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1Gustave Roussy, Université Paris-Saclay, Département de Biologie et Pathologie Médicales, Villejuif, F-94805, France and 2The
Institute of Cancer Research, Clinical Pharmacology and Trials Team, London, SM2 5PT, UK

Background: We aimed to understand the dependence of MEK and m-TOR inhibition in EGFRWT/ALKnon-rearranged NSCLC cell
lines.

Methods: In a panel of KRASM and KRASWT NSCLC cell lines, we determined growth inhibition (GI) following maximal reduction in
p-ERK and p-S6RP caused by trametinib (MEK inhibitor) and AZD2014 (m-TOR inhibitor), respectively.

Results: GI caused by maximal m-TOR inhibition was significantly greater than GI caused by maximal MEK inhibition in the cell line
panel (52% vs 18%, Po10� 4). There was no significant difference in GI caused by maximal m-TOR compared with maximal
m-TORþMEK inhibition. However, GI caused by the combination was significantly greater in the KRASM cell lines (79% vs 61%,
P¼ 0.017).

Conclusions: m-TOR inhibition was more critical to GI than MEK inhibition in EGFRWT/ALKnon-rearranged NSCLC cells. The
combination of MEK and m-TOR inhibition was most effective in KRASM cells.

Lung cancer is the leading cause of death in the world. The advent
of personalised medicine has seen the introduction of a number of
targeted treatments for the adenocarcinoma subset of NSCLC
(NSCLC-adeno). Although EGFR (Maemondo et al, 2010) and
ALK (Solomon et al, 2014) inhibitors are established in EGFR
mutant and ALK rearranged lung cancer, there are currently no
molecularly targeted agents licensed for use in the remainder of
adenocarcinomas (NSCLC-adeno-EGFRWT/ALKnon-rearranged). There
have been recent advances in the treatment of NSCLC-adeno with
the introduction of immune checkpoint inhibitors. However,
response rates and median overall survival are low with 19% and
12.2 months, respectively (Borghaei et al, 2015). Thus, finding new
treatments for NSCLC-adeno is an area of unmet need.

We have focused our efforts on the subgroup of NSCLC-adeno-
EGFRWT/ALKnon-rearranged. There are multiple activating mutations
in this subset (KRAS, BRAF, MET, HER-2 and STK11), and gene

fusions of which KRAS mutations form the largest group (Cancer
Genome Atlas Research Network, 2014). We tested inhibitors of
MEK and m-TOR that target nodes that are downstream of many
of these activating events. We studied on a cell line panel the
dependence on MEK or m-TOR signalling. We used trametinib, a
FDA- and EMA-approved drug (Infante et al, 2012), and
AZD2014, a drug under clinical investigation (Basu et al, 2015),
MEK and m-TOR inhibitors, which are known to cause robust
pharmacodynamics suppression of signals.

The specific aims of the study were to investigate growth
inhibition (GI) following maximal inhibition of MEK or m-TOR in
NSCLC-adeno-EGFRWT/ALKnon-rearranged cells and to identify any
differences between KRASM and KRASWT cell lines. We then
studied the effect of additive GI by inhibiting signalling through
both MEK and m-TOR nodes compared with GI caused by
inhibiting MEK or m-TOR node.
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MATERIALS AND METHODS

Cell lines and drugs. A panel of six NSCLC cell lines, including
three KRASM (A549, Calu6 and H23) and three KRASWT (H522,
H1838 and H1651) cell lines, were purchased from ATCC-LGC
Standards (Teddington, UK). Trametinib and AZD2014 were
sourced from Selleckchem (Munich, Germany).

Quantification of inhibition of signalling. Maximal reduction
of p-ERK1/2 (Thr202/Tyr204; Thr185/Tyr187) and p-S6RP
(Ser235/236) was determined by exposing the cell lines to
increasing concentrations of Trametinib and AZD2014 over 24 h
and quantifying p-ERK1/2 and p-S6RP by ELISA (MesoScale
Discovery, Rockville, MD, USA; kit K151DWD; K150DFD)
following manufacturer’s instructions. Experiments were con-
ducted in triplicates.

Growth inhibition. Cell lines were exposed to concentrations of
Trametinib and AZD2014 shown to maximally inhibit MEK and
m-TOR signalling, respectively, for 72 h. The effects of inhibiting
these nodes alone or in combination on cell growth were studied
using a WST-1 assay (Roche Diagnostics, Burgess Hill, UK).
Experiments were carried out in triplicates.

Statistics. Data are reported as means±s.d. Statistical significance
was evaluated by non-parametric Mann–Whitney’s tests. Results
were subjected to statistical analysis by using the GraphPad Prism
software package, v6.01 (GraphPad Software, La Jolla, CA, USA).

RESULTS

Determination of Trametinib and AZD2014 concentrations
inducing maximal inhibition of signal transduction. NSCLC-
adeno-EGFRWT/ALKnon-rearranged cell lines were exposed to

increasing concentrations of Trametinib and AZD2014 over 24 h
and the concentrations of Trametinib and AZD2014 to cause
maximal reduction in levels of p-ERK and p-S6RP were
determined (Figure 1).

Determination of dependence of MEK and m-TOR signalling in
KRASM and KRASWT cell lines. Using the concentrations
previously determined for each cell line, the mean GI caused by
maximal MEK and m-TOR inhibition was 18%(SD22) vs
52%(SD13), Po0.0001, respectively, in all cell lines (Figure 2A).
These data suggest that in this panel, the cells were more
dependent on growth on m-TOR signalling compared with
MEK. This result is confirmed in KRASM and KRASWT cell lines
with GI of 0%(SD6) vs 36%(SD12), Po0.0001 and 43%(SD7) vs
61%(SD11), P¼ 0.0002, respectively (Figure 2B).

Combination of MEK and m-TOR signalling. As the GI caused
by MEK and m-TOR inhibitions were modest, combinations of
these were studied, using the same concentrations. Across the cell
line panel, the difference between mean GI caused by maximal
m-TOR inhibition (52%, SD13) when compared with GI caused by
maximal m-TORþMEK inhibition (64%, SD21) was not sig-
nificant (P¼ 0.089). However, there was a significant difference of
GI caused by inhibition of MEK signalling alone, compared with
the combination of maximal MEKþm-TOR signalling inhibition,
18%(SD22) vs 64%(SD21), Po0.0001 (data not shown). Impor-
tantly, in KRASM cell lines, inhibition of m-TORþMEK signalling
caused significantly greater GI than inhibition of m-TOR or MEK
signalling alone, 79%(SD14) vs 61%(SD11), P¼ 0.017 and
79%(SD14) vs 36(SD12), Po0.0001 (Figure 3).

DISCUSSION

We have used an approach of titrating inhibition of signalling
output to decide upon concentrations of drugs to be used in GI
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Figure 1. Determination of degrees of signalling inhibition caused by MEK and m-TOR inhibitors in KRASM and KRASWT cell lines. (A) Trametinib
concentrations needed to maximally reduce p-ERK levels (table). (B) AZD2014 concentrations needed to maximally reduce p-S6RP levels (table).
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experiments as we believe that this approach better reflects the
dependence of cancer cell growth to different signalling networks
and reduces the reporting predominantly off-target effects of drugs
(Stewart et al, 2015).

In the NSCLC cell lines studied, we have shown for the first time
that maximal inhibition of m-TOR caused significantly more GI
compared with maximal MEK inhibition. This is interesting as
most efforts of clinically developing signal transduction inhibitors
in NSCLC-adeno-EGFRWT/ALKnon-rearranged cancers is focussed on
using MEK inhibitors. In clinical practice MEK inhibitors
response, when used alone, is confined to KRASM tumours, where
response rates typically range between 0 and 15% (Zimmer et al,
2014; Blumenschein et al, 2015). Our data showed that upon
maximal MEK inhibition, KRASM cell lines showed significantly
greater GI compared with KRASWT cell lines. However, the GI
caused by MEK inhibition in KRASM cell lines was modest (36%).
This observation is in line with previously published literature
(Pratilas et al, 2008). In the panel studied, our data suggest that
inhibition of MEK signalling has very little effect on growth in
KRASWT cell lines within the group of EGFRWT/ALKnon-rearranged

cell lines.

There have been few single agent studies of m-TOR inhibitors in
lung cancer and with very low response rates of 0–5% (Soria et al,
2009; Reungwetwattana et al, 2012). This discrepancy between the
clinical outcomes following m-TOR inhibitor treatment and our
data showing that NSCLC cells are more sensitive to m-TOR
inhibitors compared with MEK inhibitors, may be explained by
signalling though feedback loops and parallel signal transduction
pathways (Al-Lazikani et al, 2012). Main m-TOR inhibitors
evaluated in clinic so far are mTORC1 inhibitors, known to
induce feedback loops leading to mTORC2–IRS-1-mediated
hyperactivation of PI3K–AKT (Jokinen and Koivunen, 2015),
while AZD2014 is a potent inhibitor of mTORC1 and mTORC2
preventing this feedback.

Preclinical studies have suggested combinations of m-TOR and
MEK inhibitors in KRASM lung cancers (Engelman et al, 2008) but
also in N- and HRAS mutant tumours (Kiessling et al, 2015).
However, these attempted combinations have proven challenging
to deliver due to diarrhoea, skin rash and fatigue (Tolcher et al,
2015a). Intermittent dosing could be used to reduce the degree of
toxicity (Yap et al, 2013). We have shown for the first time that
inhibition of m-TOR contributes to the majority of the GI in this
combination. As our results suggest, in the event of toxicity, clinical
trial designs using intermittent dosing should prioritise reducing
the dose/frequency of the MEK signalling rather than m-TOR
signalling. MEK inhibitors have been used in combination with
PI3K and AKT inhibitors which are proximal nodes in the
canonical PI3K–AKT–m-TOR pathway and such treatment regi-
mens have shown early promise in the treatment of KRASM

NSCLC (Shimizu et al, 2012; Tolcher et al, 2015b). The policy of
prioritising inhibition of m-TOR over MEK signalling within the
combination may be broadly applicable in across MEK combina-
tions with AKT and PI3K inhibitors but this needs to be validated
in those settings.

The combinations of MEK inhibitors and m-TOR inhibitors or
more broadly PI3K pathway inhibitors should be evaluated in
KRASM NSCLC. Toxicity limits such combinations and inter-
mittent schedules are the only way to deliver drugs at doses that are
pharmacodynamically active. In case of toxicity, our data suggest
dose interruptions/reductions should be considered in inhibitors of
MEK signalling rather than inhibitors of m-TOR signalling. This
approach will help refine doses/schedules of MEK and PI3K
pathway inhibitors to provide new treatment paradigms for
KRASM NSCLC.
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