Skip to main content
. 2016 Aug 25;10:392. doi: 10.3389/fnins.2016.00392

Table 1.

Results of LDA and linear SVM (linSVM) classification experiments based on local deformations reduced by pLDA with resampling using various values of λ, PCA, t-test with three thresholds or unreduced.

Reduction λ Classifier LOOCV during classification—LOOCV(c) LOOCV during reduction and classification—LOOCV(rc)
# features # iterations (mean±SD) Acc (%) Sens (%) Spec (%) # features (mean±SD) # iterations (mean±SD) Acc (%) Sens (%) Spec (%)
pLDA 0.6 LDA 98,320 3.0 ± 0.0 84.6 86.5 82.7 104,184.2 ± 8527.3 3.0 ± 0.0 65.4 57.7 73.1
linSVM 86.5 88.5 84.6 69.2 67.3 71.2
pLDA 0.7 LDA 83,193 3.0 ± 0.0 83.7 84.6 82.7 89,008.5 ± 7796.1 3.0 ± 0.0 65.4 57.7 73.1
linSVM 86.5 88.5 84.6 70.2 67.3 73.1
pLDA 0.8 LDA 71,245 3.0 ± 0.1 82.7 82.7 82.7 76,965.1 ± 7170.8 3.0 ± 0.0 65.4 57.7 73.1
linSVM 86.5 88.5 84.6 70.2 65.4 75.0
pLDA 0.9 LDA 61,398 2.9 ± 0.3 82.7 82.7 82.7 66,372.6 ± 5736.2 3.0 ± 0.2 66.3 59.6 73.1
linSVM 86.5 88.5 84.6 64.4 63.5 65.4
pLDA 1.0 LDA 52,927 2.9 ± 0.3 81.7 80.8 82.7 58,355.1 ± 5250.0 2.9 ± 0.3 67.3 61.5 73.1
linSVM 85.6 86.5 84.6 68.3 65.4 71.2
pLDA 1.1 LDA 45,557 3.1 ± 0.5 82.7 80.8 84.6 50,510.9 ± 4896.3 3.0 ± 0.4 66.3 59.6 73.1
linSVM 84.6 82.7 86.5 63.5 61.5 65.4
pLDA 1.2 LDA 39,008 3.2 ± 0.6 83.7 82.7 84.6 44,624.4 ± 5221.4 3.0 ± 0.6 66.3 57.7 75.0
linSVM 84.6 82.7 86.5 66.3 65.4 67.3
pLDA 1.3 LDA 33,082 3.6 ± 0.7 84.6 82.7 86.5 38,712.8 ± 4816.2 3.3 ± 0.6 65.4 55.8 75.0
linSVM 84.6 82.7 86.5 67.3 65.4 69.2
pLDA 1.4 LDA 27,807 3.9 ± 0.8 84.6 82.7 86.5 33,401.8 ± 4425.2 3.7 ± 0.6 65.4 57.7 73.1
linSVM 82.7 80.8 84.6 66.3 65.4 67.3
pLDA 1.5 LDA 23,116 4.2 ± 0.8 85.6 82.7 88.5 28,275.0 ± 3403.0 4.1 ± 0.7 68.3 63.5 73.1
linSVM 81.7 80.8 82.7 63.5 61.5 65.4
pLDA 1.6 LDA 18,917 4.7 ± 0.9 85.6 82.7 88.5 24,092.3 ± 3688.9 4.4 ± 0.7 67.3 61.5 73.1
linSVM 81.7 80.8 82.7 68.3 67.3 69.2
pLDA 1.7 LDA 15,203 5.0 ± 1.1 84.6 80.8 88.5 19,575.5 ± 3001.0 4.6 ± 0.9 67.3 61.5 73.1
linSVM 81.7 80.8 82.7 63.5 63.5 63.5
pLDA 1.8 LDA 11,736 5.6 ± 1.5 85.6 80.8 90.4 16,241.5 ± 2996.4 5.0 ± 1.0 63.5 59.6 67.3
linSVM 80.8 78.8 82.7 63.5 65.4 61.5
pLDA 1.9 LDA 9555 7.1 ± 9.5 83.7 78.8 88.5 12,483.7 ± 2421.6 5.5 ± 1.2 65.4 61.5 69.2
linSVM 80.8 80.8 80.8 55.8 57.7 53.8
pLDA 2.0 LDA 7306 8.7 ± 13.2 83.7 78.8 88.5 9,910.8 ± 2196.8 6.2 ± 1.4 62.5 59.6 65.4
linSVM 80.8 78.8 82.7 59.6 59.6 59.6
PCA LDA 60.6 55.8 65.4 66.3 65.4 67.3
linSVM 67.3 61.5 73.1 67.3 65.4 69.2
t-test, p < 0.01 LDA 62,644 82.7 82.7 82.7 62,110.1 ± 3241.1 66.3 59.6 73.1
linSVM 84.6 84.6 84.6 70.2 69.2 71.2
t-test, p < 0.005 LDA 38,630 84.6 82.7 86.5 38,184.7 ± 2389.9 65.4 57.7 73.1
linSVM 84.6 82.7 86.5 66.3 65.4 67.3
t-test, p < 0.001 LDA 10,860 83.7 78.8 88.5 10,671.2 ± 1110.8 60.6 57.7 63.5
linSVM 78.8 76.9 80.8 59.6 63.5 55.8
no LDA 1,924,670 67.3 63.5 71.2
linSVM 64.4 63.5 65.4

In columns: the number of selected features, the number of iterations of the pLDA algorithm and cross-validated classification performance measures in percentage—accuracy (Acc), sensitivity (Sens), and specificity (Spec).