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In response to concerning increases in antimicrobial resistance (AMR), the Food and Drug Administration (FDA) has decided to
increase veterinary oversight requirements for antimicrobials and restrict their use in growth promotion. Given the high stakes
of this policy for the food supply, economy, and human and veterinary health, it is important to rigorously assess the effects of
this policy. We have undertaken a detailed analysis of data provided by the National Antimicrobial Resistance Monitoring Sys-
tem (NARMS). We examined the trends in both AMR proportion and MIC between 2004 and 2012 at slaughter and retail stages.
We investigated the makeup of variation in these data and estimated the sample and effect size requirements necessary to distin-
guish an effect of the policy change. Finally, we applied our approach to take a detailed look at the 2005 withdrawal of approval
for the fluoroquinolone enrofloxacin in poultry water. Slaughter and retail showed similar trends. Both AMR proportion and
MIC were valuable in assessing AMR, capturing different information. Most variation was within years, not between years, and
accounting for geographic location explained little additional variation. At current rates of data collection, a 1-fold change in
MIC should be detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following establishment
of a new resistance rate. Analysis of the enrofloxacin policy change showed the complexities of the AMR policy with no statisti-
cally significant change in resistance of both Campylobacter jejuni and Campylobacter coli to ciprofloxacin, another second-
generation fluoroquinolone.

Antimicrobial resistance (AMR) is one of the most serious
health threats to both animals and humans. Therefore, the

mitigation of AMR in animal agriculture is critical for both the
agrifood industry and for public health (1, 2). Globally and na-
tionally, there is much attention on developing approaches to mit-
igate AMR (3, 4, 5, 6). Overuse of antimicrobials contributes to the
emergence and proliferation of resistant bacterial strains. Histor-
ically, antimicrobials have been administered to livestock and
poultry to address animal health as well as for production pur-
poses. In order to slow down the development and proliferation of
AMR in food animal agriculture, the Food and Drug Administra-
tion (FDA) has initiated a risk mitigation strategy to limit use of
medically important antimicrobials to therapeutic uses under vet-
erinary oversight by working with drug companies to change
product labels (5, 6).

A key piece of evidence in evaluating the efficacy of this policy
is detecting the change in AMR before and after the policy has
been implemented. To do so, it is necessary to understand the
baseline variation of AMR over time and at different stages of
the food supply chain. The most comprehensive information on
AMR in United States agriculture is the newly public data from
the National Antimicrobial Resistance Monitoring System
(NARMS). NARMS longitudinally monitors resistance of nonty-
phoidal Salmonella, Campylobacter spp., Escherichia coli, and En-
terococcus spp. to a variety of antibiotics (7). Resistance of each
isolate is reported as a MIC which can then be transformed into a
susceptible/resistance value based on whether this MIC exceeds a
given resistance threshold. Where defined, NARMS uses the clin-
ical breakpoints published by the Clinical and Laboratory Stan-
dards Institute (CLSI) to interpret MIC values as susceptible or
resistant and uses epidemiological cutoffs where clinical break-

points are not defined (8). The clinical breakpoints defined by the
CLSI are typically determined by the probability of therapeutic
failure in humans and are intended to guide clinical decision mak-
ing (9). Epidemiological cutoffs represent the level of resistance
which demarcates the boundary between the wild-type popula-
tion and resistant mutants. They are determined as the value that
separates the main part of the MIC distribution from the upper
tail (9).

The historical trends of AMR have been preliminarily explored
in the annually published NARMS reports. These reports focused
on resistance proportions and modeled slaughter and retail sepa-
rately. Dichotomizing MIC values, however, risks a loss of infor-
mation (10, 11). Dichotomization of MIC results also cannot de-
tect shifts from low to high resistance levels, which provide an
early warning for increasing resistance in a population. Clinical
breakpoints may also shift over time to reflect changes in AMR
interpretation, reporting, and methods, resulting in changes in
reported resistance proportions not related to changes in popula-
tion (12, 13). Pulsed-field gel electrophoresis (PFGE) profiles of
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Campylobacter and Salmonella from broiler flocks found identical
clones from primary production through slaughter to retail prod-
ucts (14, 15), indicating that there is a connection between resis-
tance levels at various stages of the food supply chain.

The objectives of this study were to evaluate the baseline trend
and variations in the NARMS data and provide useful information
to improve data collection, analysis, and synthesis in the national
AMR monitoring system. To achieve these objectives, we ex-
tended the annual NARMS reports by examining both percent
resistance and mean MIC values. Moreover, we considered each of
these values simultaneously at the slaughter and retail stages. We
examined the structure of the variation in resistance within/be-

tween years and across geographic regions. Using this baseline, we
estimated how much data must be collected to be able to deter-
mine if the change in FDA policy did indeed have an effect. Finally,
using this information we examined the impact of a previous
change in FDA antimicrobial policy, removing approval of enro-
floxacin for use in poultry water in 2005.

MATERIALS AND METHODS
The data set. The NARMS data were obtained from the FDA website (7).
The data files for Retail Meats, HACCP 1997-2005, HACCP 2006-2013,
and Cecal were combined and stored in an SQLite database. MIC values
were log2 transformed, which reduced skewness (16). The MICs of
isolates susceptible to the lowest antibiotic concentration tested were
taken to be this lowest concentration, and the log2-transformed MICs
of isolates resistant to the highest concentration tested were increased
incrementally by 1.

Although we examined many different combinations of microbes,
hosts, and antibiotics, we focus here on chicken as the host and examined
resistance of Campylobacter jejuni to tetracycline, Campylobacter coli to
erythromycin, Salmonella enterica serovar Typhimurium to ampicillin,
and Escherichia coli to streptomycin. In accordance with NARMS guide-
lines, resistance for all Campylobacter and E. coli-streptomycin tests was
determined using epidemiological cutoffs, and resistance for S. Typhimu-
rium-ampicillin was determined based on the CLSI breakpoint (17).
Chicken data had the most consistent data across all time points and
stages. Analyzed drugs were chosen not only for their significance in hu-
man medicine but also for their importance in veterinary medicine and
extent of use in food production (18). Bacteria were selected for their
significance as pathogens, number of observations, and MIC distribution
patterns. The time frame of 2004 to 2012 was chosen because both slaugh-
ter and retail data for chicken were available during this time period (retail
data were first available in 2004, and 2012 was the last year the HACCP
slaughter data were available), which made the stage effect analysis possi-
ble. Sample size per year and stage ranged from 21 to 2,232 tests.

FIG 1 Model of antimicrobial resistance used in evaluating policy changes. It
is assumed there is a constant base level of resistance around which the yearly
levels vary, a period of change, and then the establishment of a new resistance
level.

FIG 2 Exploratory analysis of Campylobacter jejuni resistance to tetracycline. (A) Boxplots of log2 MIC values. The lower whisker is the minimum observed MIC
in a given year, the lower edge of the box is the first quartile, the line is the median, the square is the mean, the top of the box is the third quartile, and the upper
whisker is the maximum. The dashed line indicates the breakpoint between resistant and susceptible isolates. (B) Line graph of percentage of isolates with MIC
values above the resistance breakpoint. Sizes of points are proportional to the number of observations in the given year and stage. Sample sizes ranged from 78
to 1,348.
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MIC distributions over time and across stages. In order to obtain a
baseline understanding of AMR changes over time and across different
stages of the food supply chain (i.e., slaughter and retail), we began by first
exploring the resistance data for each microbe/host/antibiotic combina-
tion. Line graphs were used to visualize resistance data, and boxplots were
used to visualize the distribution of the MICs.

Generalized linear modeling of resistance. To quantitatively assess
trends in AMR, we constructed models of resistance both as a binary

variable using logistic regression and as a continuous variable using linear
regression, using log2 MIC values. To quantitatively assess the sources of
variation, we constructed a linear mixed-effect model. All models were
implemented using the Python statsmodels package (version 0.6.1) (http:
//statsmodels.sourceforge.net/index.html). The significance of all coeffi-
cients was assessed using a likelihood ratio test.

Modeling resistance prevalence: logistic regression. Logistic regres-
sion was carried out by modeling the log odds of resistance versus nonre-

FIG 3 Exploratory analysis of Campylobacter coli resistance to erythromycin. (A) Boxplots of log2 MIC values. The dashed line indicates the breakpoint between
resistant and susceptible isolates. (B) Line graph of percentage of isolates with MIC values above the resistance breakpoint. Sizes of points are proportional to the
number of observations in the given year and stage. Samples sizes ranged from 76 to 693.

FIG 4 Exploratory analysis of Salmonella Typhimurium resistance to ampicillin. (A) Boxplots of log2 MIC values. The dashed line indicates the breakpoint
between resistant and susceptible isolates. (B) Line graph of percentage of isolates with MIC values above the resistance breakpoint. Sizes of points are
proportional to the number of observations in the given year and stage. Samples sizes ranged from 21 to 104.
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sistance as a function of stage and year. We chose 2004 retail data as the
baseline level. The model is shown in equation 1:

ln� pij

1 � pij
� � � � �i � �slaughterslaughter � eij (1)

where � and � are coefficients, i is the index over the years, j is the index
over slaughter and retail stages, and slaughter is an indicator variable
designating whether the sample came from slaughter or retail. The e term
is the error.

To determine the robustness of this analysis to the choice of resistance
threshold, C. coli-erythromycin was taken as an example and the regres-
sion was carried out using each MIC as a cutoff. The stability of the model
was evaluated based on the similarity of the resulting coefficients.

Modeling MIC distribution: linear regression. As a means of both
sidestepping the choice of a breakpoint and adding an additional view-
point on AMR, MIC was treated as a continuous variable and the mean
log2 MIC was modeled as a linear function of stage and year. The linear
model is shown in equation 2.

log2MICij � � � �i � �slaughterslaughter � eij (2)

Modeling sources of variation: linear mixed-effect model. To study
the sources of variation in resistance, the log2 MIC at each stage was
modeled separately as a function of a fixed intercept for state and a ran-
dom intercept for year according to equation 3.

log2MICik � � � Yeari � Statek � eik (3)

where i is the index over years and k is the index over the states.
Power analysis. To formally evaluate the effectiveness of the FDA

policy change in a manner consistent with the exploratory and regression
analyses, we propose a model with a constant base level of resistance
around which the yearly levels vary, a period in which the levels change,
and then the establishment of a new resistance level (Fig. 1). Under this
model, a hypothesis test of mean resistance level before and after the
policy change can assess the change in resistance. It is assumed that there
is a different amount of variation within years and between years, so the
test is carried out on average yearly resistance. This test can be done with
either percent resistance or MIC values (19). A power analysis was per-
formed to benchmark the efficacy of this test. Calculating power requires
knowledge of the standard deviation, sample size, and magnitude of the

FIG 5 Exploratory analysis of Escherichia coli resistance to streptomycin. (A) Boxplots of log2 MIC values. The dashed line indicates the breakpoint between
resistant and susceptible isolates. (B) Line graph of percentage of isolates with MIC values above the resistance breakpoint. Sizes of points are proportional to the
number of observations in the given year and stage. Samples sizes ranged from 299 to 2,232.

TABLE 1 Values of coefficients for the logistic regression of resistance on year and stage

Coefficient

Value fora:

C. coli-erythromycin C. jejuni-tetracycline E. coli-streptomycin S. Typhimurium-ampicillin

� �2.29* �0.19* 0.31* 0.81*
�2005 �0.04 �0.03 �0.25* �0.67*
�2006 �0.28 0.19 �0.54* �0.06
�2007 0.00 0.23* �0.65* �0.37
�2008 0.10 0.21 �0.43* �0.49*
�2009 �0.64 0.05 �0.63* �0.13
�2010 �0.88 �0.21 �0.64* �0.12
�2011 �0.87* 0.05 �0.55* �0.51*
�2012 0.00 0.16* �0.82* �0.59*
�slaughter 0.00 0.03 0.26* �1.13*
a An asterisk indicates significance at an � value of 0.05.
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effect to be detected. For the t test of mean log2 MIC, sensible standard
deviations were selected by calculating the empirical distribution for the
standard deviations of the mean log2 MIC per year. The number of isolates
per year was assumed to be 200, a number generally exceeded in historical
data. The current 9 years of data were used as the prepolicy change sample
size. Postpolicy change sample sizes were assumed to be between 1 and 10
years. The desired detectable effect was taken to be between 0 and 1 log2

MIC. Power curves were then plotted according to equation 4.

Power � P�t � tcritical_val_low� � P�t 	 tcritical_val_up� (4)

where t � �nw2��x1
� � x2

� � ⁄s� with n � 2 degrees of freedom and non-
centrality parameter �, where � � �nw1w2(�diff/�). tcritical_val_low is the
�/2 quantile of the central t distribution with n � 2 degrees of freedom,
tcritical_val_up is the 1 � �/2 quantile of the central t distribution with n �
2 degrees of freedom, n is the total number of observations, and w is the
fraction of observations in each sample.

Resistant/susceptible counts are binomial quantities, so their standard
deviations are functions of the proportions. However, because the data
come from a mix of conditions, like geographical location, season, and
production quality, these proportions are overdispersed with respect to
binomial variation, and the standard deviations will also be a function of
this overdispersion parameter. Reasonable proportions and overdisper-
sion parameters were obtained by plotting the empirical distribution of
each quantity. The number of isolates per year was set to 200, prepolicy
change sample size was 9 years, postchange sample size was between 1 and
10 years, and effect sizes were chosen so as to be detectable with such
sample sizes. The power curves were then plotted according to equation 5.

power � 
�rclow �
p2 � p1

SE � � 1 � 
�rcup �
p2 � p1

SE � (5)

where r � ��p�1�p��1⁄k1�1⁄k2�� ⁄ �p1�1�p1�⁄k1�p2�1�p2�⁄k2�, standard
error �SE� � ���p1�1�p1�⁄nk1��p2�1�p2�⁄nk2, p � �k1⁄k�p1 � �k2⁄k�p2, 	
is the normal PDF, c is a critical value, k is the number of years in a sample,
and 
 is the overdispersion.

The role of isolate count was determined by calculating power as de-
scribed for equation 4 but replacing the single standard deviation param-
eter, s, with the combination of between-year and within-year standard
deviations in equation 6.

s �	sbetween
2 �

swithin
2

n
(6)

where n is the number of isolates per year. The resulting power was plotted
for n between 1 and 2,000, assuming sbetween is 0.6, swithin is 3, the prepolicy
change sample size was 9 years, the postchange sample size was 5, and the
effect size was a 1-fold change in MIC.

During assessment, a power of 0.8 was chosen as the desirable threshold.
Assessing the effect of the change in enrofloxacin policy. In 2005 the

FDA withdrew approval of enrofloxacin in poultry water. Due to this
policy change having much the same form as the current policy change, it
serves as a useful case study. Since enrofloxacin is metabolized to cipro-
floxacin, the analysis focused on the latter antibiotic. We evaluated its
resistance using the exploratory analysis, generalized linear models, and t
test as in the baseline study. Since the policy change occurred in 2005, we
extended to time period under consideration back to 2002.

FIG 6 Distribution of log2 MIC for Campylobacter coli resistance to erythromycin. (A) Distribution at retail. (B) Distribution at slaughter. Counts are summed
over the full range of years, 2004 to 2012.

TABLE 2 Sensitivity of logistic regression of resistance to choice of
breakpoint

Coefficient

Breakpoint log2 MICa

�1 0 1 5

� 0.93* 0.06 �1.46* �2.29*
�2005 0.20 0.51* 0.19 �0.04
�2006 0.29 0.78* 0.53* �0.28
�2007 0.40* 0.71* 0.23 0.00
�2008 0.72* 0.57* 0.40 0.10
�2009 0.69* 0.23 �0.10 �0.64
�2010 �0.01 �0.22 �0.71* �0.88
�2011 0.17 �0.16 �0.82* �0.87*
�2012 0.57* 0.41* 0.21 0.00
�slaughter �0.30* �0.54* �0.61* 0.00
a Data are for Campylobacter coli resistance to erythromycin. Column labels specify the
log2 MIC breakpoint used to distinguish resistant and susceptible. The final column, 5,
represents the epidemiological cutoff. An asterisk indicates significance at an � value of
0.05.
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RESULTS
Analysis of MIC distributions over time and across stages. Pre-
liminary analysis of the raw data revealed that the trend in AMR
was largely dependent on the bacterium-drug combination. In
most cases, like C. jejuni-ciprofloxacin, C. jejuni-tetracycline, C.
coli-erythromycin, and S. Typhimurium-ampicillin, the average
log2 MIC increased slightly over time (Fig. 2 to 4). In other cases,
like E. coli-streptomycin, there was a marked decrease in resistance
during the study period (Fig. 5). The relationship between slaugh-
ter and retail was also case dependent, with slaughter sometimes
higher than retail and retail sometimes higher than slaughter. The
distribution of MICs was generally highly skewed, and in many
cases the median, first quartile, and even the minimum all coin-
cided. The percent resistance followed the same trend as the log2

MIC, but with much higher variability.
Logistic modeling. The logistic model (Table 1) confirmed the

results of the exploratory analysis. Both the coefficients them-
selves and the significant coefficients were dependent on the spe-
cific drug-bacterium combination. Although the intercept and at
least one of the year coefficients was significant in all cases, which
particular year coefficient was significant varied widely. For E.
coli-streptomycin, all year coefficients were significant. In C. coli-
erythromycin, only the coefficient for 2011 was significant. The
coefficient for slaughter was significant for E. coli-streptomycin
and S. Typhimurium-ampicillin. It was not significant for C. coli-
erythromycin or C. jejuni-tetracycline, not because there was no
difference between slaughter and retail but because slaughter was
sometimes higher than retail and sometimes lower.

The distribution of MICs (Fig. 6) for C. coli-erythromycin
showed that at both slaughter and retail there was one narrow
peak above the log2 MIC cutoff of 5 and a broad peak between �1
and 2. The broad peak between �1 and 2 is likely to represent the
MIC distribution for the wild-type isolates, while the isolates with
log2 MIC above 5 are likely to represent the non-wild-type isolates.
The sensitivity analysis (Table 2) showed that the model was
highly sensitive to the choice of cutoff. For all of the years, the
coefficients in the logistic models vary to a large degree with the
choice of cutoff. Many of the coefficients are negative in some
models and positive in others. The identity of the significant co-
efficients also changes between models. This suggests that while
estimating the proportion of bacteria with resistance above a
threshold is important, it does not tell the whole story.

Linear modeling. To obtain a more complete picture, a linear
model of mean log2 MIC was also fit (Table 3). This model con-

firmed that in general, both the year and slaughter coefficients
were significant but that the identity of the significant coefficients
as well as their values depended on the bacterium-drug combina-
tion.

Mixed-effect model. The standard deviation of the year ran-
dom effect ranges from 0 to 2 and is generally below 1 (Fig. 7).
Without the state fixed effect, the residual standard deviations
range from 0 to 4.25 and, except for cases of very low total stan-
dard deviations, are almost always greater than the amount of
variation explained by year. The addition of the state fixed effect
does little to change this, decreasing the residual standard devia-
tion by less than 0.25.

Power analysis. As the first step of the power analysis, we de-
termined that across all bacterium, drug, and stage combinations,
the standard deviations of the log2 MIC values decreased sharply
from 0, with most values below 0.6 and almost all values below 1
(Fig. 8). As a result, power curves were plotted for standard devi-
ations of 0.6 and 1. These curves indicate that at a standard devi-
ation of 0.6 it would be possible to detect a 1 log2 MIC change in 5
years, and at a standard deviation of 1 a 1.5 log2 MIC change could
be detected in 7 years.

In analyzing the power of the proportion test, it was deter-
mined that the vast majority of average resistance proportions
across all bacterium, drug, and stage combinations were below
0.25, with most being below 0.5, and the majority of overdisper-

TABLE 3 Values of coefficients for the linear regression of log2 MIC on year and stage

Coefficient

Value fora:

C. coli-erythromycin C. jejuni-tetracycline E. coli-streptomycin S. Typhimurium-ampicillin

� �0.11 1.89* 5.58* 3.52*
�2005 0.10 �0.69* �0.06* �0.71*
�2006 0.23 �0.07 �0.13* �0.11
�2007 0.27 0.02 �0.16* �0.47
�2008 0.35 0.08 �0.10* �0.62*
�2009 �0.04 �0.26 �0.15* �0.18
�2010 �0.44* �0.85* �0.16* �0.19
�2011 �0.36* �0.30 �0.13* �0.63*
�2012 0.23 �0.17 �0.20* �0.69*
�slaughter �0.30* 0.05 0.06* �1.33*
a An asterisk indicates significance at an � value of 0.05.

FIG 7 Variation composition. Scatterplot of between-year standard devia-
tions versus residual standard deviations across all bacterium, drug, and stage
combinations.
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sion factors were below 2 (Fig. 9). Assuming an overdispersion of
2, in 6 years it would be possible to detect a 6% decrease in resis-
tance if initial resistance was 25%, and it would be possible to
detect an 8% decrease in 5 years if the initial resistance was in-
creased to 50%.

The number of isolates sampled each year plays an important
role in the power. Power increases dramatically between 1 and 100
isolates per year. It increases slowly between 100 and 500 isolates.
Beyond 500 isolates the power sharply plateaus.

The above-described estimates assume that only one hypothe-
sis test is being carried out, but in practice it would be necessary to
perform one test for each bacterium-drug combination. In prac-
tice, results would need to be adjusted to account for multiple
testing to protect against false positives.

Analyzing the effects of a change in enrofloxacin policy. The
exploratory analysis of the trend in C. jejuni resistance to cipro-
floxacin shows that since the policy change in 2005, both mean
log2 MIC and percent resistance have remained essentially con-
stant, if not slightly increasing, at both slaughter and retail (Fig.
10). Both generalized linear models also confirm this fact(Table
4). The t test of the difference in mean log2 MIC before and after
the policy change is not significant at retail (effect, 0.028; P �
0.9) or slaughter (effect, 0.44; P � 0.13). Removing approval
for enrofloxacin in poultry did not decrease resistance to fluo-
roquinolones.

DISCUSSION

Antimicrobial resistance is a growing threat with serious implica-
tions not only for human and veterinary health but also the food
supply, animal agriculture, and the economy. To counteract this
threat, the FDA has proposed tightening restrictions on the use of
antimicrobials. However, this change will undoubtedly have con-
sequences for food production and pricing. With this in mind, it is
essential to understand historical baseline resistance trends and to
ensure it will be possible to assess the effects of the policy change
on future levels of resistance.

The exploratory analysis undertaken here demonstrates that
over the past decade, the percent resistance and mean log2 MIC at
both slaughter and retail have fluctuated up and down in a bacte-
rium-drug-specific manner. The logistic and linear models con-
firm this observation, as both year and stage coefficients were sig-
nificant in likelihood ratio tests. While logistic and linear models
revealed the same overall trends, each model provides a dis-
tinctly useful view of AMR. Logistic regression provides a
straightforward characterization of situations where there is a
known epidemiological cutoff or clinical breakpoint between
resistance and susceptibility. Logistic regression, however, is
highly sensitive to the choice of breakpoint, making it opaque
to interpretation when the resistance threshold is difficult to
determine (20). In this case, linear regression of log2 MIC pro-

FIG 8 Power analysis for testing changes in mean log2 MIC. (A) Distribution of empirical standard deviations across all bacterium, drug, and stage combina-
tions. (B) Calculation of power assuming a standard deviation of 0.6. (C) Calculation of power assuming a standard deviation of 1. (D) Power of a test comparing
9 years before a policy change with 5 years after the change as a function of the number of isolates sampled each year. Dashed lines indicate a power of 0.8, the
standard minimum power desired for a hypothesis test.
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vides a more straightforward characterization of resistance pat-
terns. Additionally, because linear regression explains the
mean resistance level, in general it can provide a more holistic
view of AMR.

Mixed-effect models show that there are different levels of vari-
ation between and within years. Surprisingly, however, there is
more variation within years than between years, and accounting
for state does little to resolve this variation. This indicates that
most of the AMR variation is due to the structure of resistance in
the population.

Our analysis showed that by performing a hypothesis test com-
paring the level of resistance before and after a change, it is possi-
ble to detect a change in resistance level as small as 1 log2 MIC in 5
years or a 6% change in resistance in as little as 6 years. Moreover,
the current level of data collection of 200 isolates per year provides
more than sufficient power and could in fact be reduced to 100 sam-
ples per year without significant reduction in power. Although it
might be interesting to test the change in slope of the trend line
before and after a policy change, our exploratory analysis showed

that resistance patterns do not often have clear trends, so we chose
to focus on a comparison test of resistance levels. Even though it
would take 6 years to detect a change in AMR after the new level
had been reached, which may itself take several years, this is a fairly
short period of time on a policy-making scale. As a result, even
though it may be difficult to predict the outcome of the current
change in FDA policy, it will not be difficult to assess changes in
AMR. An implicit assumption of the proposed approach is that
changes in the AMR levels after policy implementation can be
attributable largely to the policy. A combined analysis of the anti-
microbial use and resistance would provide a greater level of evi-
dence (21). However, in the United States, antimicrobial use data
are limited to sales of active compounds aggregated by drug class
intended for use in all food-producing animals since 2009 (22).

Analyzing the change in resistance before and after implemen-
tation of enrofloxacin policy reveals the complexities of managing
and evaluating AMR. To the extent that there was a trend, AMR
increased following the policy change, but this was not significant
even for log2 MIC values, which provide a more sensitive test.

FIG 9 Power analysis for testing changes in percent resistance. (A) Distribution of empirical percent resistance across all bacterium, drug, and stage combina-
tions. (B) Distribution of empirical overdispersion. (C) Plot of overdispersion versus sample size. (D) Calculation of power assuming an initial resistance of 25%
and an overdispersion of 2. (E) Calculation of power assuming an initial resistance of 50% and an overdispersion of 2. Dashed lines indicate a power of 0.8, the
standard minimum power desired for a hypothesis test.
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Previous studies aiming to evaluate the enrofloxacin ban reported
unchanged resistance levels for ciprofloxacin in Campylobacter
isolates recovered from chicken and chicken carcasses (23, 24).
These previous surveys sampled a small number of isolates during
short periods of time (2004 to 2006) and narrow geographical
locations. Based on our analysis, AMR changes during short time
spans (e.g., 2 years) are unlikely to show changes on AMR levels
even if the policy was effective. A more comprehensive study an-
alyzed changes to the proportion of isolates resistant to cipro-
floxacin for Campylobacter in the NARMS retail meat samples
from 2002 to 2007 and found no changes (25).
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