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Abstract

Purpose—To improve the temporal and spatial resolution of dynamic 13C spiral chemical shift 

imaging via incoherent sampling and low-rank matrix completion (LRMC).

Methods—Spiral CSI data were both simulated and acquired in rats, and undersampling was 

implemented retrospectively and prospectively by pseudorandomly omitting a fraction of the spiral 

interleaves. Undersampled data were reconstructed with both LRMC and a conventional inverse 

nonuniform fast Fourier transform (iNUFFT) and compared with fully sampled data.

Results—Two-fold undersampling with LRMC reconstruction enabled a two-fold improvement 

in temporal or spatial resolution without significant artifacts or spatiotemporal distortion. 

Conversely, undersampling with iNUFFT reconstruction created strong artifacts that obscured the 

image. LRMC performed better at time points with strong metabolite signal.

Conclusion—Incoherent undersampling and LRMC provides a way to increase the 

spatiotemporal resolution of spiral CSI without degrading data integrity.
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INTRODUCTION

Hyperpolarization of 13C-enriched agents provides signal enhancements on the order of 

10,000, which makes it possible to track metabolically active substrates and their products in 

vivo (1–4). Dynamics can be studied noninvasively to determine metabolic rates under 

normal and pathological conditions (5–11). Examples so far include detecting tumors and 

their response to treatment (12,13), monitoring liver and cardiac function (14–17), and 

characterizing intracellular redox state (18).

The time window available for measurements is determined by the decay of polarization due 

to spin-lattice relaxation at a rate 1/T1. Even in the best cases, T1 ~ 1 min for 13C nuclei, so 

a fast imaging sequence is required to sample the spatiotemporal dynamics within a few-

minute time frame. Spiral chemical shift imaging (spCSI) sequences are ideal for this 
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situation because they have fast acquisition times, but their imaging bandwidth is limited by 

gradient strength and slew rate. The performance is reduced for 13C compared with 1H, as 

carbon’s lower gyromagnetic ratio makes it necessary to acquire multiple spatial or spectral 

interleaves to fully interrogate the necessary k-space. For a fixed temporal resolution, these 

factors limit the spatial resolution that can be achieved, whereas for a fixed spatial 

resolution, they limit the temporal resolution as well as the total number of time points that 

can be sampled within the polarization lifetime.

SpCSI uses a sequence of spiral k-space trajectories during readout to encode both spectral 

and two-dimensional (2D)-spatial (i.e., x, y) information after a single excitation (19). The 

third (z) dimension can be acquired through a series of slice-selective measurements or 

phase encoding. Interleaving can be implemented by repeating the measurements with 

different spiral trajectories to cover more points in k-space [to increase spatial resolution/

field-of-view (FOV)], or with the same trajectories at different offsets in time (to increase 

spectral bandwidth). For dynamic measurements, the full imaging sequence is repeated for a 

number of time points. For a three-dimensional (3D) sequence, the sequence time T for a 

single time point is then

[1]

where Np is the number of phase encode steps for z, Ni is the number of interleaves, and TR 
is the repetition time between consecutive excitations.

One way to reduce the acquisition time is to implement undersampling and a compressed 

sensing algorithm (20–22). Undersampling is already used to take advantage of sparsity in 

the spectral domain by reducing the number of spectral encoding steps below the Nyquist 

criterion and dealiasing the resulting spectrum (23). This is acceptable because 13C spectra 

are typically sparse, with only a few spectral lines, and overlap between peaks in the aliased 

spectrum can be avoided by selecting an appropriate receiver spectral width. Sparsifying 

compressed sensing algorithms can be applied to the spatial dimensions, and they are used 

extensively for speeding up 1H imaging (20,24,25). Methods such as wavelet-in-time further 

extend the algorithms to take advantage of spatiotemporal sparsity, and they have been 

successfully applied to hyperpolarized 13C dynamic imaging (21).

Other methods rely on the fact that the spatiotemporal data are low-rank, meaning that they 

can be represented by a low-dimensional subspace model. Low-rank matrix completion 

(LRMC) algorithms use undersampling followed by iterative reconstruction to exploit the 

spatiotemporal correlations in time-resolved acquisitions. Redundant information in the time 

domain is used to reconstruct data points that were not sampled, thereby considerably 

reducing the artifacts typically created by undersampling. One family of LRMC algorithms 

includes SPICE (26–28) and SLIM (29), which can accelerate spectroscopic imaging in k,t 

space using the fact that spectral data are low-rank if the number of spectral lines or 

spectrally distinct tissue classes is limited. Another family of LRMC methods has been 

applied to dynamic imaging, such as cardiac and perfusion measurements (30,31), where 

there is a temporally correlated background.
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In this work, we apply a low-rank algorithm to spCSI imaging of 13C-pyruvate metabolism 

by applying incoherent sampling to the interleaf dimension. This takes advantage of the fact 

that in dynamic metabolic MRI measurements, the locations of metabolite signal do not 

change substantially over time and thus exhibit a high level of spatiotemporal correlation. 

Using LRMC reconstruction on both simulated and in vivo data, we demonstrate a two-fold 

improvement in either temporal or spatial resolution without the creation of deleterious 

artifacts. We also provide guidelines for the selection of LRMC parameters to streamline 

reconstruction.

METHODS

Imaging Scheme

We implemented 3D spCSI (24 echoes, αexc = 5.6°) using two parameter sets: (A) FOV = 80 

× 80 × 60 mm3, 16 × 16 × 12 matrix, 4 spatial interleaves, SW = 276 Hz and (B) FOV = 70 

× 70 × 60 mm3, 20 × 20 × 12 matrix, 8 spatial interleaves, SW = 280 Hz. Fully sampled data 

allowed temporal sampling at 6 and 12 s intervals, respectively. Undersampling by a factor 

of two was achieved by omitting half of the spatial interleaves, with different interleaves 

chosen pseudorandomly for each phase encode step and each time interval. This allows 

temporal sampling at 3 and 6 s intervals, respectively. The first case (A) represents a 

temporal speedup of two, whereas the second case (B) represents a two-fold increase in 

spatial resolution (nominal voxel size of 3.5 × 3.5 × 5 mm3 compared with 5 × 5 × 5 mm3).

Following acquisition, the fully sampled data from each time interval were first processed as 

described by Mayer et al. (23) Briefly, the x, y, and echo dimensions were zero filled by a 

factor of two, then the echo dimension was processed with Gaussian apodization and a fast 

Fourier transform (FFT) to convert it to the spectral domain. For each metabolite, unaliasing 

and linear phase correction were then applied to the spectra, and the remaining k-space 

dimensions, x, y, and z, were converted to raw images with a 2D inverse nonuniform FFT 

(2D-iNUFFT) (32) and a 1D inverse FFT, respectively. Here, the 2D-iNUFFT replaced 

gridding reconstruction used in previous works. Metabolic images were calculated for 

pyruvate, lactate, and alanine by phasing the spectrum in each voxel to produce maximum 

absorption-mode signal and integrating the resulting peak.

Next, a LRMC algorithm based on Otazo et al. (31), shown in Figure 1, was implemented to 

reconstruct the undersampled data. First, the data were preprocessed to convert the echo 

dimension to spectra for each metabolite, as described above. For each frequency point, the 

remaining dimensions were reshaped into an array d(ωi) of k,t data with dimensions [nx, ny, 

nz * nt]. The LRMC algorithm was then run to find reconstructed dataset L by minimizing 

the equation

[2]

where d is the k,t data, L is a multidimensional array with x, y transformed into image space, 

E(L) is the 2D nonuniform FFT performed on the x, y dimensions of L, and λL is a constant. 
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Here, ||||F represents the Frobenius norm and ||||* represents the nuclear norm. As these can 

only be calculated for matrices and not multidimensional arrays, their arguments are 

reshaped into dimensions [nx * ny, nz * nt ] for evaluation by the function R(.). The 

minimization is performed iteratively. First, inverse NUFFT is applied to the x and y 
dimensions of d, and the result is reshaped into a 2D matrix Mk–1 of size [nx * ny, nz * nt ]. 

Mk–1 is decomposed into singular values using soft singular value thresholding, with λL as 

the threshold parameter. For our data, λL = 0.0175 was selected, as described in Results. 

Next, the data are reconstructed from the remaining singular values to produce array L. A 

data-consistency algorithm is then implemented by subtracting the original k,t data d from 

E(L) to find the residuals, and then subtracting the transformed residuals, with x, y in image 

space, from L. The result is reshaped to produce a new matrix Mk on which the process is 

repeated until the convergence condition |Mk –Mk−1| < tol is reached. We chose tol = 2.5 × 

10−3, which produced convergence in fewer than 500 iterations. The final Mk was reshaped 

and an inverse FFT was performed in the phase encode direction for each time point to 

produce a reconstructed series of 3D datasets in image space. After this reconstruction was 

performed for each frequency point, metabolic images were again calculated for each 

metabolite through integration as previously described.

The reconstruction code was written in MATLAB (The MathWorks, Natick, MA) and run on 

a computer with an Intel Core i7-4810MQ 2.80GHz CPU, 16 GB RAM, and an NVIDIA 

GeForce GTX 870M graphics card. GPU computing was implemented to speed up some 

matrix operations.

Simulations

Simulated rat data were created with vasculature, kidneys, and liver/body defined by 

cylinders of appropriate length for each organ. The time course of signals from pyruvate, 

alanine, and lactate in each organ was based on typical dynamic measurements following 

hyperpolarized pyruvate injection. These data were fully sampled with the spCSI sequences 

using parameter sets (A) and (B) with temporal sampling at 3 and 6 s, respectively, and 

processed as described above to create reference datasets. The data were also undersampled 

by a factor of two and processed with LRMC for comparison. The simulation allows fully 

sampled and undersampled data to be acquired at the same rate so that they can be directly 

compared, which is not possible for in vivo imaging. Figure 2a,b show examples of fully 

sampled simulated images using parameters sets (A) and (B), respectively.

Animal Experiments

All animal studies were conducted with the approval of the Institutional Animal Care and 

Use Committee. Imaging was performed with a clinical GE 750w 3T MR scanner (GE 

Healthcare, Waukesha, WI) using a doubly tuned (1H/13C) quadrature coil (80 mm diameter, 

USA Instruments Inc., Aurora, OH) for both RF excitation and signal reception. Healthy 

male Wistar rats (251–343 g) were anesthetized with 1–3% isoflurane in ~1.5 L/min oxygen. 

The rats were injected in a tail vein with ~3 mL of [1-13C]pyruvate (Pyr, ~80 or 125 mM), 

which was hyperpolarized to ~50% liquid state polarization via dynamic nuclear 

polarization using a GE SpinLab polarizer (Research Circle Technology, Niskayuna, NY). 
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Data were acquired after Pyr injection with 3D spCSI using parameter sets (A) and (B), with 

temporal sampling at 6 s and 12 s intervals, respectively.

To test the effects of undersampling, two of four interleaves were retrospectively removed at 

random from each phase encode step, and the data were processed with the LRMC 

algorithm. Prospectively undersampled images were also acquired using parameter sets (A) 

and (B) by pseudorandomly sampling half the number of interleaves for each phase encode 

step, this time at sampling intervals of 3 s and 6 s, respectively. The data were processed 

with the same LRMC algorithm.

Image Analysis

To determine the performance of LRMC reconstruction of both simulated and 

retrospectively undersampled data, we compared the signal and noise properties with those 

of the fully acquired dataset. We also compared the results with inverse NUFFT 

reconstruction of the undersampled dataset to illustrate the types and size of artifacts 

produced by the undersampled acquisition, as well as their subsequent removal by LRMC 

reconstruction. We characterized the reconstruction artifacts by measuring the signal 

intensity in regions outside the rat body, where no real signals should be found. For real 

data, noise levels, σ, were determined using the average noise of lactate and alanine images 

at the first time point, before these metabolites are produced. Because phasing and 

integration of each voxel actually produces a magnitude image, the noise follows a Rayleigh 

distribution, and the true signal variance σ2 is determined from the mean noise magnitude M̄ 

through the relationship  (33). Artifact signals lead to an increase in the 

background signal above the noise. The calculated noise level, σ, was subtracted from the 

mean signal level outside the rat to find the artifact magnitude.

For simulated and retrospectively undersampled data, we characterized the reconstruction 

accuracy by calculating the pixel-by-pixel root-mean-square error (RMSE) between the full 

sets of undersampled images and fully sampled images, normalizing by the maximum signal 

of each dataset. This normalization emphasizes that the most important time points for 

metabolic imaging occur when signal strength is largest. Only the region inside the rat body 

was included, so that the known artifacts outside the body would not contribute to the error. 

We also compared the singular value decay curves for the three datasets by reshaping the 

image series to dimensions [nx * ny, nz * nt ] and calculating the singular values. Finally, we 

selected a slice through the kidneys and calculated time courses for the integrated metabolite 

signals within the kidneys, normalizing to the maximum kidney pyruvate signal. We 

compared the resulting time courses to characterize each algorithm’s reconstruction of the 

metabolite dynamics.

As prospectively undersampled data do not have a “gold standard” for comparison, we 

compared them to a fully sampled but lower resolution acquisition of the same rat. To 

partially account for variations in pyruvate concentration and polarization between 

experiments, we normalized by the total alanine signal measured in the body outside the 

kidneys. Singular value decay was also calculated as discussed above.
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RESULTS

Figure 3 displays pyruvate images from a single slice through the rat kidneys of the 

simulated data. Figure 3a was acquired with parameter set (A) and 3 s sampling, while 

Figure 3b was acquired with parameter set (B) and 6 s sampling. Spiral artifacts are present 

when undersampled data is processed with inverse NUFFT reconstruction, but they are 

insignificant when the data are processed with LRMC. The LRMC images visually appear to 

match well with the fully sample images. Visually, there are some differences between the 

high- and low-resolution fully sampled images, due to blurring of the vasculature signal at 

low resolution and normalization by the maximum intensity, which occurs in the 

vasculature. Plots of singular value decay for the entire dataset (Fig. 3c,d) show that LRMC 

singular values better follow those of the fully sampled data, particular for the dominant 

singular values. The singular values decay quickly because the phantom pattern is relatively 

simple.

Further comparisons between the reconstructions demonstrate the strengths of LRMC. 

Figure 4a,b plot the mean pyruvate signal outside the rat body, normalized to the mean 

pyruvate signal inside the body at each respective time point. As expected, inverse NUFFT 

reconstruction does a poor job and produces artifacts between 10 and 100% of the body 

signals. Both fully sampled and LRMC data have nearly identical artifact magnitudes 

between 1 and 10% of the body signal. The relative artifact magnitude is higher at the 

beginning and ending time points, when the true signals are small. Even at its worst 

performing time points, LRMC removes at least 94% of the artifact caused by 

undersampling. Similar plots for alanine and lactate (not shown) follow the same trend, but 

with smaller artifact magnitude. Figure 4c,d plot the RMSE for each metabolite 

reconstructed with either inverse NUFFT or LRMC using the two parameter sets. The errors 

are on the order of 1–10%, with errors 5–10 time higher for inverse NUFFT than LRMC. 

The magnitude of errors for LRMC reconstruction is similar to values found by others and 

would not contribute significantly to the interpretation of the metabolic curves (21,31). An 

example of such curves is shown in Figure 4e, which compares the integrated intensities 

taken from kidney regions of interest (ROIs) for two acquisitions made with parameter set 

(A): fully sampled data acquired at 6 s time steps versus two-fold undersampled data 

acquired at 3 s time steps, then reconstructed with LRMC. The curves exhibit only minor 

differences, as expected given the magnitude of RMSE previously calculated. Figure 4f 

demonstrates the improved spatial resolution achievable with undersampling. Horizontal 

cross sections through the kidneys are plotted, taken from lactate images acquired with 

either the fully sampled parameter set (A) or the undersampled parameter set (B) 

reconstructed with LRMC. Both datasets were acquired at the same 6 s temporal resolution. 

The higher resolution cross section shows better delineation of the organ boundaries.

Figure 5 displays results for in vivo data acquired from a rat and retrospectively 

undersampled. Figure 5a shows typical fully sampled reconstructions for four slices through 

the kidney and liver. Figure 5b plots pyruvate images for the three reconstruction methods 

taken from a kidney slice at three time points. Pyruvate is predominantly concentrated in the 

vasculature and kidneys. A larger amount of artifact is present outside the animal than in 

simulations due to signal variations during the 3D acquisition, such as T1 decay, inflow and 

DeVience and Mayer Page 6

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outflow, and metabolic conversion. As in simulations, significant spiral artifacts are present 

when undersampled data are reconstructed with inverse NUFFT, whereas fewer artifacts are 

present when reconstructed using the LRMC algorithm. The resulting images closely match 

the fully sampled images. Singular value decay (Fig. 5c) is slower than in simulations due to 

the higher complexity of the images. LRMC better produces a matching decay curve, 

particularly for the largest singular values.

The maximum ratio of kidney lactate signal to noise was 38 for the fully sampled dataset, 27 

for inverse NUFFT reconstruction of the undersampled data, and 84 for LRMC 

reconstruction. The LRMC algorithm significantly denoises the image, as is typical for 

compressed sensing reconstruction (20). Artifact signals lead to an increase in the 

background signal above the noise. Figure 5d shows the artifact level over time for three 

reconstructions of pyruvate, normalized by the mean pyruvate signal within the body at each 

respective time point. Similar to the simulations, undersampled images reconstructed with 

inverse NUFFT have an artifact ~10 times higher than the fully sampled images and in some 

cases the same order of magnitude as the mean signal level. Again, LRMC removes at least 

94% of the undersampling artifact and returns the ratio to nearly the same level measured 

from fully sampled data.

Figure 5e displays the RMSE between undersampled and fully sampled reconstructions. The 

inverse NUFFT reconstruction produces an RMSE as high as 10% of the maximum signal 

level. For LRMC, the error is roughly half that of inverse NUFFT, but still higher than that 

found using simulated data. Simulations show that noise is a significant component of the 

higher RMSE for real data and contributes ~2% to the lactate and alanine RMSE. The other 

3–4% error may be due to other effects during acquisition that are not fully simulated, such 

as T1 decay, flow, and metabolism. Nevertheless, signals integrated across kidney ROIs (Fig. 

5f) are still quite similar for LRMC and fully sampled datasets, and the small differences 

would not interfere with interpretation of the metabolic curves.

Figure 6 displays results for prospectively undersampled acquisitions reconstructed with 

LRMC. The left column of Figure 6a was acquired using parameter set A and a full number 

of interleaves, while the right column was acquired using parameter set B with two-fold 

undersampling and reconstructed with LRMC. Undersampling allows a higher spatial 

resolution to be achieved in the same amount of time as A (6 s). Figure 6b shows horizontal 

cross sections taken through the kidneys from the lactate images in Figure 6a. The higher 

resolution image allows better delineation of the organ boundaries, which can help separate 

signal in the vasculature from signal in the kidneys. Figure 6c compares time courses from 

datasets acquired with different temporal resolutions using parameter set A, either fully 

sampled and acquired every 6 s or two-fold undersampled and acquired every 3 s. As is 

evident from these two datasets, the pyruvate dynamics can differ significantly between 

experiments. The higher temporal resolution is particularly useful when calculating 

metabolic rates from the time courses, as the results are sensitive to the dynamics of the 

pyruvate bolus (34). For example, with 6 s temporal resolution, the pyruvate peak is defined 

by only one or two points, which would be insufficient for fitting a model bolus function, 

whereas at 3 s temporal resolution there are enough points to perform a good fit. Moreover, 

with larger subjects such as humans requiring a larger number of spatial interleaves, even 
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these temporal resolutions would not be possible without undersampling. Figure 6d,e display 

the singular value decay curves for acquisitions with higher spatial and temporal resolution, 

respectively. For both cases, the LRMC curve tracks the fully sampled curve well for the 

most important singular values, but the decay curves for increased spatial resolution track 

particularly well.

As in Otazo et al., we empirically determined an optimal value for λL using retrospectively 

undersampled data and used this value to reconstruct data acquired prospectively. We 

calculated the RMSE between the fully sampled dataset and the retrospectively 

undersampled dataset reconstructed using LRMC with various λL values (Fig. 7). The most 

accurate images were obtained when λL retained ~35% of the singular values during the 

first iteration at the frequency point of the strongest metabolite’s peak. In other words, if 

pyruvate was the strongest metabolite and its peak occurred at frequency f, then the optimal 

λL was found for each metabolite from the singular values at the first iteration of the 

reconstruction of frequency point f. If the n singular values are listed in order from S(1) = 

max (S) to S(n) = min (S), then λL ~S(0.35n)/S(1). The value of λL was then used for 

reconstruction of all other frequency points of that metabolite. For our data, optimal λL ≈ 
0.0175 for all three metabolites.

DISCUSSION AND CONCLUSIONS

LRMC provides an easy way to speed up metabolic imaging and is well-suited to spiral 

pulse sequences due to their use of interleaving. The same concept can be applied to many 

other sequences, including phase encoding used to acquire the z dimension. Further speed up 

might be gained by undersampling phase encode steps and performing LRMC 

reconstruction separately along z. Reconstruction might also be improved by interlacing the 

different interleaf spirals during each echo train, rather than performing an echo train on a 

single interleaf at a time. This would make the acquisition of the full k-space more evenly 

distributed in time.

One challenge of compressed sensing is finding the optimal reconstruction threshold 

parameters. We found that the best value for the singular value threshold, λL, calculated 

from retrospective undersampling worked equally well for reconstruction of the prospective 

data. Further studies of metabolic images with different spatiotemporal dynamics are needed 

to determine whether the 35% cutoff for determining λL is a general rule that could be 

applied to prospectively undersampled data, thereby removing the need for empirical 

optimization with fully sampled data. This is especially critical for hyperpolarized studies, 

where the limited quantities of polarized substrate and the extensive preparation required 

make calibration experiments undesirable.

Computationally, LRMC is more involved than conventional reconstruction and requires 

significantly more time due to the required iterations. Fortunately, for chemical shift imaging 

there are straightforward pathways to improvement. For example, each frequency point is 

independent and can be reconstructed in parallel. When run serially, the full reconstruction 

takes ~30 min for our datasets with three metabolites. This could be reduced to ~1 min using 

48 separate processing units, one for each frequency. Conversely, larger spatiotemporal 

DeVience and Mayer Page 8

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrices will increase the time required for singular value decomposition, which cannot 

easily be sped up via parallelization. Although the reconstruction times may be long for 

human applications requiring large matrices, the higher resolution and/or FOV afforded by 

this technique makes it an acceptable trade-off, as the results from metabolic MRI exams are 

not likely to be required in real-time.

In conclusion, we have demonstrated that incoherent sampling and reconstruction with 

LRMC can substantially improve the temporal or spatial resolution of spiral CSI. This 

should make it possible to observe the dynamics within smaller ROI, making it easier to 

identify diseased tissue or small tumors.
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FIG. 1. 
LRMC algorithm. The preprocessed k-space data, d(ωi), are converted to image space with 

an inverse nonuniform fast Fourier transform (iNUFFT). The resulting data Mk–1 are 

processed with soft singular value thresholding (SVT), which recreates the dataset Lk using 

only those singular values S > λLSmax, where Smax is the maximum singular value and λL is 

a constant. Lk is then converted back to k-space and the original k-space data are subtracted 

from it. The difference, representing residual aliasing artifacts, is converted to image space 

and subtracted from Lk to form the reconstructed data Mk. This process is iterated until |Mk 

– Mk−1| < tol, where tol is the desired tolerance for convergence.
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FIG. 2. 
Four representative slices from the center of a rat phantom at the 12 s time point. Pyruvate, 

lactate, and alanine images are shown for (a) parameter set (A) and (b) parameter set (B). 

The model consists of cylinders representing kidneys, vasculature, and liver/body. Note that 

only pyruvate is modeled in the vasculature.
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FIG. 3. 
Simulated reconstructions using parameter sets (A) and (B). a and b: Reconstruction 

comparison for pyruvate in a kidney slice using parameter sets (A) and (B), respectively. The 

top row shows a fully sampled dataset reconstructed with inverse NUFFT. The middle row 

shows two-fold undersampled data reconstructed with inverse NUFFT, while the bottom row 

shows two-fold undersampled data reconstructed with LRMC. The inverse NUFFT 

reconstruction of undersampled data suffers from spiral artifacts, which are insignificant in 

the other reconstructions. c and d: Comparison of singular values for the complete image 

series from parameter sets (A) and (B), respectively. The largest 50 singular values are 

shown. The singular values of LRMC better follow those of the fully sampled reconstruction 

than inverse NUFFT.
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FIG. 4. 
Comparison of noise and artifacts for three simulated reconstructions. The artifact for 

pyruvate images was characterized for (a) parameter set (A) and (b) parameter set (B) and 

normalized by the mean signal within the rat at each respective time point. In both cases, 

inverse NUFFT reconstruction of undersampled data produces significant artifacts, whereas 

LRMC reconstruction of the same dataset produces artifacts similar to fully sampled data. 

Reconstruction errors were characterized by the RMSE between fully sampled data and 

either inverse NUFFT (solid) or LRMC (dashed) reconstructions of undersampled data for 

(c) parameter set (A) and (d) parameter set (B). Each metabolite’s RMSE was normalized to 

the maximum signal of that metabolite in the image series. e: Integrated intensities taken 

from kidney ROIs for acquisitions made with parameter set (A). The solid lines with solid 

squares are from fully sampled data acquired at 6 s time intervals, while the dotted lines with 
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open circles are taken from undersampled data acquired at 3 s time intervals and 

reconstructed with LRMC. f: Horizontal cross sections through the kidneys taken from 

lactate images acquired with the fully sampled parameter set (A) (blue, 5 mm nominal 

resolution) and the undersampled parameter set (B) reconstructed with LRMC (red, 3.5 mm 

nominal resolution). Both were acquired at 6 s time steps and normalized by the integrated 

intensity through the cross section.
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FIG. 5. 
Reconstruction comparison for retrospectively undersampled data from a rat. a: 

Representative images from four slices through the liver and kidneys of the rat, taken from a 

fully sampled acquisition. b: Reconstructed slice through the kidneys at three time points for 

fully sampled data (top) and undersampled data reconstructed with inverse NUFFT (middle) 

and LRMC (bottom). As in the simulations, inverse NUFFT produces significant spiral 

artifacts, which are not present in fully sampled or LRMC reconstructions. c: Decay of the 

top 100 singular values for pyruvate, lactate, and alanine datasets. Singular values for LRMC 

match those of fully sampled data much better than inverse NUFFT, with the top 25 singular 

values for lactate and alanine nearly identical between LRMC and fully sampled datasets. d: 

Ratio of artifact to mean body signal. Undersampled data reconstructed with LRMC show 

artifacts similar in magnitude to fully sampled data, whereas artifacts for inverse NUFFT are 

up to an order of magnitude larger. e: RMSE between fully sampled data and either inverse 
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NUFFT (solid) or LRMC (dashed) reconstructions of undersampled data. f: Integrated 

intensities within kidneys from fully sampled data (solid), data reconstructed with inverse 

NUFFT (dotted), and undersampled data reconstructed with LRMC (dashed).
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FIG. 6. 
Reconstruction comparison for prospectively undersampled data from a rat. a: The left 

column was acquired using parameter set (A) and a full number of interleaves, while the 

right column was acquired using parameter set (B) with two-fold undersampling and 

reconstructed with LRMC. Time resolution was 6 s for both acquisitions. b: Horizontal cross 

sections through the kidneys taken from lactate images acquired with the fully sampled 

parameter set (A) (blue, 5 mm nominal resolution) and the undersampled parameter set (B) 

reconstructed with LRMC (red, 3.5 mm nominal resolution). Both were acquired at 6 s time 

steps and normalized by the integrated intensity through the cross section. c: Time courses of 

integrated intensities taken from kidney ROIs, for data acquired with parameter set (A), but 

two-fold undersampled and acquired every 3 s. Fully sampled data (solid lines with solid 

squares), data reconstructed with inverse NUFFT (dotted lines), and undersampled data 

reconstructed with LRMC (dashed lines with open circles) are shown. d: Decay of the top 

100 singular values for the high spatial resolution acquisition shown in (a) and (b). e: Decay 

of the top 100 singular values for the high temporal resolution acquisition shown in (c).
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FIG. 7. 
a: Normalized RMSE between fully sampled reconstruction and LRMC using values of λL 

retaining different fractions of singular values during the first iteration. For both pyruvate 

and lactate, best results are obtained when the fraction is ~0.35. Gaussian curves are fit to 

guide the eye. Note that in this figure RMSE was normalized by mean signal of the image. 

b: The distribution of normalized singular values for pyruvate reconstruction with the 35% 

threshold indicated.

DeVience and Mayer Page 20

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	Imaging Scheme
	Simulations
	Animal Experiments
	Image Analysis

	RESULTS
	DISCUSSION AND CONCLUSIONS
	References
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7

