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Exposure to ionizing radiation induces not only apoptosis
but also senescence. While the role of endothelial cell
apoptosis in mediating radiation-induced acute tissue injury
has been extensively studied, little is known about the role of
endothelial cell senescence in the pathogenesis of radiation-
induced late effects. Senescent endothelial cells exhibit
decreased production of nitric oxide and expression of
thrombomodulin, increased expression of adhesion mole-
cules, elevated production of reactive oxygen species and
inflammatory cytokines and an inability to proliferate and
form capillary-like structures in vitro. These findings suggest
that endothelial cell senescence can lead to endothelial
dysfunction by dysregulation of vasodilation and hemostasis,
induction of oxidative stress and inflammation and inhibition
of angiogenesis, which can potentially contribute to radiation-
induced late effects such as cardiovascular diseases (CVDs).
In this article, we discuss the mechanisms by which radiation
induces endothelial cell senescence, the roles of endothelial
cell senescence in radiation-induced CVDs and potential
strategies to prevent, mitigate and treat radiation-induced
CVDs by targeting senescent endothelial cells. � 2016 by

Radiation Research Society

INTRODUCTION

An increasing amount of clinical evidence has demon-
strated that exposing the heart to ionizing radiation increases
the risks of cardiovascular diseases (CVDs). Radiation-
induced CVDs first became apparent in patients who
received high doses of radiation to the heart during
treatment of Hodgkin’s disease (1) and breast cancer (2,
3). The manifestations of radiation-induced CVDs are
usually observed more than a decade after radiotherapy,
and include accelerated atherosclerosis, myocardial fibrosis,
conduction abnormalities and injuries to cardiac valves (4,

5). In addition, long-term epidemiological studies conduct-
ed in Japanese atomic bomb survivors revealed that
individuals who received an acute single dose of 1–2 Gy
total-body irradiation (TBI) showed a significant increase in
mortality from myocardial infarction .40 years postirradi-
ation. The risk of CVD-related death in these survivors was
increased by 17% per Gy after 0–4 Gy TBI (6). It has also
been shown that the risk of CVD-related mortality increases
with low-dose occupational exposures (e.g., radiologists,
nuclear power plant workers and emergency workers from
the Chernobyl accident) (7–9). Collectively, these findings
suggest that the heart and vasculature might be more
radiosensitive than was previously thought (10).

Currently, the only available clinical approach to reduce
late cardiac complications of radiotherapy is to reduce
cardiac exposure during the therapy, but this is not always
possible. Although radiotherapy has been improved with
treatment planning and radiation delivery, a significant
subset of patients with thoracic cancers, including those of
the lung, esophagus and proximal stomach, still receives
considerable radiation doses to the heart (11–13). There are
similar risks from the increasing radiological and nuclear
threats that exist today. Therefore, a better understanding of
the pathophysiology of radiation-induced CVDs is needed
to develop more effective therapeutic strategies to prevent,
mitigate and treat radiation-induced CVDs.

The heart is a multicellular organ. The adult human
ventricles consist of about 33% cardiomyocytes, 24%
endothelial cells and 43% mesenchymal cells (14). The
cell turnover rate for cardiomyocytes is highest in early
childhood and gradually declines to ,1% per year in
adulthood. In contrast, endothelial cell turnover in the heart
is high throughout life (.15% per year), whereas
mesenchymal cell exchange is relatively low in adulthood
(,4% per year). Cardiomyocytes are terminally differenti-
ated, quiescent and highly radioresistant. Endothelial cells
are relatively resistant to radiation-induced apoptosis, but
they readily undergo senescence or permanent cell-cycle
arrest after exposure to a moderate or high radiation dose
(0.5–10 Gy) (Fig. 1) (15–30). While the role of endothelial
cell apoptosis in mediating radiation-induced acute tissue
injury has been extensively studied (29–37), little is known
about the role of endothelial cell senescence in the
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pathogenesis of late effects caused by radiation (Fig. 2).

Because endothelial cells are one of the major constituents

of heart microvasculature and macrovasculature, induction

of endothelial cell senescence may play an important role in

radiation-induced CVDs. Therefore, in this article we focus

our discussion on the mechanisms by which radiation

induces endothelial cell senescence, effects of endothelial

cell senescence on cardiovascular function and potential

strategies for targeting senescent endothelial cells to

prevent, mitigate and treat radiation-induced CVDs.

CELLULAR SENESCENCE: A DOUBLE-EDGED

SWORD IN THE FIGHT AGAINST CANCER

Cells undergo senescence after extensive cell division or

exposure to oncogenic or genotoxic stress such as radiation

(38–41). Induction of cellular senescence is considered an

important tumor-suppressive mechanism because it perma-

nently arrests growth of genetically deranged cells with

critically shortened telomeres or persistent DNA damage

that may lead to genetic instability and cell transformation.

More importantly, an increasing body of evidence indicates

that induction of cellular senescence can stimulate the

immune system to rapidly eliminate these genetically

distorted cells (42–44). In addition, induction of senescence

is an important function of radiation in cancer treatment,

since it can potently induce senescence not only in cancer

cells but also in endothelial cells (45–47). Induction of

endothelial cell senescence inhibits angiogenesis, which

may also contribute to the therapeutic effects of radiation on
cancer.

However, if the rate of senescent cell production exceeds
the immune system’s capacity to clear them, or if the
immune system is compromised and cannot efficiently
remove senescent cells, senescent cells can accumulate in
tissues (39, 48), which has been observed in animals and
humans during aging and after radiotherapy. Under such
circumstances, senescent cells can promote various age- and
therapy-related pathologies, including CVDs, in a cell-
autonomous and a non-cell-autonomous manner. For
example, senescent cells produce increased levels of
reactive oxygen species (ROS), which can induce oxidative
damage to neighboring cells. In addition, senescent cells
secrete a plethora of inflammatory mediators (e.g., cyto-
kines and chemokines) and extracellular proteases, termed
the senescence-associated secretory phenotype (SASP),
which causes chronic inflammation and disruption of tissue
structure and function (38, 39, 49, 50). Moreover, persistent
accumulation of senescent cells in tissues can cause a
decline in tissue stem and progenitor cells (51–55). This can
occur intrinsically, if tissue stem and progenitor cells
themselves become senescent, or extrinsically, if the cells
making up the stem-cell niche undergo senescence and
express SASP. Senescent tissue stem and progenitor cells
exhibit significant defects in self-renewal, proliferation and
differentiation, rendering them incapable of tissue mainte-
nance, regeneration and repair. Therefore, induction of
cellular senescence is a double-edged sword in the fight
against cancer. Inhibiting the induction of senescence can be

FIG. 1. Ionizing radiation induces endothelial cell apoptosis and senescence in a dose-dependent manner.
Exposure of endothelial cells to a very high dose (.10 Gy) of ionizing radiation (IR) induces apoptosis via
activation of the acidic sphingomyelinase (aSMase) that hydrolyzes sphingomyelin (SM) on the plasma
membrane to generate ceramide and to induce Bax and Bak. However, exposure of endothelial cells to a
moderate (.0.5 Gy) or high dose (,10 Gy) of radiation primarily induces senescence via multiple pathways, as
shown. ALK5, TGF-b type 1 receptor kinase; ATM, ataxia-telangiectasia mutated protein kinase; CHK2,
checkpoint kinase 2; DSBs, DNA double-strand breaks; IGF1R, insulin-like factor-1 receptor; mTOR,
mechanistic target of rapamycin; NFjB, nuclear factor jB; p38, p38 mitogen-activated protein kinases; PI3K,
phosphtidylinositol-3-kinase; ROS, reactive oxygen species; and TGF-b, tumor growth factor b.
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detrimental by increasing tumorigenesis and decreasing
tumor response to radiotherapy. In contrast, promoting
clearance of senescent cells during aging and after
irradiation can prevent their accumulation within tissues,
and it may delay the onset and progression of age-related
diseases and reduce late effects of radiation, such as CVDs.
This hypothesis is supported by a recently reported finding
that genetically selective elimination of p16Ink4a (p16)-
positive senescent cells in normal INK-ATTAC transgenic
mice via administration of the drug AP20187 significantly
extended the animals’ lifespans by delaying the onset and
progression of age-related pathologies, including cardio-
dysfunction (56). However, whether selective clearance of
senescent cells can prevent and mitigate radiation-induced
CVDs has not yet been investigated.

ENDOTHELIAL CELL SENESCENCE INDUCED BY
IONIZING RADIATION

Endothelial cells from a variety of tissue origins and
species, including human coronary artery, can undergo
senescence after exposure to a moderate-to-high dose of
radiation in vitro (15–28). In addition, emerging evidence
indicates that cardiac endothelial cells senesce in vivo after
local exposure to radiation (57). However, the underlying
mechanisms by which radiation induces endothelial senes-
cence have not been fully established. It has been suggested
that diverse stimuli can induce cellular senescence in
different cells via various upstream signal transduction

cascades (including the p53-p21 pathway) that eventually
converge on the p16-Rb pathway, whose activation
inescapably prevents senescent cells from re-entering the
cell cycle. The importance of the p53-p21 pathway is
supported by the finding that activation of p53 and
induction of p21 are transient events during the onset of
senescence that subside when expression of p16 starts rising
(58–60). Induction of senescence can be prevented by
inactivation of p53 prior to upregulation of p16; however,
once p16 is highly expressed, downregulation of p53 cannot
reverse cell cycle arrest (60, 61). This indicates that
activation of the p53-p21 pathway is an important role in
initiation of senescence and that upregulation of p16 is
required for maintenance of senescence.

However, endothelial cells are unique for the induction of
senescence. Unlike other cells, it appears that the p53-p21
pathway is more important than the p16-Rb pathway for the
induction of endothelial cell senescence, because knock-
down of p53 expression, but not knockdown of p16
expression, inhibits endothelial cell senescence induced by
a variety of stimuli (Fig. 1) (16, 62–64). The p53-p21
pathway may be activated in endothelial cells via induction
of unrepairable DNA damage, persistent oxidative stress
and expression of X-linked inhibitor of apoptosis-associated
factor 1 and growth differentiation factor 15 (16, 23, 62, 65–
67). Recently, it was reported that activation of the insulin/
insulin-like growth factor 1 (IGF1)-phosphtidylinositol-3-
kinase (PI3K)-Akt/mechanistic target of rapamycin (mTOR)
pathway acts upstream of the p53-p21 pathway in mediating

FIG. 2. Role of endothelial cell in radiation-induced acute tissue injuries and late effects. Panel A: Role of
endothelial cell apoptosis in acute radiation syndrome (ARS) in the hematopoietic system, gastrointestinal (GI)
system, and central nerve system (CNS). Acidic sphingomyelinase knockout (aSMase KO), basic fibroblast
growth factor (bFGF), sphingosine-1-phosphate (S1P), and antibodies against ceramide (ceramide ab) can inhibit
radiation-induced apoptosis in endothelial cells (ECs) and reduce radiation-induced acute injuries to various
tissues. Panel B: Hypothetical roles of endothelial cell senescence in radiation-induced late effects (RLEs).
EPCs, endothelial progenitor cells; NO, nitric oxide; ROS, reactive oxygen species; TM, thrombomodulin; PAI-
1, plasminogen activator inhibitor-1; and CVDs, cardiovascular diseases.
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endothelial cell senescence induced by radiation and high
glucose (Fig. 1) (21, 27, 28, 57, 68). Radiation-induced
senescence of endothelial cells was suppressed by specific
inhibition of IGF1 receptor (IGF1R), PI3K or mTOR. The
activation of the IGF1-PI3K-Akt/mTOR pathway may be
attributable to downregulation of sirtuin 1 (SIRT1) (22, 68,
69). In addition, radiation-induced endothelial cell senes-
cence also may involve: activation of p38, NFjB and TGF-
b type 1 receptor ALK5; induction of endoplasmic
reticulum stress; and downregulation of telomerase reverse
transcriptase (15, 22, 70–74).

Radiation-induced senescent endothelial cells exhibit a
variety of senescence-like phenotypes. These include
changes in cell morphology, permanent cell-cycle arrest,
increased staining for senescence-associated b-galactosidase
(SA-b-gal) and elevated expression of p16 and p21. The
cells are also defective in angiogenesis, having reduced
ability to sprout, migrate and invade to form capillary-like
structures in Matrigelt (15, 70). In addition, senescent
endothelial cells produce increased levels of ROS, probably
due in part to upregulation of NADPH oxidases, downreg-
ulation and/or upcoupling of endothelial nitric oxide
synthase (eNOS) and induction of mitochondrial dysfunc-
tion (75–78). They acquire SASP by expressing increased
levels of inflammatory cytokines and adhesion molecules
(15, 18, 25, 26, 57, 77, 79). Radiation-induced senescent
endothelial cells expressed decreased levels of thrombomo-
dulin (80, 81) and increased levels of plasminogen activator
inhibitor-1 (PAI-1) (82, 83). All these changes in senescent
endothelial cells lead to endothelial dysfunction, which
results in inhibition of angiogenesis, induction of oxidative
stress and inflammation and dysregulation of vasodilation
and hemostasis.

ROLE OF ENDOTHELIAL CELL SENESCENCE IN
RADIATION-INDUCED CVDS

Although it has been extensively implicated in the
pathogenesis of age-related CVDs (82, 84–88), the role of
endothelial cell senescence in radiation-induced CVDs has
yet to be determined (89–91). Radiation-induced CVDs
may be in part attributable to a combination of effects on
microvasculature and macrovasculature (89–91). Senes-
cent endothelial cells are incapable of regenerating new
cells to maintain the homeostasis of vasculatures and repair
damaged blood vessels, which may contribute to the
decreased density of cardiac capillaries and small coronary
arterioles and to the accelerated atherosclerosis of large
blood vessels, including rodent and human coronary
arteries (89, 90, 92–94). Moreover, senescent endothelial
cells can potentially impede the angiogenic activity of
endothelial progenitor cells via SASP and increased
production of ROS. Increased production of ROS, along
with reduced production of NO due to downregulation of
eNOS expression in senescent endothelial cells, can lead to
a further decrease in NO bioavailability, which can impair

endothelial-mediated vasodilation and cause hypertension,
a major contributing factor of fatal age-related CVDs in
humans (75–78, 86, 95). With increased levels of various
inflammatory cytokines, adhesion molecules and PAI-1,
and decreased levels of thrombomodulin, senescent
endothelial cells are proinflammatory, prothrombotic and
proatherogenic (15, 18, 25, 26, 57, 77, 79–83). Therefore,
they are likely to play a very important role in radiation-
induced atherosclerosis. Collectively, the combined dele-
terious effects of senescent endothelial cells on cardiac
microvasculature and macrovasculature may lead to
radiation-induced CVDs.

APPROACHES FOR TARGETING ENDOTHELIAL
CELL SENESCENCE TO PREVENT, MITIGATE AND

TREAT RADIATION-INDUCED CVDS

Because senescent endothelial cells likely play an
important role in radiation-induced CVDs, targeting them
with a therapeutic agent may be a novel strategy to prevent,
mitigate and treat radiation-induced CVDs. While no such
therapies are currently available, several strategies and
candidate approaches are under investigation, as shown in
Fig. 3. One strategy for targeting senescent endothelial cells
is to prevent radiation from inducing senescence of
endothelial cells. This could be achieved by inhibiting the
IGF1-PI3K-Akt/mTOR pathway because its activation is
important in mediating radiation-induced endothelial senes-
cence. The pathway can be inhibited with a specific
inhibitor of IGF1R, PI3k and mTOR, or with an activator
of SIRT1 (21, 22, 68, 69). In addition, radiation-induced
endothelial cell senescence could be inhibited by using
antioxidants to scavenge ROS or by using a specific
inhibitor to block activation of p38, NFjB and ALK5 (15,
70). However, these preventive strategies can be effective
only if applied before or shortly after irradiation, when
endothelial cells have not yet undergone senescence.

Alternatively, inhibition of SASP could be used to
mitigate or treat radiation-induced CVDs because SASP
likely mediates most of the deleterious effects of senescent
endothelial cells on the cardiovascular system (96). The
pathways involved in induction of cellular senescence
substantially overlap those of SASP (e.g., p38, NFjB and
mTOR). Specific inhibition of these pathways would not
only block induction of senescence, as discussed above, but
also suppress SASP (97–101). Targeting the Janus kinase
(JAK) pathway, an upstream regulatory pathway of SASP,
is another potential strategy for mitigating the effects of
radiation-induced CVDs. It was recently reported that using
RNAi or JAK inhibitors to target the JAK pathway
suppressed development of SASP in human umbilical vein
endothelial cells and human preadipocytes after exposure to
radiation (102). Further, treating aged mice with a specific
inhibitor of JAK-1 and JAK-2 (ruxolitinib) reduced
systemic inflammation and frailty (102). It will be of great
interest to determine whether inhibiting pathways such as
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JAK, which mediate radiation induction of SASP, can also

prevent and mitigate radiation-induced CVDs. However,

these approaches may require continuous treatment because

the senescent endothelial cells remain in the heart and can

express SASP again as soon as the pathway is no longer

being inhibited.

The limitations associated with inhibition of senescence

induction and SASP to prevent and mitigate radiation-

induced CVDs could be overcome by clearing senescent

endothelial cells with a small molecule that selectively

kills senescent cells. This approach to mitigate and treat

radiation-induced CVDs can be used after irradiation,

when endothelial cells have already become senescent, and

can be effective with an intermittent treatment. The

seminal finding, discussed above, that AP20187 selective-

ly eliminated senescent cells in transgenic mice, which

prolonged their lifespans by delaying the onset of age-

related pathologies, prompted efforts to identify senolytic

drugs, small molecules that can selectively kill senescent

cells without depending on a transgene (103, 104).

Senolytic drugs have the potential for use not only as

novel antiaging drugs but also as new medical counter-

measures against radiation to mitigate and treat radiation-

induced CVDs. However, finding a senolytic drug has

been challenging because senescent cells are highly

resistant to induction of apoptosis (105). We and others

have used high-throughput screening of libraries, each

containing thousands of compounds, to identify small

molecules that selectively kill senescent cells, but only two

nonspecific, cell-type-selective senolytic drugs have been

discovered (104). We, therefore, took a targeted approach

to identify senolytic drugs by individually titrating the

cytotoxicity of hundreds of small molecules that partici-

pate in pathways predicted to be important for viability of

senescent cells or maintenance of their phenotype. With

this approach, ABT263, a Bcl-2/xL-specific inhibitor

(106), was identified as the most potent broad-spectrum

senolytic drug that selectively, potently and rapidly kills

senescent cells in culture, regardless of cell type or species

(48), including radiation-induced senescent human umbil-

ical vein endothelial cells (preliminary data not shown).

More importantly, oral administration of ABT263 to

sublethally irradiated and normally aged mice effectively

cleared senescent cells in several tissues, including

senescent bone marrow hematopoietic stem cells and

muscle stem cells, and it suppressed SASP in the lungs

(48). We plan next to investigate in thoracic-irradiated

mice whether ABT263 can effectively clear senescent

endothelial cells and suppress SASP in the heart and

whether ABT263 can mitigate and treat radiation-induced

CVDs.

Using senolytic drugs such as ABT263 for mitigation

and treatment of radiation-induced CVDs and other

radiation-induced late effects (RLEs) has several advan-

tages over conventional anti-inflammatory treatments.

Senolytic drugs target the cells that may be fundamentally

responsible for initiating and driving radiation-induced

CVDs and other RLEs (Fig. 4) (96, 107, 108). Therefore,

senolytic drugs should be more effective than anti-

inflammatory therapeutics that target individual harmful

FIG. 3. Potential strategies to prevent, mitigate, and treat radiation-induced CVDs by targeting senescent
endothelial cells. Antioxidants, inhibitors of insulin/insulin-like growth factor I receptor (IGF1R),
phosphtidylinositol-3-kinase (PI3K), mechanistic target of rapamycin (mTOR), p38, NFjB and TGF-b type 1
receptor (ALK5), and the activators of sirtuin 1 (SIRT1) may be used to prevent radiation-induced CVDs by
inhibiting the induction of endothelial cell (EC) senescence. Clearance of senescent cells with a senolytic drug
that can selectively kill senescent cells including senescent endothelial cells has the potential to be developed as
novel therapeutic strategy to mitigate and treat radiation-induced CVDs. Antioxidants and inhibitors of mTOR,
p38, NFjB, and Janus kinase (JAK) may prevent, mitigate, and treat radiation-induced CVDs by scavenging
senescent cell-produced reactive oxygen species (ROS) and inhibiting senescence-associated secretory
phenotype (SASP), respectively.
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inflammatory molecules (e.g., cytokine and chemokine)

and less harmful, because, unlike anti-inflammatory

agents, they do not interfere with the normal immune

functions of the molecules. In addition, senolytic drugs

may invigorate tissue stem and progenitor cells to improve

tissue repair and regeneration because space occupied by

senescent cells will be freed, allowing normal tissue stem

and progenitor cells to repopulate and because SASP will

be suppressed, improving the microenvironment for these

cells. Therefore, senolytic drug treatment could be

expected to have a much broader therapeutic effect than

conventional anti-inflammatory treatments. Finally, seno-

lytic drug treatment has the potential not only to mitigate

radiation-induced CVDs and other RLEs, but also to

prevent radiation-induced secondary malignancies and

reduce cancer relapse and metastasis, because senescent

cells are known to promote malignant transformation in

neighboring cells and to stimulate proliferation and

metastasis of resistant tumor cells, possibly in part through

SASP (79, 96, 107, 108).
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