both nonterminal events (eg. disease landmark events) and terminal events (eg. death). Studying 

the relationship between the nonterminal event and the terminal event can provide insightful 

information on disease progression. In this paper, we propose a new sensible dependence measure 

tailored to addressing such an interest. We develop a nonparametric estimator, which is general 

enough to handle both independent right censoring and left truncation. Our strategy of connecting 

the new dependence measure with quantile regression enables a natural extension to adjust for 

covariates with minor additional assumptions imposed. We establish the asymptotic properties of 

the proposed estimators and develop inferences accordingly. Simulation studies suggest good 

finite-sample performance of the proposed methods. Our proposals are illustrated via an 

application to Denmark diabetes registry data.
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1. Introduction

In chronic disease follow-up studies, in addition to a terminal survival outcome of primary 

interest, nonterminal disease landmark events are often recorded to provide extra 

information on disease progression. This naturally postulates a semi-competing risks setting 

(Fine et al., 2001), where time to a nonterminal event (T1) can be censored by time to a 

terminal event (T2) but not vice versa. The underlying disease mechanism often implicates 

the dependence between the nonterminal event and the terminal event. While considerably 

complicating the inference on T1, such a dependency itself can offer valuable insight on 

disease prognosis and thus poses an important problem to study.

Statistical methods tailored to semi-competing risks data have been developed in settings 

without covariates (Fine et al., 2001; Wang, 2003; Peng and Fine, 2006b; Lakhal et al., 

2008, among others) and with covariates (Lin et al., 1996; Peng and Fine, 2006a; Ghosh, 

2006; Peng and Fine, 2007; Hsieh et al., 2008; Chen, 2012; Li and Peng, 2015, among 

Correspondence to: Limin Peng, lpeng@sph.emory.edu.

Supplementary Materials: Web Appendices A–B referenced in Sections 2–5 are available with this paper at the Biometrics website on 
Wiley Online Library.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2016 September 07.

Published in final edited form as:
Biometrics. 2016 September ; 72(3): 770–779. doi:10.1111/biom.12491.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



others). In most of existing work, the dependence between the nonterminal event and the 

terminal event is captured by a copula model assumed for the joint distribution of (T1, T2). 

For example, without considering covariates, Fine et al. (2001) derived a closed-form 

estimator for the constant cross-ratio measure under the Clayton copula model (Clayton, 

1978). Wang (2003) and Lakhal et al. (2008) studied the estimation of the association 

parameter for the general class of Archimedean copulas. With regression models assumed 

for T1 and T2, Hsieh et al. (2008) developed an estimator for the Archimedean copula 

parameter when covariates are discrete. More recently, Chen (2012) studied a nonparametric 

maximum likelihood approach under a general specification of the copula model.

While modeling the dependence structure between T1 and T2 based on a copula model is 

intuitive and useful, such an approach can impose some implicit limitations that may often 

be ignored. For example, under the Clayton's copula model, the cross ratio function (Oakes, 

1989) is confined to be constant over time. Peng and Fine (2007) investigated a time-

dependent copula model, which allows for a time-varying association structure between T1 

and T2. Their empirical results evidenced that a constant association between T1 and T2 can 

be inadequate in practical settings. When this occurs, a numerical example provided in Web 

Appendix B shows that the classical copula modeling approach assuming a constant 

associate parameter can lead to misleading conclusions. In addition, the interpretation of a 

copula parameter, constant or time-dependent, relies on the selection of the copula function. 

When there are covariates involved, a copula based approach is further prone to issues due to 

potential misspecifications of the marginal regression models for T1 and T2.

In this work, we propose an alternative perspective for characterizing the relation between 

the nonterminal event and the terminal event. The new perspective enables the 

accommodation of time-varying dependence without involving strong model assumptions. 

Our proposals are built upon a comparison of the quantile residual time to the terminal event 

with the occurrence of the nonterminal event versus that without the occurrence of the 

nonterminal event. The basic idea bears a similar flavor to that of the cross-ratio 

function(Oakes, 1989), which compares the hazards of the terminal event regarding the 

timing of the nonterminal event. In contrast to a hazard function, a quantile residual time can 

offer straightforward physical interpretations and usually does not require smoothing for 

nonparametric estimation. Quantile residual lifetime has been investigated mostly in 

univariate survival settings (Gelfand and Kottas, 2003; Jeong et al., 2008; Jung et al., 2009; 

Ma and Yin, 2010, for example); but its utility as a device to study the dependence between 

semi-competing risks has not been exploited.

The rest of the paper is organized as follows. In Section 2, we first introduce a new 

dependence measure defined on quantile residual times, well tailored to the special structure 

of semi-competing risks. In Section 3. We fit the new measure into a quantile regression 

framework, and develop a simple nonparametric estimator, which can also account for left 

truncation, a common complication in observational studies. We present asymptotic studies 

of the proposed estimator as well as inference procedures. An extension to adjust for 

covariates is discussed in Section 4. We conduct extensive simulation studies to evaluate the 

performance of our proposal. The proposed method is illustrated by an application to a 
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Denmark diabetic registry dataset. The numerical results are presented in Section 5, 

followed by a few concluding remarks in Section 6.

2. The Proposed Measure

Let Qτ(Y|A) ≡ inf{t : Pr(Y ≤ t|A) ≥ τ} denote the τ-th quantile of Y given condition A 
holds. For the terminal event of interest, the quantile residual time at a given time point t0 is 

defined as Qτ(T2 – t0|T2 > t0).

Our basic idea is to compare the quantile residual time to the terminal event given the 

nonterminal event having occurred and that without the past occurrence of the nonterminal 

event. That is, we consider the cross quantile residual ratio (CQRR) defined as

It is clear that a larger CQRR(τ; t0), which reflects a larger difference in Qτ(T2 – t0|T2 > t0, 

T1 > t0) and Qτ(T2 – t0|T2 > t0, T1 ≤ t0), indicates a larger impact of having T1 > t0 (versus 

T1 ≤ t0) on the subsequent progression of T2. Note that CQRR(τ; t0) bears some similarity 

with the cross-ratio function in the semi-competing risks setting,

where . Both of them assess the difference in the 

terminal event progression according to the timing of the nonterminating event. The 

distinction lies in that the cross-ratio function uses hazard functions to evaluate the 

progression of the terminating event, while the proposed CQRR(τ,; t0) adopts quantile 

residual time, which can be directly interpreted in the time scale. Like the cross-ratio 

function defined above, CQRR(τ; t0) only concerns the joint distribution of (T1, T2) at the 

upper wedge (i.e. T1 ≤ T2) and hence is nonparametrically identifiable with semi-competing 

risks data.

We further take a log transformation on CQRR(τ; t0). Our proposed measure for the 

dependence of semi-competing risks events is given by

It is easy to interpret LCQRR(τ; t0). For example, LCQRR(τ; t0) > 0 (< 0) suggests that the 

nonterminating event occurring before t0 may be associated with a faster (or slower) 

progression to subsequent terminating event. The larger the magnitude of LCQRR(τ; t0), the 
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bigger the impact of having T1 ≤ t0 on the residual lifetime for T2. When T1 and T2 are 

independent, LCQRR(τ; t0) = 0 for any τ ∈ (0, 1) and t0 > 0. Examining LCQRR(τ; t0) with 

different t0's may help understand how the dependence between the nonterminal event and 

the terminal event evolves time. One may also vary the value of τ to evaluate the influence 

of T1 on multiple segments of the residual time distribution of T2.

To use LCQRR(τ; t0) in practice, we recommend specifying τ and t0 beforehand according 

to scientific interests. For example, t0 may be chosen as time points that landmark the 

development of the nonterminal event. Some common choices of τ are τ = 0.25, 0.5 and 

0.75, which can be used to reflect below average, average, and above average progression to 

the terminating event. In addition to assigning discrete values to τ and t0, one can also 

evaluate LCQRR(τ; t0) over a prespecified τ-interval or t0-interval. Doing so would permit 

assessing the changing pattern of the semi-competing risks dependence structure, which may 

shed useful scientific insight but cannot be accommodated by many traditional methods

3. The Proposed Estimation and Inference Procedures

3.1 Data and notation

We begin with a formal introduction of data and notation. Let T1 denote time to nonterminal 

event, T2 denote time to terminal event, and C denote time to censoring, which is 

independent of (T1, T2). Without considering left truncation, the observed semi-competing 

risks data are X = T1 ∧ T2 ∧ C, Y = T2 ∧ C, δ = I(T1 < Y) and η = I(T2 < C), where ∧ is the 

minimum operator.

With truncation, the observed data consist of n independent and identically distributed 

replicates of (X*, Y*, δ*, η*, L*), denoted by , where (X*, Y*, δ*, 

η*, L*) follows the conditional distribution of (X, Y, δ, η, L) given Y > L. We restrict L to 

be always less than C, meaning that censoring only occurs after sampling time. Such 

assumption has been imposed in much previous work, for example, Wang (1991), Asgharian 

et al. (2002) and Li and Peng (2011). In addition, we assume that L is independent of (T1, 

T2) and D = C – L.

To simplify the presentation hereafter, we define additional notation, A*(t0) = (1, I(X* > 

t0))T, , A(t0) = (1, I(X > t0))T and Ã(t0) = (1, I(T1 > t0))T. For a 

vector ν, we use ν(l) to denote the lth component of ν.

3.2 The proposed estimator

We first study the standard semi-competing risks setting without left truncation. To estimate 

LCQRR(τ; t0), we consider a working quantile residual lifetime regression model, which 

takes the form,

(1)
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where β0(τ, t0) is a 2 × 1 vector of unknown coefficients. In model (1), I(T1 > t0) serves as 

the only covariate, which is binary. Consequently, model (1) essentially does not impose any 

parametric assumptions. The coefficients,  and , correspond to log Qτ(T2 

– t0|T2 > t0, T1 ≤ t0) and log Qτ(T2 – t0|T2 > t0, T1 > t0) – log Qτ(T2 – t0|T2 > t0, T1 ≤ t0) 

respectively. This indicates the equivalence between LCQRR(τ; t0) and . 

Therefore, estimating  in the quantile regression framework leads to an estimator 

of LCQRR(τ; t0).

A main challenge with fitting model (1) is that the covariate I(T1 > t0) is not always 

observed because T1 is subject to censoring by both T2 and C. Suppose there is no 

independent censoring by C, and then T2 is fully observed. In this case, we see that I(T1 > 

t0) is observed and equals I(X > t0) as long as Y > t0. This suggests estimating β0(τ, t0) by a 

stratified quantile regression analysis, which solves the following estimating equation for b 
∈ R2:

(2)

When T2 is subject to independent censoring by C, we still have I(T1 > t0) = I(X > t0) given 

Y > t0. This nice feature allows us to adapt existing methods for quantile residual lifetime 

model to handle the effect of censoring. Specifically, we can use a stratified version of Ma 

and Yin (2010)'s estimating equation, which takes the form,

where Ĝc(·) is the Kaplan-Meier estimate of the survival function of C.

When left truncation is present, we need to further modify the estimating equation (2) 

because I(T1 > t0) may be missing and if observed, may not be randomly sampled. Our 

strategy is to weigh the observed data in an appropriate way such that the bias induced by 

truncation and censoring is corrected in the estimation of β0(τ, t0). Let D* = C* – L*. It is 

critical to note that under the independence between D and (T1, T2, L), the distributions of D 

and D* are equivalent, and D* is also independent of . This fact greatly 

facilitates the application of the inverse probability of censoring weighting (IPCW) in the 

present problem with truncated data. As elaborated in Web Appendix A, we show that 

 can serve as an appropriate weight, where G(t) = Pr(D > t). More specifically, 

we prove that 

.

We propose to estimate β0(τ, t0) by solving the following estimating equation for b:
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(3)

Where

The resulting estimator is denoted by β̂(τ, t0). Here Ĝ(t) is the Kaplan-Meier estimator of 

G(t) obtained from ,

Equation (3) can be easily solved given that it is a monotone estimating equation (Fygenson 

and Ritov, 1994). Specifically, following similar lines of Peng and Fine (2009), we can 

transform the solution finding to equation (3) to locating the minimizer of the convex 

function Un(b, τ, t0) given by

where M is a sufficiently large positive number that can bound 

. Minimization of the L1-type 

function Un(b, τ, t0) can be solved by using standard software, like the rq() function in the 

contributed R package quantreg.

3.3 Asymptotic results

Given that the proposed estimator of LCQRR(τ; t0) is the second element of β̂(τ, t0), it 

suffices to derive the asymptotic properties of β̂(τ, t0).

We assume the following regularity conditions:

C1. There exists ν > 0 such that P(D = ν) > 0 and P(D > ν) = 0.

C2. (i) 0 < τL ≤ τU ≤ 1; (ii) tL and tU are interior points of the support of X*.
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C3. (i) β0(τ, t0) is Lipschitz continuous for τ ∈ [τL, τU] and t0 ∈ [tL, tU]; (ii) 

f(t|Ã(t0)) is continuous and bounded above uniformly in t, t0 and Ã(t0), where 

f(t|Ã(t0)) = dF(t|Ã(t0))/dt and F(t|Ã(t0)) = E{I(T2 ≤ t)|Ã(t0)}.

C4. For some ρ0 > 0 and c0 > 0, infb∈B(ρ0),t0∈[tL,tU] eigminH(b, t0) ≥ c0, where 

B(ρ) = {b ∈ R2 : infτ∈[τL, τU],t0∈[tL, tU] ‖b – β0(τ, t0) ≤ ρ}‖ and H(b, t0) = 

E[c(t0)Ã(t0)⊗2 f(t0 + exp(ÃT(t0)b)|ÃT(t0))exp(ÃT(t0)b)]. Here ‖ · ‖ is the 

Euclidean norm and u⊗2 = uuT for a vector u.

Define , , y(t) = P(Y* – L* ≥ t), λG(t) 

= limΔ→0P(Y* – L* ∈ (t, t + Δ)|Y* – L* ≥ t)/Δ, , and 

. Let w(b, τ, t0, t) = E{A*(t0)Y(t)I(L* ≤ t0)I(Y* > 

t0)η*{I[log(Y* – t0) ≤ A*T(t0)b] – τ}G(Y* – L*)−1}, ζi(τ, t0) = ξ1,i(τ, t0) – ξ2,i(τ, t0), where 

and , i = 1, …, n.

We have following theorems:

Theorem 3.1: Under conditions C1–C4,

Theorem 3.2: Under conditions C1–C4, √n{β̂(τ, t0) – β0(τ, t0)} weakly converge to a mean 

zero Gaussian process G(τ, t0) with covariance matrix  given by

where τ, τ′ ∈ [τL, τU] and .

Theorem 3.1 implies that the proposed estimator of LCQRR(τ; t0) is uniformly consistent in 

τ ∈ [τL, τU] and t0 ∈ [tL, tU]. Theorem 3.2 presents a closed form expression for the 

asymptotic distribution of the proposed estimator of LCQRR(τ; t0). Detailed proofs of 

Theorem 3.1 and 3.2 are provided in Web Appendix A.

3.4 Inference procedures

The asymptotic covariance matrix of √n{β̂(τ, t0) – β0(τ, t0)} involves unknown density 

functions. It is straightforward to use bootstrapping procedures or adapt resampling 

approaches, such as Parzen, Wei, and Ying (1994) and Jin, Ying, and Wei (2001), to estimate 

the asymptotic covariance without requiring density estimation. Alternatively, we can also 

derive a consistent plug-in estimate for the covariance matrix following the lines of Peng and 

Fine (2009). The specific procedure follows.
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1.
Calculate , where

2. Use spectral decomposition to find a symmetric matrix En(τ, t0) such that 

.

3. Calculate 

, where en,j is the jth column of En(τ, t0), and  is defined as 

the solution to Sn(b, τ, t0) – e = 0.

4. A consistent estimate for the asymptotic covariance matrix of √n{β̂(τ, t0) – 

β0(τ, t0)}is given by

In the special case that τ′ = τ and , a consistent estimate for the asymptotic variance 

matrix is simplified as .

We can also develop second-stage inferences following the lines of Li and Peng (2011). For 

example, we can summarize LCQRR(τ; t0) over t0 ∈ [tL, tU] by 

, which may be consistently estimated by 

. We can show that the limiting distribution of √n(Ω̂τ – Ωτ) is a 

mean zero normal distribution, the variance of which may be consistently estimated by 

, where  equals the (2,2) element of 

. This result naturally renders 

a Wald-type test, TΩτ = Ω̂τ/σ̂Ωτ, for the null hypothesis H01 : LCQRR(τ; t0) = 0, t0 ∈ [tL, tU]. 

That is, we reject H01 when |TΩτ| > 100(1 – α/2)th percentile of N(0, 1) distribution, where 

α is the desired significance level. Similar results can be obtained for the overall summary 

and testing of LCQRR(τ; t0) over τ ∈ [τL, τU], corresponding to 

, and H03 : LCQRR(τ; t0) = 0, τ ∈ [τL, τU] respectively.

We can also test the constancy of LCQRR(τ; t0) over t0 or τ. For example, a null hypothesis 

of interest may take the form, H02 : LCQRR(τ; t0) = Cτ, t0 ∈ [tL, tU], where Cτ is an 

unspecified constant and may change with τ. Let Ξ(τ, t0) denote a known weight function 

satisfying Ξ(τ, t0) ≥ 0 and . If H02 holds, then 
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. This motivates us to construct a 

test statistic for H02 based on . Following the same 

line for proving Theorem 3.2, we can show that the limiting distribution of Γτ under H02 is 

normal with mean 0. A consistent variance estimate for Γτ may be given by , which is the 

(2,2) element of 

. A Wald-type 

test for H02 is then given by TΓτ = Γτ/σ̂Γτ. A similar testing procedure can be developed for 

testing the constancy over t0 ∈ [tL, tU], H04 : LCQRR(τ; t0) = Ct0, τ ∈ [τL, τU].

4. An Extension to Adjusting for Covariates

Exploiting population heterogeneity in semi-competing risks dependence is often 

scientifically meaningful, and for example, can help uncover uncommon disease 

mechanisms in subgroups. To this end, we propose an extension, which adjusts for 

covariates (captured by Z̃ ∈ Rp) in the assessment of the dependence between the 

nonterminal event and the terminal event.

First, we define the covariate-adjusted log cross quantile residual ratio as

When all covariates of interest are discrete, one may conduct stratified analyses based on the 

methods in Section 3 to estimate and make inference on LCQRR(τ; t0|Z̃).

In many practical settings, covariates of interest can be continuous. Thus we investigate a 

general scenario where Z̃ can include both continuous and discrete covariates. Specifically, 

we are interested in formulating linear covariate effects on LCQRR, which may be expressed 

as

(4)

where Ž = (1, Z̃T)T. The non-intercept coefficients in α0(τ, t0) depict how LCQRR changes 

per unit change in the corresponding covariate.

To address the interest in the linear effects of covariates on LCQRR, we consider the 

following quantile residual lifetime model:
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(5)

where Z(t0) = (1, I(T1 > t0), Z̃T, Z̃TI(T1 > t0))T, and va:b denotes the vector that includes the 

ath to bth components of vector v. It is important to note that (5) implies

When there are only discrete covariates, model (5) and model (4) can be equivalent. These 

suggest that under slightly stronger assumptions regarding the effects of continuous 

covariates, model (5) defines the same linear relationship between covariates and LCQRR as 

does model (4). Compared to model (4), model (5) is more convenient to tackle. This is 

because model (5) takes the same form as the working quantile residual lifetime model (1) 

considered for the one-sample case. As shown below, this fact greatly facilitates an 

extension to the general case with covariates. By these considerations, we adopt model (5) as 

the vehicle to explore the linear covariate effects on LCQRR.

Suppose the observed data include n i.i.d. replicates, , where  is 

the truncated counterpart of Z̃
i following the conditional distribution of Z̃ given Y > L. We 

assume that D is independent of (T1, T2, L, Z̃) and L is independent of T2 given (T1, Z̃). 

Define . Adapting the idea presented for the 

one-sample case, we propose to estimate γ0(τ, t0) by solving the following estimating 

equation for r ∈ R2+2p:

where

The resulting estimator is denoted by γ̂(τ, t0). It is easy to see that the subvector, 

γ̂(3+p):(2+2p)(τ, t0), can be used to describe the linear effect of Z̃ on LCQRR. With an 

additional assumption that Z̃ is uniformly bounded (i.e. supi‖Z̃
i‖ ≤ M1 < ∞), we can 

established the same asymptotic properties and inference procedures for γ̂(τ, t0) as those 

presented in Section 3.
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5. Numerical Studies

5.1 Simulations

Simulation studies are conducted to examine the finite-sample performance of the proposed 

methods in the left-truncated semi-competing risks setting. Specifically, we generate (T1, 

T2) from a gamma frailty model, in which

with Ti following a Weibull(αi, λi) distribution and P(Ti > x) = exp(−λixαi), i = 1, 2. The 

truncation time L is generated from a mixture of a point mass at zero and a positive-valued 

random variable L̃. The proportion of zero truncation time is set as 20%.

The simulations are conducted under two scenarios,

Scenario 1: T1 ∼ Weibull(1.4, 0.6), T2 ∼ Weibull(3.5, 0.5), L̃ and D following uniform 

distributions.

Scenario 2: T1 ∼ Weibull(3, 0.85), T2 ∼ Weibull(3, 0.4), L̃ and D following Weibull 

distributions.

For Scenario 1, there is a low truncation level with P(Y < L) = 0.3, and a high dependent 

censoring rate with P(δ = 0, η = 1|L ≤ Y) close to 0.4. For Scenario 2, there is a high 

truncation level of 0.5 and a low dependent censoring rate around 0.15. In each scenario, we 

consider three different θ values, 1, 2 and 3, corresponding to independence, moderate 

positive association, and high positive association respectively. The detailed specifications of 

the marginal distributions of L̃ and D as well as censoring and truncation proportions are 

shown in Table 1.

We perform the proposed methods on 1000 simulated datasets with sample size n = 200 or 

400 for each simulation setup, where M is set as 107. For Scenario 1, Figure 1 presents the 

empirical bias (EmpBias), empirical standard error (EmpSE) and average estimated standard 

error (EstSE) for the proposed estimator of LCQRR(τ; t0) under different combinations of 

(θ, τ, t0), where τ = 0.25, 0.5, 0.75, t0 = 0.55, 0.84, 1.1 and circles denote corresponding 

values. It is observed that the proposed estimator of LCQRR(τ; t0), performs well with 

moderate sample size. The point estimates have small biases. The corresponding standard 

error estimates agree well with empirical standard errors, and the agreement generally 

improves as sample size increases. We have very similar observations from Figure 1 in Web 

Appendix B, which presents the simulation results for Scenario 2.

We also examine the proposed second-stage inferences. With fixed τ, we evaluate the 

average of LCQRR over t ∈ [tL, tU], and test whether LCQRR(τ; t0) equals 0 for t ∈ [tL, tU] 

and whether LCQRR(τ; t0) is constant over t ∈ [tL, tU]. We consider three τ values, 0.25, 

0.5, and 0.75. For Scenario 1, we set tL = 0.42 and tU = 1.20. For Scenario 2, we set tL = 

0.68 and tU = 1.28. We compute integrals using left Riemann sums on intervals of equal 
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length 0.001 and choose the weight function Ξ(τ, t0) = 2I[t0 ≤ (tL + tU)/2]/(tU – tL). In Table 

2, we summarize the EmpBias, EmpSE and EstSE of Ω̂τ, and the empirical rejection rates 

(EmpRR) for the proposed Wald tests for H01 and H02. Note that for both H01 and H02, the 

EmpRR gives empirical sizes when θ = 1 and empirical power when θ = 2, 3. Table 2 shows 

that for both scenarios, the empirical biases of Ω̂τ are small and the estimated standard errors 

match the empirical standard errors very well. The test for either H01 or H02 appear to have 

empirical sizes close to the nominal levels. The power for testing H01 is good, while the 

constancy tests appear to be conservative. The empirical power increases considerably as 

sample size and θ value increase for both tests.

With fixed t0, we assess the second-stage inferences over [τL, τU]. For Scenario 1, we 

consider t0 = 0.55, 0.84, 1.10 and set [τL, τU] = [0.1, 0.87]. For Scenario 2, we consider t0 = 

0.85, 1.00, 1.20 and set [τL, τU] = [0.1, 0.9]. In both scenarios, Ξ(τ, t0) = 2I[τ ≤ (τL + 

τU)/2]/(τU – τL). Table 1 in Web Appendix B presents the EmpBias, EmpSE and EstSE of 

Ω̂
t0 and the EmpRR for the proposed tests. Similarly, we observe small empirical biases, 

well-matched estimated and empirical standard errors, and pretty accurate empirical sizes. 

The power for the constancy tests is not high but increases as sample size increases.

5.2 Denmark Diabetes Registry Data Analysis

We apply the proposed method to a dataset from the Denmark diabetes registry study 

(Andersen et al., 1993). The Denmark diabetes registry study is a prospective cohort study 

on insulin-dependent diabetes patients referred to the Steno Memorial Hospital in Greater 

Copenhagen. Diabetic nephropathy (DN), an indicator of kidney failure, is a significant 

complication among patients with diabetes. From 1933 to 1981, 2727 patients who were 

diagnosed with insulin-dependent diabetes mellitus prior to age 31 and between 1933 and 

1972 were accrued. At entry, patients' age at diabetes diagnosis and the presence of DN were 

recorded. All patients were then followed until death, emigration or December 31, 1984. In 

our analysis, the time origin is the age at diabetes diagnosis, with event times recorded in 

years since diagnosis. It is seen that time to DN and time to death naturally formed a semi-

competing risks structure because death terminated the observation on time to DN, but 

remained observable after the occurrence of DN. Administrative left truncation on mortality 

was also involved. That is, patients who had died before study enrollment were excluded. 

Out of 2727 patients, there were 731(26.8%) experiencing DN, 718(26.3%) dead in the end 

and 652(24%) with diabetic onset at entry. Summary statistics for the data are presented in 

Table 3.

Our focus is first to quantify the relationship between DN and death by using the proposed 

measure LCQRR(τ; t0). We fit model (1) to the data and adopt M = 107 as in the 

simulations. We restrict t0 to be within [6,40] to ensure reasonable sample sizes accumulated 

for strata defined by I(X* > t0). In Figure 2, we display the results for τ = 0.25, 0.5, 0.75 and 

t0 values at an equally space grid on [6, 40] with step size=0.1. Estimated LCQRR(τ; t0) are 

plotted in bold solid lines. The corresponding 95% pointwise confidence intervals are in 

dotted lines and the 95% pointwise Wald-type bootstrapping confidence intervals are in 

long-dashed lines. In Figure 2, we see that for all three τ values, the estimated LCQRR(τ; t0) 

is generally positive; the lower bounds of confidence intervals are above 0 for t0 less than 30, 
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which is roughly the third quartile of X*. This observation is consistent with the common 

belief that DN is positively associated with mortality. Our formal test for H01 yields p-

values, < 0.001, 0.002, < 0.001, respectively, for τ = 0.25, 0.5, 0.75, confirming that DN is a 

significant prognostic factor for mortality.

We note that the confidence intervals for LCQRR(τ; t0) with t0 > 30 become wider and 

mostly cover 0. This may be partly due to the reduced power/efficiency as t0 approaches the 

upper tail of X, resulting in smaller effective sample sizes for the proposed estimator. The 

insignificant difference between LCQRR(τ; t0) and 0 with t0 > 30 may also have the 

implication that the occurrence of DN has diminished prognostic power for mortality among 

patients who had lived long since diabetes diagnosis. In addition, we observe that the 

estimated LCQRR(τ; t0) appears rather constant for τ = 0.25 and τ = 0.5, but the decreasing 

trend in the estimated LCQRR(τ; t0) with τ = 0.75 is quite apparent. This observation is 

confirmed by the constancy tests for H02, which yield p-values, 0.95, 0.23, and 0.01 for τ = 

0.25, 0.5, 0.75 respectively. The significant changing pattern of LCQRR(τ; t0) may second 

the previously conjectured inhomogeneous prognostic ability of DN on mortality.

We also choose three t0 values, t0 = 15, 21, 29, which stand for the 25th, 50th and 75th 

quantile of X*, respectively, to explore the patterns of LCQRR(τ; t0) over τ ∈ [0.1, 0.82]. 

Figure 2 of Web Appendix B displays estimated LCQ̂RRl(τ; t0) in bold solid lines at equally 

spaced τ-grids with step size 0.001, with the corresponding 95% pointwise confidence 

intervals in dotted lines and 95% pointwise Wald-type bootstrapping confidence intervals in 

long-dashed lines. We observe that LCQRR(τ; t0) may be significantly different from 0 for 

all three t0's. This is confirmed by tests for H03, which give p-values, < 0.001, < 0.001, and 

0.002, respectively. For t0 = 21 and 29, we observe a clear decreasing trend in the estimated 

LCQRR(τ; t0). Constancy tests for H04 yield p-values, 0.24, 0.004, 0.004, for t0 = 15, 21, 29, 

respectively. The finding that LCQRR(τ; t0) may decrease with τ aligns with previous 

results, manifesting a weak or negligible association between DN and mortality in long-term 

diabetes survivors.

Next, we study how diabetes onset age, a continuous covariate, affects the dependence 

between DN and mortality. We fit model (5) to the data and the coefficient 

represent the change in LCQRR per one year increase in diabetes onset age. For τ = 0.25, 

0.5, 0.75, we estimate  at an equally spaced grid on [8, 36] with step size 0.1 for t0. 

In Figure 3, we display the estimates for  along with their 95% pointwise 

confidence intervals. We see from Figure 3 that with all selected τ's,  is generally 

significantly positive for t0 belong to the first half of the time interval [8, 36], but loses 

significance from 0 for larger t0. This suggests that for patients who were diagnosed with 

diabetes at older age, the occurrence of DN before t0 may imply a bigger disadvantage in 

residual survival time. Such an effect of diabetes onset age may diminish for large t0's, 

which point to the groups of patients who had survived for a long time since diagnosis. Tests 

for H01 over t0 ∈ [8, 22) confirm our observation from Figure 3, yielding three nearly zero p-

values. Constancy tests for H02 gave p-values, 0.64,0.11,0.07, respectively, for τ = 0.25, 0.5, 
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0.75. This provides some evidence for the observed diminishing effect of diabetes onset age 

over t0.

We also evaluate  over a τ-range [0.1, 0.82] for fixed t0 values, 15, 21, 29. Results 

displayed in Figure 3 of Web Appendix B suggest similar findings. That is, DN may have a 

bigger influence on subsequent mortality for patients with later diabetes diagnosis compared 

to those with earlier diagnosis. Such an effect of diagnosis age may varnish when t0 is large.

6. Remarks

In this paper, we propose a robust measure to assess the dependence of the nonterminal 

event and the terminal event in a semi-competing risks setting. Evaluating this measure at 

multiple t0 and τ allows us to perform a comprehensive and robust evaluation of semi-

competing risks dependence. It also offers the flexibility to explore the dynamic pattern of 

the dependence structure. The developed estimation and inference procedures well utilize 

the semi-competing risks structure with left truncation, and can be extended to adjust for 

covariates. Simulation studies show that the proposed estimation procedure performs well in 

finite sample cases.

Other approaches to obtaining a nonparametric estimator of LCQRR(τ; t0) are available. For 

example, in the standard semi-competing risks setting without left truncation, note that T1 ∧ 
T2 is only subject to independent censoring by C and thus the joint survival function of (T1, 

T2) on the upper wedge can be consistently estimated by using methods, such as Lin and 

Ying (1993). Then we can estimate the two conditional residual quantiles in LCQRR(τ; t0) 

by reversing their corresponding conditional distribution estimates. Our preference of 

adopting a quantile residual lifetime regression framework is primarily because of the 

resulting simple extension to accommodate covariates in the consideration of LCQRR(τ; t0). 

Our strategy of connecting LCQRR with quantile residual lifetime regression models 

enables a unified approach to characterizing semi-competing risks dependence with or 

without covariates. Existing techniques for quantile regression can readily be applied to 

inferences and make our work neat.

In practice, the choices of τ and t0 mainly depend on the interest of investigators. They may 

be adjusted according to the empirical observations of the data. For example, the estimation 

efficacy may be unsatisfactory at small or large values of t0. This is because the number of 

observations satisfying X* ≤ t0 (or X* > t0) may be quite small when t0 is small (or larger), 

making the estimate for Qτ(T2 – t0|T2 > t0, T1 ≤ t0) (or Qτ(T2 – t0|T2 > t0, T1 > t0)) 

inaccurate or unstable. Based on our numerical experiences, we find that our method works 

well for estimating both LCQRR(τ; t0) and covariance matrix when nt0,1 ∧ nt0,2 > 15, where 

 and . 

For a larger τ, we may need nt0,1 and nt0,2 to be larger. These can serve as useful empirical 

rules to guide the selection of τ and t0 in real data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation results for Scenario 1: Empirical bias (EmpBias), empirical standard error 

(EmpSE) and average estimated standard error (EstSE) of the proposed estimator of 

LCQRR. EmpBias for n = 200 and EmpBias for n = 400 are plotted in solid lines and dotted 

lines respectively. EmpSE and EstSE for n = 200 are plotted in solid lines and bold solid 

lines respectively. EmpSE and EstSE for n = 200 are plotted in dotted lines and bold dashed 

lines respectively.
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Figure 2. 
Denmark Diabetes Registry Study: Estimated LCQRR(τ; t0) (bold solid lines), and the 

corresponding 95% pointwise confidence intervals (dotted lines) and 95% pointwise Wald-

type bootstrapping confidence intervals (long-dashed lines).
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Figure 3. 

Denmark Diabetes Registry Study:  Estimated (bold solid lines), the corresponding 

95% pointwise confidence intervals (dotted lines) and 95% pointwise Wald-type 

bootstrapping confidence intervals (long-dashed lines), and the overall influence of DN 

across time (horizontal dashed lines).
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Table 3
Summary statistics for diabetes registry data

n(%)

(δ, η) = (0, 0) 1729(63.4%)

(δ, η) = (0, 1) 267(9.8%)

(δ, η) = (1, 0) 280(10.3%)

(δ, η) = (1, 1) 451(16.5%)

L = 0 652(24%)

X < L 116(4.25%)
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