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Abstract
Colorectal cancer (CRC) development represents a 
multistep process starting with specific mutations that 
affect proto-oncogenes and tumour suppressor genes. 
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These mutations confer a selective growth advantage to 
colonic epithelial cells that form first dysplastic crypts, 
and then malignant tumours and metastases. All these 
steps are accompanied by deep mechanical changes at 
the cellular and the tissue level. A growing consensus is 
emerging that such modifications are not merely a by-
product of the malignant progression, but they could 
play a relevant role in the cancer onset and accelerate 
its progression. In this review, we focus on recent 
studies investigating the role of the biomechanical 
signals in the initiation and the development of CRC. 
We show that mechanical cues might contribute to 
early phases of the tumour initiation by controlling 
the Wnt pathway, one of most important regulators of 
cell proliferation in various systems. We highlight how 
physical stimuli may be involved in the differentiation 
of non-invasive cells into metastatic variants and how 
metastatic cells modify their mechanical properties, 
both stiffness and adhesion, to survive the mechanical 
stress associated with intravasation, circulation and 
extravasation. A deep comprehension of these mecha-
nical modifications may help scientist to define novel 
molecular targets for the cure of CRC.
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Core tip: Physical forces, either within tissues or 
externally applied, affect all tissues of the body. 
Cell mechanotransduction converts such forces into 
cellular responses that affect gene expression, protein 
synthesis, proliferation and morphogenesis. Here, 
we focused on recent studies covering the impact of 
physical stimuli such as compression, shear stress, 
adhesion and stiffness, in the development of colorectal 
cancer. We highlight that such stimuli play a major role 
in the tumor progression, affecting the Wnt pathway, 
being involved in the differentiation of non-invasive 



mechanical behaviour, a large number of studies have 
focused on isolated cell lines cultured in well-defined 
in vitro systems where each biomechanical cue, such 
as compression[6,20,21,24,43,44], ECM stiffness[24,25,45-48], 
flow conditions could be precisely controlled[26,27,49-51]. 
These in vitro studies opened the way to more 
advanced in vivo studies showing how biomechanical 
cues contribute to the malignant behaviour of colon 
epithelium by activating detrimental biochemical and 
genetic signalling pathways[5,42].

In this review, we focus on the most recent studies 
investigating the role of the biomechanical signals in the 
development of colorectal cancer. A particular attention 
is paid to highlight how the modifications of the tumour 
microenvironment and the extracellular matrix actively 
contribute to this process. A deep comprehension of the 
mechanism by which the mechanical cues modulate 
the onset and the development of the pathology may 
help to define novel molecular targets for the cure of 
colorectal cancer.

Mechanical signals contribute 
to shape healthy colon crypts 
through a stress-relaxation 
MechanisM 
The epithelial layer of the human colon consists of 
a single sheet of columnar epithelial cells, which are 
arranged into finger-like invaginations in the underlying 
connective tissue of the lamina propria forming crypts, 
the basic functional unit of the intestine[52]. Three 
different types of cells are found in the epithelium, the 
goblet cells (secreting mucin into the crypt and intestinal 
lumen), the enterocytes and the neuroendocrine cells. 
The base of the crypts contains stem cells, which 
proliferate continuously producing transit cells, which 
divided several times before differentiating into the 
different type of cells that constitute the epithelium[53,54].

Crypt development occurs approximately seven 
days after birth in mice; before to this, the intestinal wall 
is smooth[53]. However, the mechanism through which 
these structures are formed is still not fully understood. 
It has been hypothesized that crypt growth could be 
regarded as a stress-relaxation phenomenon. Similarly 
to what happens with solid inorganic materials, where 
a tensile layer is coupled with a compressive one[55,56], 
the epithelial layer coating the intestinal wall might 
induce compressive residual stress in a tissue that can 
in turn be relaxed via a buckling instability, which can 
triggers the formation of crypts[18,57].

The above-described phenomenon has been investi-
gated by using continuous mechanics. Edwards and 
Chapman[18] modelled a cross-section of an unfolded 
(smooth) colorectal crypt as a beam connected to the 
underlying tissue by a series of viscoelastic springs. 
This model was able to predict that an increase in the 
cellular proliferation rate can initiate buckling. 
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cells into metastatic variants and helping metastatic 
cells to survive the mechanical stress associated with 
intravasation, circulation and extravasation.
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introDuction
Colorectal cancer (CRC) is the 3th most commonly 
diagnosed malignancy and the 4th cause of cancer 
death in the world, with approximately 1.4 million new 
cases and almost 700000 deaths in 2012. Its burden 
is expected to increase by 60% by 2030[1]. 

CRC development is a multistep process that results 
from genetic alterations that underlie the transforma-
tion of normal cells into malignant cells, conferring 
them growth advantages such as anomalous multipli-
cation, self-sufficiency with respect to growth signals, 
insensitivity to growth-inhibitor signals and evasion of 
apoptosis[2].

The earliest mutations that occur in CRC are usually 
in components of the Wnt pathway that regulates 
colon cell homeostasis, being involved in the control of 
cell proliferation, differentiation and adhesion (figure 
1). A recently published genetic study performed on 
224 colorectal tumours indeed confirmed that in 94% 
of cases a mutation in one or more members of the 
Wnt signalling pathway is detected[3]. Subsequent 
mutations occur at the level of the RAS-MAPK, P13K, 
TGf-β, p53 and DNA mismatch-repairs pathways[4].

These genetic mutations are accompanied by 
changes in the behaviour of cells which result in deep 
structural and biomechanical alterations that may 
occur at the tissue level, such as crypt buckling[5-19] or 
to more subtle modifications occurring at the cellular 
level[5,6,20-27] and in the extracellular matrix (ECM)[2,28]. 
Such modifications are not only a mere consequence of 
genetic alterations. In fact, there is a growing consensus 
that an evolving balance between mechanical and 
genetic cues exists and plays a key role in the genesis 
and the development of malignancies[2,29-41]. Indeed 
while the malignant potential is mainly dictated by 
the intrinsic genetic state of the cells, the tumour 
phenotype is regulated by a complex interplay between 
the biomechanical and biochemical properties of the 
cellular constituents and the ECM, which synergistically 
alters cellular behaviour stimulating migration, invasion, 
proliferation and survival[42].

During colorectal cancer development, cells within 
tissues are exposed to a highly heterogeneous and 
continuously evolving mechanical landscape. To pro-
vide a more in-depth understanding of this complex 



A similar method was used by Nelson et al[58] that 
modelled the unfolded crypt as a bilayer in which 
a growing cell layer adheres to a thin compressible 
elastic beam. Authors confirmed that the buckling 
instability could be induced as a consequence of 
the stress relaxation driven by the epithelial cells 
proliferation. Moreover, it was pointed out that non-
uniformities in cell growth and variations in cell-
substrate adhesion are predicted to have minimal 
effect on the shape of resulting buckled states. 
Interestingly the authors provided also an experimental 
verification of their theoretical model, by culturing a 
monolayer of epithelial cells on a flexible PDMS-based 
surface and showing by optical microscopy that cell 
growth could cause out-of-plane substrate deflection. 
These results provide another piece of understanding 
on how mechanical signals has a key role, both, in 
physiological and pathological processes.

For the sake of completeness, we deem appropriate 
to mention other mathematical models, such as cell-
based methods or lattice-based models[13-17], that 
characterize the position and behaviour of individual 
cells within the crypt, lattice-free models[7-12], that allow 
for a more realistic approach considering interaction 
between adjacent cells, and kinetic continuum models 
that take into account stem cells proliferation[19]. These 
models are deeply described in the comprehensive 
review from van Leeuwen et al[59].

Mechanical cues coulD have a 
role in the onset of colorectal 
cancer through the control of 
the Wnt signaling pathWay 
An altered tissue mechanics is one of the key hallmark 
of cancer. A large body of evidence is emerging that a 
modified mechanical landscape might be not merely 
a by-product of the malignant progression, but it 
could contribute to cancer onset and/or accelerate its 
progression[29-41].

This is particularly interesting for colon cancer, 
because gastrointestinal (GI) tract is naturally sub-
mitted to significant endogenous mechanical stress 
as a consequence of intestinal transit[60]. The high-
amplitude propagating contractions that periodically 
move luminal contents from the ascending colon toward 
the sigmoid, for instance, generate luminal pressures 
in excess of 80 mmHg (approximately 10 kPa). In 
pathological conditions, the increase of cell mass due to 
the deregulated cell proliferation, apoptosis resistance 
and neoangiogenesis, exerts a considerable stress 
on adjacent healthy tissues. Moreover, cancer cells of 
the primary neoplasm are embedded in the tumour 
“reactive stroma” that is associated with an increased 
number of fibroblasts, enhanced capillary density and 
anomalous ECM-molecules deposition, rich in collagen-I 
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Figure 1  Canonical Wnt signaling pathway (reproduced with permission from[95]). the WNT pathway consist of two states, one referred to as “off” state where 
the small lipid modified Wnt protein does not bind to frizzled receptors (A), the other refereed as to “on state” when Wnt binds to frizzled (B). In the off state a large 
destruction complex is formed by the APC, Axin and GSk3β proteins. This complex binds to free β-catenin, phosphorylates it, thus triggering its degradation and 
preventing it from entering the nucleus. In the on-state dishevelled is activated, inhibits the formation of the destruction complex and leads to an abundance of 
cytoplasmic β-catenin, some of which enters the nucleus, binds with TCF, leading to cell proliferation.
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helium gas in a culture flask, up to reach a load of 80 
mmHg (approximately 10 kPa). Authors showed that 
such an external pressure induces cell proliferation, 
probably via the activation of Myc expression, a 
β-catenin related oncogene[43,44]. Similarly, a pressure 
of 15 mmHg applied to colon 26 cells implanted in rat 
model increases liver metastasis suggesting that even 
a low pressure increase might influence malignant cell 
proliferation[66].

Other than an altered cellular proliferation, extra-
cellular pressure can influence cancer growth by 
promoting cell adhesion[60,63-65]. In this regard, Basson 
and co-workers showed that the exposure of non-
adherent primary human colon cancer and SW620 
cells to 15 mmHg of extracellular pressure increases 
cell adhesion via src-mediated or cytoskeleton-
mediated fAK activation. Both mechanisms promote 
fAK association with integrin, altering its binding 

and fibrin[61]. This “reactive stroma”, together with 
the uncontrolled cells proliferation, modifies tissue 
topography, density and stiffness, exerting a mechanical 
stress of a few kPa on the tumour itself and the 
adjacent normal tissues[5]. High abdominal pressure are 
also common during insufflations for laparoscopy and 
after surgery, as a result of tissue edemas, whereas 
pressure during surgical manipulations can be as high 
as 1500 mmHg or more[62].

Many experimental findings suggested that repe-
titively applied physical forces, such as those related 
to GI transit, or constantly applied forces might contri-
bute to initiate intracellular signals capable of altering 
intestinal epithelial proliferation[5,6,27,43,44,60,63-65]. Some 
of these studies are summarized in Table 1. 

Hirokawa et al[43,44] investigated the effect of 
intraluminal pressure on cultured intestinal epithelial 
cells (IEC18 cell line). Pressure was applied to cells by 
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Table 1  List of experimental studies investigating the effect of external pressure on colon cancer cells proliferation

Ref. Applied load Pressure loading system and experimental 
conditions

Results

Hirokawa et al[44], 1997 40-120 mmHg 
(5-16 kPa)

The pressure-loading apparatus consists of a 
flask of which cap was pierced and connected 
to a tubing by which compressed He gas was 

introduced to raise internal pressure.

Pressurization from 40 to 120 mmHg for 48 h 
significantly increased cell (IEC18) number with peak 

proliferation at 80 mmHg. Pressure-induced DNA 
synthesis was further enhanced by the addition of 

interleukin-2, suggesting the regulation of intestinal 
epithelial growth by pressure could be dependent on 

cytokines.
Hirokawa et al[43], 2001 Applied pressure for 48 h induced proliferation 

of IEC18 cell, with a significantly peak at 80 
mmHg. The pattern of F-actin distribution was not 

significantly altered. The pressure-induced increase in 
phosphorylation of Elk-1 fusion protein corresponding 

to the activation of MAPK.
Basson et al[63], 2000 15 mmHg (2 kPa) Cell plates was positioned in an airtight acrylic 

box, in which pressurized gas was introduced 
by a tubing to increase pressure.

Increasing ambient pressure stimulated the adhesion 
of human Caco-2, SW1116, SW620, and HT-29 cells to 

Matrigel, type I collagen, laminin, and fibronectin.
Whitehead et al[6], 2008 0.8 kPa A controlled mechanical strain was applied on 

short segments of colon explants obtained from 
normal and APC1638N/+ mice. Tissues were 
placed into a mechanical deformation box and 
compressed in the z-direction of approximately 

half of their relaxed thickness for 20 min.

APC1638N/+ mice showed the expression of the two 
oncogenes Myc and Twist1, not observed in wild-type 
colon explants. Myc and Twist1 activation was found 
to be correlated with an increased presence of nuclear 
β-catenin . Almost no nuclear β-catenin was detected 

in the wild-type colon epithelium.
The mechanical stimulation of APC1638N∕+ tissue 

leads to the phosphorylation of β-catenin at tyrosine 
654, the site of interaction with E-cadherin, affecting 

cell adhesions properties.
Fernández-Sánchez et al[5], 
2015

1.2 kPa A controlled pressure was applied in 
vivo in APC1638N/+ and control mice by 

subcutaneously inserting a magnet close to the 
mouse colon. The magnet generates a magnetic 
force on ultra-magnetic liposomes, stabilized in 
the mesenchymal cells of the connective tissue 

surrounding colonic crypts.

The magnetically induced load led to a rapid Ret 
activation and the phosphorylation of β-catenin on 
Tyr654, impairing its interaction with E-cadherin.
β-catenin nuclear translocation was observed after 
15 days with a consequent increased expression of 

β-catenin-target genes at 1 month, together with crypt 
enlargement accompanying the formation of early 

tumorous aberrant crypt foci.
Such malignant behavior was induced in, both, 

APC1638N/+ and control mice, irrespective of the 
presence of prior genetic abnormalities.

Avvisato et al[27], 2007 1.5 kPa Cells were plated on 38 mm × 76 mm slides 
and subjected to a laminar shear stress in a 

rectangular flow channel for 12 h.

β-catenin signalling of SW480 cells decreased to 
22% of control values. The β-catenin signalling were 
measured for 0-24 h during shear stress exposure, it 

decreased significantly following 12 h of flow, reaching 
a minimum after 24 h.
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affinity and facilitating colon cancer cell adhesion[64,65]. 
As stated above, loss of APC function triggers the 

chain of molecular and histological changes leading 
to colorectal tumours. In this context, Whitehead et 
al[6] applied a controlled mechanical strain on short 
segments of colon explants from normal and APC 
deficient mice (APC1638N/+). Differently from humans, 
where GI tumours are found primarily in colon, mice 
develop cancer predominantly in the small intestine. 
Therefore APC1638N/+ mice colon tissues are both, 
morphologically normal and APC deficient, thus 
providing an ideal model system to study the earliest 
event in colorectal tumorigenesis[6]. Both control and 
APC deficient tissues were placed into a mechanical 
deformation box and compressed in the z-direction 
of approximately half of their relaxed thickness for 
20 min with an applied load of approximately 800 
Pa. Compressed tissues showed elongated crypt 
openings hinting at some shape changes at the cellular 
level. Such modifications were accompanied by the 
expression of the two oncogenes Myc and Twist1 in 
APC deficient colon tissue explants, but not in wild-type 
colon explants. Authors showed that Myc and Twist1 
activation is strongly dependent on the presence of 
nuclear β-catenin, in agreement with[43,44]. In response 
to mechanical strain, the APC deficient colon tissues 
showed an increased number of β-catenin positive 
nuclei per crypt, whereas almost no nuclear β-catenin 
was detected in the wild-type colon epithelium. The 
mechanical stimulation of APC1638N∕+ tissues was found 
to induce a phosphorylation of β-catenin at tyrosine 
654, the site of interaction with E-cadherin, thereby 
dramatically affecting cell adhesions properties. These 
data demonstrate that, when APC is down expressed, 
mechanical strain, such as that associated with 
intestinal transit, presence of polyps or tumour growth, 
can be interpreted by cells of pre-neoplastic colon 
tissue as a signal to initiate a β-catenin dependent 
transcriptional program characteristics of cancer[6].

Even though the above mentioned in vitro experi-
ments provided convincing data that establish a clear 
correlation between endogenous mechanical pressure 
and tumorigenesis, they cannot take properly into 
account all factors contributing to the mechanical 
environment in vivo. To overcome this limitation, 
fernández-Sánchez et al[5] developed a novel and 
effective method that allows the delivery of a defined 
mechanical pressure in vivo by subcutaneously 
inserting a magnet close to the mouse colon. The 
implanted magnet generates a magnetic force on ultra-
magnetic liposomes, stabilized in the mesenchymal 
cells of the connective tissue surrounding colonic crypts 
after intravenous injection (figure 2).

Such method appears to be a significant break-
through in the field of cancer biomechanics as it 
permits to control mechanical stimuli in vivo with 
same precision that can be achieved in vitro[42]. As 
pointed out in the recent review by Ou and Weaver, 
this novel technique has the potential to boost a new 

era in tissue biomechanics, providing a direct link 
between mechanical perturbation occurring in vivo and 
tumorigenic cell modifications[42].

The authors used this revolutionary method to 
induce a controlled pressure of approximately 1.2 kPa, 
mimicking the endogenous stress produced by the 
early tumour growth on healthy tissues. The applied 
strain led to a rapid Ret activation and downstream 
phosphorylation of β-catenin on Tyr654, impairing its 
interaction with the E-cadherin in adherents junction 
and promoting β-catenin nuclear translocation. Conse-
quently, authors observed an increased expression of 
β-catenin-target genes, together with the formation of 
aberrant crypt foci. Interestingly the authors showed 
that the mechanical induction of a malignant behaviour 
in normal tissues adjacent to the tumour does not 
depend on the presence of prior genetic abnormalities, 
adding another piece of understanding to the growing 
consensus that the mechanical environment intrinsic to 
cancerous tissues has the potential to directly modify 
cells behaviour even in absence of genetic mutations. 

Taken together, these results show how mechanical 
signals can contribute to the onset of a malignancy by 
affecting the Wnt pathway and triggering the consequent 
disruption of the physiological crypt dynamics. Intere-
stingly, this behaviour may be propagated by a positive 
feedback loop in which mechanical pressure from the 
primary tumour and the stroma induce a breakdown of 
the normal Wnt signalling pathway in non-transformed 
adjacent cells. This event, in turn, can trigger an 
abnormal cell growth that generates further mechanical 
stress.

For the sake of completeness we want to stress 
that the Wnt/β-catenin pathway - being one of most 
important regulators of proliferation in various systems 
- can be modulated by a wide range of factors other 
than mechanical stimuli. To give an example, recent 
experimental findings showed that a6A(β4) integrin 
regulates cell proliferation and the Wnt/β-catenin 
pathway through the control of DVL2/GSK3β[67].

Mechanical cues coulD play 
an iMportant role in the early 
phases of Metastases by tuning 
the tuMour MicroenvironMent 
stiffness 
An effective identification of metastasis triggering-
signals appears to be a crucial step in the fight against 
cancer since metastasis accounts for the most of 
cancer deaths. The process leading to the formation of 
metastasis is strongly mediated and supported by the 
tumour microenvironment, which consists of different 
structures with different mechanical responses, such 
as tumour-infiltrating cells, blood vessels, extracellular 
matrix (ECM) and other matrix-associated proteins[2,28]. 

A large body of evidence suggests that the tumour 
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microenvironment with its mechanical stimuli, including 
stiffness, might play a major role in initiation of meta-
stasis. for instance, a highly aggressive metastatic 
variant of murine B16-f1 melanoma cells is produced 
by culturing cells in a soft fibrin scaffold[22]. Weaver 
and collaborators showed indeed that ECM stiffening 
obtained through collagen crosslinking promotes 
malignant behaviour in mammary epithelial cells by 
modulating integrin’s expression[68,69].

These results suggest that a fine tuning of the 
microenvironment stiffness might be involved in the 
differentiation of non-invasive cells into metastatic 
variants[70,71]. A confirmation of this hypothesis is 
provided by the experimental findings of Tang and 
collaborators[23-25], carried out mainly on HCT-8 cells, a 

low metastatic colon cancer cell line (Grade I), epithelial 
in phenotype (E-cells). Previous experimental works 
demonstrated that when cultured on conventional stiff 
plastic substrates, low grade HCT-8 E-cells adhere and 
proliferate, resulting in monolayers covering the entire 
dish with occasional mounds consisting of 2-3 layers 
of cells. On top of these mounds, a small number of 
rounded-shaped metastatic variants of these cells can 
be detected (1 variant per 2 × 105 epithelial-shaped 
cells). Due to their shape, such metastatic-like variants 
are called rounded cells (R-cells)[46-48,72]. 

By culturing E-cells on polyacrylamide (PA) sub-
strates of well-defined stiffness, Tang et al[24] demon-
strated that the proportion of the metastatic-like R-cells 
can be increased by several orders of magnitude up 
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to reach 70%-90% of the original cell population. To 
this purpose, authors cultured HCT-8 cells on several 
fibronectin-coated substrates with a different Young’s 
modulus, namely a stiff 3.6 GPa polystyrene surface 
(PS) and a set of polyacrylamide (PA) substrates 
with a Young’s modulus lying in the range 21-47 kPa. 
Such stiffness range mimics the rigidity of the tumour 
microenvironment, thus being suitable to reproduce 
the mechanical stimuli sensed by cells in pathological 
conditions[24]. Cells cultured on 21 kPa PA substrates 
form colonies in 2-4 culture days; after 7 culture days 
cells begin to dissociate and after 11 d the entire colony 
dissociates in single round shaped cells. Similarly, 
HCT-116 cells cultured on 10 kPa sPA fibronectin-
coated gel substrates form cell colonies in 2-5 culture 
days and begin to dissociate from colonies on the 10th 
day. The metastatic variant is not observed on the 3.6 
GPa stiff PS substrate. Similar results were obtained on 
laminin coated substrates and by using other human 
colon cancer (SW480) and prostate cancer cell lines[23]. 
Interestingly, the stiffness-mediated E-to-R transition 
cannot be reversed by plating the dissociated cells 
on stiff substrates[24]. The irreversible nature of the 
transition is likely due to the fact that dissociated cells 
loose mechano-sensitivity to the substrate[25]. 

The shape modifications occurring in the E-to-R 
transition hint at a complex cellular remodeling at the 
cytoskeleton level. Not-dissociated cells cultured on hard 
PS substrates indeed show a well-organized cytoske-
leton network made of aligned actin stress bundles. 
Such network is also associated to the presence of 
large intracellular tension forces that induces significant 
nuclear stretching[24]. Conversely, R-cells have an almost 
spherical-shaped nucleus and do not display intracellular 
stress bundles. The loss of stress bundle, in turn, is 
associated to a down-expression of E-cadherin along cell-
cell contact borders in the metastatic variant[6]. 

Tang et al[23] studied also the invasive behavior 
of both cell variants, showing that HCT-8 R cells are 
remarkably more invasive and tumorigenic than E cells. 
R cells were found to express many of the molecular 
signatures associated with resistance to hypoxia, 
apoptosis, as well as genes linked to metastasis. Of 
particular interest is the reported down regulation of 
CKB gene that is linked to the epithelial-to-mesen-
chymal transition (EMT) in colon cancer[73]. One of the 
major elements that characterize EMT of carcinoma 
cells is the loss of E-cadherin-mediated cell-cell 
adhesion[74], a second characteristic that is in common 
with the E-to-R transition, providing further evidence 
that a metastasis-enhancing gene pattern is activated 
in R cells and this activation might be associated with 
the characteristics of in vivo EMT[23]. Some of these 
studies are summarized in Table 2.

colon cancer cells MoDify their 
Mechanical properties to resist 
intravasation, shear stress 
associateD With circulation anD 
extravasation 
following the detachment from the primary tumour, 
cancer cells intravasate into blood vessels to disse-
minate. The process of intravasation is still not fully 
understood in the case of colon cancer. Several 
molecular steps involving matrix metalloproteinases 
and interaction between cancer cells and endothelial 
adhesion molecules have been described. Such 
processes are discussed in detail in the comprehensive 
review from Gout and Hout[2] and involve also the tumor-
infiltrated macrophages (TAM) that are stimulated 
by cancer cells to secrete matrix metalloproteinase 
MMP-7, MMP-12 and vascular endothelial growth factor 
(VEGf)[28,75-77].

After ECM degradation, cancer cells can gain access 
to the blood vessels. At this step, the vessel diameter - 
often smaller then cell sizes - play a crucial role being 
a key parameter underling colon cancer intravasation 
via passive entry[78,79]. 

Moreover, once entered in the blood stream circu-
lating cancer cells are usually not able to generate 
metastasis. In the most of the cases, indeed, they 
undergo disruption because of the mechanical stress 
imposed by circulation, which appears one of the major 
defence mechanism in the host microenvironment[80,81]. 

Metastatic cancer cells have developed several 
strategies to survive the mechanical stress related 
to both, the migration within the degraded ECM and 
the shear stress in the blood stream. Such strategies 
include the occurrence of major modifications at the 
cytoskeleton level deeply altering the cells viscoelastic 
properties. 

In this context, recent in vitro studies compared 
the viscoelastic properties of different colon cancer cell 
lines[20,21,26,27]. To this purpose, two main techniques 
are used: micropipette aspiration (MA) and atomic 
force microscopy (AfM). The former permit to investi-
gate the mechanical properties of the whole cell[82,83], 
whereas the latter provides information on the mor-
phological and mechanical properties at the cellular 
and sub-cellular level[20,21,30-33,84-90]. Both methods can 
be coupled to advanced finite element simulation 
methods[26,91,92]. 

Pachenari et al[26] recently studied the viscoelastic 
properties of grade Ⅰ (HT29) and grade Ⅳ (SW480) 
cancer cells trough micropipette aspiration (MA) method, 
showing that SW480 are significantly more deformable 

7209 August 28, 2016|Volume 22|Issue 32|WJG|www.wjgnet.com

Ciasca G et al . Biomechanics of colorectal cancer



than HT29. The former are indeed characterized by 
instantaneous and an equilibrium Young’s modulus of 
E0 = 331.67 Pa and E∞ = 123.47 Pa, respectively, the 
latter by E0 = 574.72 Pa and E∞ = 84.76 Pa. The higher 
compliance of the metastatic cells is accompanied 
to deep modifications occurring in the cytoskeleton 
organization, mainly at the level of actin filaments. 
Authors indeed unveiled a significant decrease in the 
ratio of actin filaments to microtubules by western 

blot analysis and fluorescence measurements. Taken 
together these results confirm that cancer invasiveness 
is related with an increased cell deformability that, in 
turn, is instrumental to squeeze through slim capillaries 
with diameters less than cell sizes as well as to tolerate 
frictional forces arising between their outer surface and 
vessel walls. 

Avvisato et al[27] recently investigated the beha-
viour of metastatic SW480 cell lines under shear 

7210 August 28, 2016|Volume 22|Issue 32|WJG|www.wjgnet.com

Ciasca G et al . Biomechanics of colorectal cancer

Table 2  List of cell properties that depends on substrate stiffness

Substrate-related 
mechanical properties 

Substrate 
stiffness

Substrate type and 
composition

Outcomes Related-biochemical and genetic 
pathway

Ref.

E-to-R transition 1 kPa Laminin The E to R transition is not observed. Not applicable. Tang et al[24], 2015
or fibronectin 
coated PA gel

21 kPa Laminin coated PA 
gel

Approximately 70%-90% of E 
cells start transiting to R cells after 
culturing for 7 d. Transition takes 

approximately 5-10 h.

E-Cadherin decreases in 
dissociated

R cell by a factor 4.73 ± 1.4.

Fibronectin coated 
PA gel

Approximately 70%-90% of E 
cells start transiting to R cells after 
culturing for 15 d. Transition takes 

approximately 5-10 h.

Replanted cells retain their 
dissociated phenotype 

irrespective of the substrate 
stiffness.

3.6 GPa Fibronectin coated 
PA gel

Not observed. Not applicable.

20 kPa E-cadherin coated 
PA gel

E cells transit to R cells in 6 h. Vinculin in mainly located at the 
cell-cell junction.

Fibronectin coated 
PA gel

E cells transit to R cells in 6 h. Vinculin in mainly located at the 
cell- substrate junction.

Ali et al[45], 2014

~70 GPa E-cadherin 
coated stiff glass 

substrates

Transition is not observed. Not applicable.

Extremely 
stiff1

Plastic/glass stiff 
substrate

Occasionally E cells transit to R cell 
(1 cell over 2 × 105).

R cells are deficient in aE-catenin 
(protein linking the cell-cell 

adhesion molecule E-cadherin to 
the action cytoskeleton).

Vermeulen et al[46-48], 
1995, 1998, 1999

Cell colony sizes 1-20 kPa Gradient stiffness 
fibronectin coated 

PA gel

E type: colony size positively 
correlated with substrate stiffness

Not applicable. Tang et al[25], 2012

R type: colony size (smaller than 
E-colony size) positively correlated 

with substrate stiffness.
Soft1 Agar gel Equal numbers of E and R cells were 

plated and examined after 10 d, 75% 
of the E cells plated formed colonies 

while R cells formed no colonies.

Rosenthal et al[72], 1977

Adhesion 1-20 kPa Gradient stiffness 
fibronectin coated 

PA gel

E type: cells show a strong cell-cell 
adhesion and cell-substrate adhesion 
evaluated through the measurement 

of the cell-substrate contact area (188.1 
± 80.7 μm2) by confocal microscopy. 

Moreover, a strong aspecific adhesion 
of ~250 nN is detected trough a novel 

MEMS system.

Reduced E-cadherin expression 
on R cells.

Tang et al[25], 2012

R type: cells show a weak cell-cell 
adhesion on very soft substrate (1 

kPa). No cell-cell contact is observed 
on stiffer substrate (5-10-15-20 kPa). 

A weak cell/substrate adhesion 
is demonstrated through the 

measurement of the cell/surface 
contact area (49.5 ± 20.9 μm2).

A week aspecific adhesion of ~2.5 nN 
is measured through a MEMS system.

1Young’s modulus not provide. 



stress. In particular, cells were cultured on glass 
and on fibronectin and laminin coated substrates, 
placed in a rectangular flow channel and exposed to 
a laminar shear stress lying in the range 0.4 Pa to 
3.5 Pa, comparable to human blood shear stress[93]. 
After 12 h exposure, authors observed a decrease in 
β-catenin, showing that Wnt signalling pathway is also 
shear stress dependent (Table 1). Interestingly, such 
a decrease is greater on laminin-coated substrates, 
suggesting that the effect of shear stress could be 
mediated by integrin cell adhesion receptors that in 
turn have a key role in the intra- and extravasation 
processes. One way to escape the shear stress 
associated with circulation is the overexpression of 
integrin and E-cadherin that allow cells to adhere on 
the blood vessel wall and epithelial tissues, respectively, 
favouring extravasation[40,68].

Palmieri et al[20] recently compared the biomecha-
nical properties of SW480 and SW620 colon carcinoma 
cell lines, derived from primary tumour and lymph-
node metastasis of the same patient, respectively. 
The limited genetic variability of these cells makes 
them an ideal system to analyse phenotypic variations 
associated with the metastatic process. Authors 
studied by confocal microscopy the actin organization 
of both cell lines, demonstrating that SW620 cells 
show a decreased cytoskeleton organization with 
respect to SW480, as quantitatively evaluated by 
measuring the actin filament-junction density and 
coherency[20]. Such loss of structure affects also the 
overall mechanical properties of SW620 cells that 
appear to be significantly more compliant (480 Pa) 
than SW480 (1.06 kPa) as demonstrated by atomic 
force spectroscopy measurements. These results point 
out that cells extracted from metastases undergo a 
further destructuration process with the respect to 
those extracted from the primary tumour that might 
be related to the cell’s ability to escape from primary 
tumour mass, to resist to blood shear stress and to 
extravasate. Moreover, authors unveiled that cells 
from lymph-node metastasis (SW620) exhibit a higher 
non-specific adhesion force (95 pN) than SW480 (50 
pN), suggesting that the non-specific adhesion forces 
could participate, together with the high specific one 
(receptor-ligand binding), in the attachment to the 
blood vessel walls, in the consequent extravasation 
and in the metastasis formation. Interestingly, two 
morphologically different sub-populations of SW480 
cells having an elongated (E-type) and a rounded 
(R-type) shape were reported[20,21]. Similarly to HT29, 
E-type SW480 cells are significantly stiffer (E ~ 1 
kPa) that R-type cells (E ~ 0.5 kPa), indicating a less-
organized cytoskeleton in the latter case. At variance 
with the R-type HT29 cells, SW480 E-type cells do not 
show impaired adhesion properties with the respect 
to E-type cells[21] and consistently do not metastasize 
when injected in nude mice[94].

conclusion
Physical forces either within tissues or externally 
applied, affect all tissues of the body. Cell mechano-
transduction indeed converts biophysical forces into 
cellular responses that may influence gene expression, 
protein synthesis, proliferation and morphogenesis. In 
this review, we focused on recent studies covering the 
impact of physical stimuli such as compression, shear 
stress, adhesion and stiffness, in the development of 
colorectal cancer, showing that such stimuli may have 
a role in each step of the tumour progression.

An anomalous tissue compression due to a modified 
microenvironment or an altered abdominal pressure 
can indeed affect cell proliferation and adhesion 
properties. A large body of experimental evidence 
show that mechanical strain can activate a β-catenin 
dependent pathway, characteristic of cancer, that 
is able to disrupt the physiological crypt dynamics, 
leading to the formation of aberrant crypt foci. The 
mechanism behind this process was recently unveiled 
by a pioneering in vivo study. The application of a 
controlled strain in vivo was demonstrated to foster 
the phosphorylation of β-catenin on Tyr654, leading to 
an impaired interaction with E-cadherin and promoting 
β-catenin nuclear translocation with the consequent 
overexpression of β-catenin targeted oncogenes. 

Mechanical cues have also the potential to affect 
the early phases of metastasis. Tumour progression 
is accompanied by deep modifications in the tumour 
microenvironment, which is characterized by a rapidly 
evolving mechanical landscape. In this context, 
microenvironment stiffness modifications was indicated 
as one of the signalling-pathways involved in the 
initiation of metastasis. This hypothesis was confirmed 
by recent in vitro studies carried out on a wide range 
of primary colon cancer cell lines cultured on artificial 
substrates of a given stiffness. Such studies showed 
that, in these experimental conditions, substrate 
stiffness is the main responsible of the differentiation of 
non-invasive cells into metastatic variants, irrespective 
of the surface chemistry. 

We highlighted also how physical stimuli can sup-
port metastatic cells dissemination. Metastatic cells 
undergo deep structural and mechanical modifications 
occurring mainly at the cytoskeleton level, that allow 
them to resist the stress related to migration within 
the degraded ECM, to intravasate and to survive at the 
shear stress associated with circulation. To this purpose, 
actin molecules and microtubules are rearranged within 
the cell cytoskeleton to make the metastatic cell more 
compliant than the primary tumour. 

Taken together, the experimental findings here 
reviewed show that mechanical forces are an important 
player in the development of colon cancer. Therefore, a 
deep comprehension of the role of physical forces may 
help scientist to develop both novel diagnostic tools 
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and innovative pharmacological approaches. 
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