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Drug resistance studies have played an important role in the validation of antibiotic targets. In the case of the polyene antibiotic
amphotericin B (AmB), such studies have demonstrated the essential role that depletion of ergosterol plays in the development
of AmB-resistant (AmB-R) organisms. However, AmB-R strains also occur in fungi and parasitic protozoa that maintain a nor-
mal level of ergosterol at the plasma membrane. Here, I review evidence that shows not only that there is increased protection
against the deleterious consequences of AmB-induced ion leakage across the membrane in these resistant pathogens but also
that a set of events are activated that block the cell signaling responses that trigger the oxidative damage produced by the antibi-
otic. Such signaling events appear to be the consequence of a membrane-thinning effect that is exerted upon lipid-anchored Ras
proteins by the aqueous pores formed by AmB. A similar membrane disturbance effect may also explain the activity of AmB on
mammalian cells containing Toll-like receptors. These resistance mechanisms expand our current understanding of the role that
the formation of AmB aqueous pores plays in triggering signal transduction responses in both pathogens and host immune cells.

The preservation of the cell membrane as a permeability barrier
is critical for cell survival. There are some amphiphilic com-

pounds that disrupt membranes so drastically that rapid death
occurs by lysis without the activation of cellular protective re-
sponses. Among such compounds are polyene macrolides such as
filipin, etruscomycin, or natamycin (also known as pimaricin)
produced by soil bacteria, all of which have in common the ability
to selectively bind to membrane sterols (1). Self-aggregation of
these amphiphilic drugs in water is often responsible for their
toxic effects (2). The polyene antibiotic amphotericin B (AmB)
added in the form of large aggregates can also be lethal to yeast
cells as a result of extracting ergosterol from membranes (3).
However, when the free monomeric forms predominate over
large aggregates, AmB inserts spontaneously into ergosterol-con-
taining membranes to form aqueous pores (4). The formation of
aqueous pores by AmB has been linked to a diverse set of gradual
responses leading to the emergence of resistance genes that protect
the membrane against the disruptive effects of the antibiotic (5).

THE FORMATION OF ION CHANNELS BY AmB AND
NYSTATIN

The development of planar lipid bilayers and liposomes as models
of biological membranes played an important role in the recogni-
tion that the thickness of the lipid bilayer is the most important
parameter for the formation of aqueous pores by AmB and nysta-
tin (6–9, and 10). AmB is a rigid amphiphile molecule with a
length of about 24 Å (11) that easily forms in one-sided ion chan-
nels of sterol-containing biological membranes in spite of the
membranes having an average bilayer thickness of 35.6 to 42.5 Å
(12). In fact, the difficulties that were initially found to complicate
detection of ion channel activity in planar lipid bilayers treated at
only one side with AmB (or nystatin) were resolved with the use of
thinner model membranes that employed no hydrocarbon sol-
vent or lipids with shorter carbon chain lengths (6–8). However,
in contrast to the results seen with biological membranes, the
presence of sterols in planar lipid bilayers is not an absolute re-
quirement for the formation of ion channels by AmB (13). In this
respect, it was shown by using an osmotic method that AmB forms

two types of ion channels in liposomes and membrane vesicles
prepared from sensitive pathogens (14, 15). One of those ion
channels—referred to as the nonaqueous channel—is formed
without a direct interaction with sterols (16). Thus, Coutinho et
al. demonstrated that the mean fluorescence lifetime of nystatin
increased sharply in liposomes prepared with ergosterol but only
after a critical threshold of the membrane-bound antibiotic con-
centration was reached. In parallel experiments, those investiga-
tors showed that nystatin induced a moderate dissipation of the
K� gradient across the membrane at concentrations below the
critical threshold value, an event that was followed by a complete
dissipation of K� gradient at greater concentrations (16). This set
of results provided a clear indication that the formation of aque-
ous pores by nystatin occurred simultaneously with the fluores-
cence enhancement by the ergosterol complexation.

The nonaqueous channels formed by AmB have a hydrophilic
water-filled core that allows the permeation of monovalent cat-
ions such as K� or Na� but are not able to span the bilayer, which
was inferred from the observation that AmB increased the urea
permeability without decreasing the osmotic reflection coefficient
exerted by this solute across the membrane (see Figure 1 in refer-
ence 17). It was anticipated that the individual nonaqueous chan-
nels would exhibit much shorter lifetimes than the aqueous pores,
since they do not span the lipid bilayer. This prediction was re-
cently confirmed by using sterol-containing planar lipid bilayers
prepared from PC with different chain lengths (18). Thus, Shatur-
sky et al. found that in cholesterol-containing C18 carbon chain
phosphatidylcholine (PC) bilayers, the ion channels formed by
AmB have openings lasting only fractions of a second, whereas the
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ion channels formed in bilayers formed with C16 carbon chain PC
lasted minutes. A similar increase in the lifetimes of one-sided
AmB channels formed in ergosterol-containing membranes (bi-
layer lipid membranes [BLMs]) prepared with the C16 tail PC was
achieved (18).

The validity of the 2-stage mechanism for the formation of
aqueous pores by AmB has also been demonstrated by the finding
that when a critical threshold concentration was reached at the
liposome membranes, the urea osmotic reflection decreased to a
value of �0.5 (see Figure 1 in reference 17), clearly indicating the
formation of 4-Å-radius aqueous pores spanning the membrane
(19).

THE FORMATION OF AmB ION CHANNELS IN THE NONRAFT
AND RAFT MEMBRANE DOMAINS

All eukaryote membranes exhibit a laterally heterogeneous distri-
bution of the main membrane sterols (fungal ergosterol or mam-
malian cholesterol) with enhanced enrichment in the ordered raft
microdomains along with saturated PCs, sphingolipids, and ste-
rol-binding proteins (20). It has been determined that there are
thickness differences as large as 5.2 Å between the ordered rafts
and nonraft domains of membranes (21). It is then likely that the
AmB aqueous pores are preferentially localized at the boundary of
raft and nonraft bilayer areas, as the threshold for the appearance
of the long-lifetime aqueous pores occurred in bilayers prepared
with C17 PC, which are about 3.6 Å thinner than C18 PC bilayers
(18).

The nonaqueous AmB channels can also be inserted at the lipid
rafts as suggested by the shift from negative to positive activation
energies of the K� permeability that was measured in human
erythrocyte membranes treated with AmB concentrations higher
than the threshold value at which aqueous pores are formed (22).
In this regard, it is important that AmB also forms ion channels in
sterol-free small liposomes (23), which have curvatures in the
range predicted for locally curved nanoscale raft domains (24). It
follows that nonaqueous channels can also be formed by AmB in
the external monolayer leaflet of raft microdomains that have a
higher membrane curvature. This is possibly due to the curvature-
mediated relief in lateral pressure of the outer leaflet that may
allow greater conformational freedom for the inserted nonaque-
ous AmB channels.

THE MOLECULAR MECHANISM OF SIGNAL TRANSDUCTION
INDUCED BY THE FORMATION OF AmB AQUEOUS PORES

The insertion of nonaqueous AmB channels at the lipid rafts or at
the nonraft areas of the membrane is followed by the sequestration
of sterols, resulting in local membrane thinning to allow forma-
tion of the aqueous pores traversing the membrane (10). A local
reduced thickness induced by the formation of AmB aqueous
pores can be expected to affect the dynamics of nearby membrane
proteins, as the bilayer’s hydrophobic thickness matches the hy-
drophobic thickness of the segments of the protein transmem-
brane domains (TMs), in order to reduce the energetic cost asso-
ciated with exposing a nonpolar/polar interface (25). It has been
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FIG 1 Molecular mechanisms underlying activation of cell signaling pathways by the formation of AmB aqueous pores. The nonaqueous channels and aqueous
pores formed by AmB are shown located at lipid rafts and at the boundaries of lipid rafts, respectively. Note that the hydrophobic thickness of the AmB molecule
is less than the hydrophobic thickness of the unperturbed bilayer. The direct interaction of AmB with sterol molecules to form aqueous pores traversing the
membrane led to a local thinning of the bilayer, as its hydrophobic core adjusts to match the AmB hydrophobic length. The local bending in the bilayer that is
caused by the formation of aqueous pores is denoted by red arrows. (A) Lipid-anchored Ras proteins are inserted at the boundary of the cytosolic leaflet of nonraft
and raft microdomains. Upon the occurrence of the local thinning effect exerted by the AmB aqueous pores, the Ras proteins are forced to segregate into the
sterol-rich lipid rafts to initiate signaling from downstream effector proteins. (B). TLRs are transmembrane glycoproteins with a single transmembrane domain
(TM) that are associated with lipid rafts. The local thinning effect exerted by the AmB aqueous pores can lead to a change in the orientation (tilt) within the bilayer
of the single TM causing a conformational change that brings closer the cytosolic protein of two TLR domains to trigger signaling from downstream effector
proteins.
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demonstrated that changes in the lipid bilayer thickness cause
conformational changes that promote changes in the functional
activity of several membrane proteins, including those associated
with lipid rafts (25).

Among the proteins located in lipid rafts that are involved in
signal transduction pathways are the small lipid-anchored Ras
GTPases (26, 27). There are various Ras isoforms that have been
implicated in AmB-induced yeast apoptosis and lethal oxidative
damage via the cyclic AMP-protein kinase A (cAMP-PKA) and
mitogen-activated protein kinase (MAPK) pathway (28–30). In
fact, the AmB-induced lethal process in fungal cells can be pre-
vented by deleting either RAS1 or RAS2 or the downstream PKA
isoforms (TPK1, TPK2, and TPK3) that were shown to reduce
AmB-dependent reactive oxygen species (ROS) production (30).
Members of the Ras superfamily are posttranslationally modified
at the carboxy-terminal end by prenylated and acylated lipid an-
chors, which are tethered to the inner cytosolic leaflet of the
plasma membrane (31). Studies of surface-bound lipid-modified
Ras peptides containing two saturated palmitoyl and one unsatu-
rated farnesyl lipids have shown that such structures preferentially
partitioned at raft microdomain boundaries (32, 33), causing per-
turbations such as membrane thinning by displacing lipid head-
groups (34).

The colocalization at the boundary of lipid rafts of AmB aque-
ous pores with the lipid-anchored Ras proteins may be critical for
amplifying the membrane-thinning effect exerted by the AmB
aqueous pores forcing the inserted Ras proteins to segregate into
the sterol-rich lipid rafts, facilitating its interactions with down-
stream protein effectors (Fig. 1A). This mechanism for the Ras
activation by AmB aqueous pores would also be consistent with
the finding that H2O2-induced apoptosis of yeast cells is blocked
by a drastic disruption of the stability of the lipid rafts by depletion
of sterols with methyl-�-cyclodextrin (35).

It is important that the formation of the aqueous pores by AmB
in the plasma membrane of fungal and other eukaryotic patho-
gens such as Leishmania spp. (36) simultaneously leads to in-
creased ion permeability of the membrane that effectively in-
creases the ATP usage needed to maintain constant essential
cellular functions and ion homeostasis. Thus, by increasing the
proton permeability of the yeast membranes (37), AmB raises the
activity of Pma1, the H�-ATPase pump, and other futile cycles
that deplete ATP, leading to a higher level of ROS production that
promotes oxidative killing (38). ATP depletion is also enhanced in
Candida albicans by the AmB-induced shift from fermentation to
respiration (30), a finding that is consistent with the observation
that, in respiration, H�-ATPase function is one of the major ATP-
consuming pathways whose level is increased (39). Of note, such
ATP-depleting compounds as mitochondrial inhibitors and ROS-
scavenging agents not only block AmB lethal activity (40) but also
cause decreased Ras signaling (41), an indication that oxidative
stress negatively regulates Ras activities.

ROLE OF AmB AQUEOUS PORES IN THE ACTIVATION OF
HOST IMMUNE CELLS

AmB is a fungicidal drug that also has the ability to stimulate an
immune host response at the same concentrations at which aque-
ous pores are formed in cholesterol-containing mammalian cells
(10, 42). In fact, among the proteins that can also be activated by
the interaction of AmB with lipid rafts are Toll-like receptor 2
(TLR2) and TLR4 (TLR2/TLR4) (43) as well as TLR2/TLR1 (44).

Sau et al. also found that AmB activation of TLRs was strongly
enhanced by the expression of CD14, a cell surface coreceptor that
is attached to glycosylphosphatidylinositol (GPI)-anchored lipid
rafts (43). This activation of TLRs by AmB induces the proinflam-
matory cytokines interleukin-1ß (IL-1ß) and tumor necrosis fac-
tor alpha (TNF-�), which are important mediators of the initia-
tion and potentiation of immune and inflammatory responses.

The activation of TLRs by AmB can also be related to the thin-
ning effect that is exerted in the vicinity of the lipid bilayer upon
the interaction of the nonaqueous AmB channels with sterol mol-
ecules to form aqueous pores (Fig. 1B). Thus, TLRs are type I
transmembrane glycoproteins with a single transmembrane do-
main that cause rearrangement of the receptor complexes upon
ligand binding to the extracellular domains, triggering the recruit-
ment of specific adaptor proteins to the intracellular Toll/IL-1
receptor (IL-1R) (TIR) domains (45). The ligand-induced
dimerization of two monomeric TLR extracellular domains has
been shown to be the key event for activation (45), but the contri-
bution of interactions between the transmembrane domains
(TM) has also been considered critically important in the signal-
ing process (46). Thus, the assembly of TMs of TLR2/TLR4 and
TLR2/TLR1 is essential for activating the signaling complex, as
was indicated by the finding that a single nucleotide polymor-
phism in the TM of human TLR1 correlates with an altered im-
mune response (47) and the finding that TM-derived peptides
from TLR2 and TLR6 specifically inhibit TLR2 activation (48). In
this regard, it is proposed here that the local reduction in the
bilayer thickness caused by AmB aqueous pores located near TLRs
can directly cause a change in the orientation (tilt) within the
bilayer of the single transmembrane domains (TM), leading to a
conformational change that brings the cytosolic TIR domain
closer to form functional dimers that trigger TLR activation (Fig.
1B). This mechanistic model of TLR activation is supported by the
observation that strands tilted at an angle of 45° would correspond
to a change in TM length of 4.6 Å, (49), which is closer to the 3.6-Å
minimum decrease in membrane thickness necessary for the for-
mation of AmB aqueous pores (18).

The AmB-induced clustering of TLRs with the adaptor pro-
teins may also be facilitated by the sequestration of cholesterol by
the intracellular CRAC and CARC domains of TLRs that partition
at the lipid bilayer interphase (50, 51). This mechanism would
explain why ligand-independent oligomerization of TLR4 is
blocked by deleting the short cholesterol-binding region adjacent
to the transmembrane domain and why this mutant is unrespon-
sive to lipopolysaccharide (LPS) activation in the presence of the
TIR domain (52). It would also be consistent with the observation
that the depletion of cholesterol by treatment of macrophages
with methyl-�-cyclodextrin leads to a reduction in the levels of
TLR4 receptors in lipid rafts, with a concomitant reduction in
inflammatory cytokine responses (53).

THE DEVELOPMENT OF AmB RESISTANCE IN EUKARYOTIC
PATHOGENS

As expected for a mechanism of action that is dependent on the
presence of ergosterol to form aqueous pores, the depletion of this
sterol from the plasma membrane has been associated with the
emergence of AmB-R organisms in the clinic (54). In fact, in a
systematic investigation to define genes whose inactivation con-
fers AmB resistance, it was found that the MIC for AmB against C.
albicans was increased more than 3-fold by the deletion of ERG2
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or ERG6 or of ERG3 and ERG11 together, all of which are involved
in the ergosterol biosynthetic pathway (55). Vincent et al. have
also reported that the evolution of ERG2/erg2� heterozygotes
of AmB-R C. albicans strains requires the presence of Hog1 or
calcineurin or high levels of the Hsp90 molecular chaperone
(55). However, the changes made in the AmB-R phenotype by
the deletion of the ERG genes involve substantial fitness costs
because the resistant strains exhibited drastically reduced tol-
erance not only of oxidative stresses but also of other external
stresses such as high temperatures, killing by neutrophils, im-
pairment in the filamentation process, and tissue invasion (55).
Interestingly, Hsp90, by repressing Ras1-PKA signaling, is
known to regulate a key temperature-dependent morphoge-
netic transition from yeast to filamentous growth that is crucial
for virulence in fungal cells (56). These findings indicate that
the AmB-R strains evolve by adapting some of the same gene
pathways that are involved in the protection of basic cell mem-
brane and cell functions.

The increased hypersensitivity of the AmB-R strains to oxida-
tive stress is particularly revealing because the osmoinducible
Hog-1 genes that are required for the evolution of AmB-R yeast
strains when exposed to increasing drug concentrations are
known to be functionally connected to the defense against oxida-
tive stress (5). Notably, in the AmB-R strains of C. albicans with
deleted ERG3/ERG11 genes, a set of genes that are typically in-
duced under iron starvation conditions are constitutively ex-
pressed, reflecting the fact that this stress is highly linked to ergos-
terol homeostasis (57). In fact, Thomas et al. found a connection
between the upregulation of genes that are involved in iron assim-
ilation such as SIT1 and RBT5 and the downregulation of ERG3
and ERG11 in a C. albicans mutant with an impaired mitochon-
drial function (57). Those investigators also reported that altera-
tion of iron levels in the mitochondrial mutant led to increased
susceptibility to H2O2 via the activity of an impaired high-osmo-
larity glycerol (HOG) pathway and high cellular ROS (57). These
findings suggest that the increased susceptibility to oxidative stress
shown by AmB-R strains of C. albicans with ERG gene deletions
(55) could be caused by a perturbation of the HOG1 MAP kinase
pathway that controls respiratory metabolism and is essential in
the oxidative stress response (58). In this respect, it is important
that Hog1 is a MAP kinase that is dependent on the direct inter-
action with the Hsp90 chaperone for activation (59) and that
maintaining the viability of the ERG-deleted mutants that are re-
sistant to AmB requires the presence of adequate levels of Hsp90
(55).

A reduced level of ergosterol content in clinical strains of C.
lusitaniae that exhibited frequent resistance to AmB (60), pos-
sibly arising from mutations in the ERG3 gene (61), has also
been reported. Of importance, the dimorphic transition be-
tween yeast and filamentous growth that appears to be critical
for virulence in many Candida spp. has been associated in C.
lusitaniae with AmB-R strains (62). It is then likely that some
strains of C. lusitaniae that appear to be intrinsically resistant to
AmB may be already adapted to display increased virulence
under conditions of reduced ergosterol content. This conclu-
sion would be consistent with the finding that no differences in
levels of tolerance of AmB were found between the wild-type
and calcineurin mutant strains of C. lusitaniae, despite the fact
that calcineurin is strictly required for the pseudohyphal
growth and virulence of this fungus (63).

AmB RESISTANCE IN PATHOGENS CONTAINING NORMAL
STEROL LEVELS

The finding that AmB-R mutants of Aspergillus fumigatus and
related Aspergillus species do not exhibit any alterations in the
sterol content of the membrane is also of great significance (64).
Blum et al. showed that these AmB-R cells exhibited increased
protection against oxidative damage and that the increase was the
result of enhanced production of catalase (64). However, by shift-
ing the balance between ROS generation and protection by cata-
lases, other factors may also contribute to the development of such
AmB-R strains. Thus, changes in the sphingolipid composition at
the cell membrane may have important effects on the magnitude
and extent of AmB-ergosterol binding and aqueous pore forma-
tion. In fact, the susceptibility of Candida cells to AmB has been
found to increase as a result of deletion of genes involved in the
sphingolipid biosynthetic pathway such as FEN1 and SUR4 or of
the use of sphingolipid biosynthesis inhibitors such as myriocin
that increase the availability of ergosterol that is nonbound to
sphingolipids in the membrane (65). In this respect, it is impor-
tant that there are genetic interactions between ergosterol and
sphingolipid synthetic genes in yeasts that determine that changes
in the sphingolipid composition of the membrane are compen-
sated by concomitant changes in sterol content (66).

There are also proteins that can protect cells against AmB ac-
tion by blocking the activation of Ras signaling activation via the
inhibition of the formation of aqueous pores. Thus, in similarity
to the protective role that is exerted by Hsp90 in AmB-R of C.
albicans and A. terreus (55, 67), when the stress-inducible Hsp70
protein in A. terreus was blocked, the AmB susceptibility of the
resistant strains significantly increased (68). For both Hsp90 and
Hsp70, there is evidence of the ability to interact preferentially
with lipid raft domains (69, 70). It has also been reported that the
sphingolipid-binding protein Pmp3, which is highly conserved in
fungi, is a potent AmB resistance factor (71, 72). Such resistance
can be suppressed by the addition of phytosphingosine, a sphin-
golipid pathway intermediate (73).

Resistance to AmB has also been found in clinical isolates of
Leishmania donovani that lack ergosterol but instead have exoge-
nous cholesterol incorporated into their membranes (74). The
AmB-R Leishmania strains also exhibited levels of ROS accumu-
lation that were much reduced, a result which was found be asso-
ciated with the upregulation of the tryparedoxin cascade, a path-
way that plays an important role in antioxidative defense against
ROS in kinetoplastids (75). A proteomic analysis carried out in a
laboratory AmB-R strain of Leishmania infantum has confirmed
the upregulation of members of the tryparedoxin cascade (76).
This proteomic work also revealed the downregulation of an H�

ATPase in the AmB-R leishmanial strain (76), a result that is con-
sistent with the role that the increased proton permeability across
AmB aqueous pores plays in the futile waste of ATP, which leads to
increased ROS accumulation.

Prevention of an increase in ion leakage leading to ATP deple-
tion is important not only for AmB resistance but also for that
developed by other amphiphilic drugs which partition into the
membrane (5). In this respect, Purkait et al. (74) have reported
that AmB-R leishmanial strains displayed an increase in the level
of expression of Mdr1, a member of the ATP-binding cassette
(ABC) of protein transporters located in lipid rafts, which not only
is involved in the efflux of amphiphilic compounds such as vin-
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blastine, puromycin, and doxorubicin (77) but also serves as a
lipid translocase of broad specificity (78). Preincubation of
AmB-R leishmanial cells with verapamil, a well-known Mdr1 in-
hibitor, led to a 1.9-fold decrease of the 50% lethal dose (LD50) of
AmB in the resistant strain. However, this value decreased by only
2.4-fold in the presence of the combined action of verapamil and
the thiol pathway inhibitors buthionine sulfoximine (BSO) and
difluoromethylornithine (DFMO) (74). These findings suggest
that the main factor responsible for the drug resistance observed
in the leishmanial strain by these investigators is the blocking by
verapamil of the Mdr1 activity extruding AmB molecules from the
lipid rafts, effectively interfering with the signaling events that lead
to increased ROS production (Fig. 1A).

It is not yet known what triggers the expression of the genes
associated with the various antioxidant systems in Leishmania
spp., but the present analysis suggests the possible involvement of
the various Ras isoforms that are known to participate in leishma-
nial infections in host macrophages (79). Previously, it was re-
ported that laboratory AmB-R yeast cells treated with increasing
AmB concentrations permanently overexpressed genes such as
YOR1 and PDR6, which are also members of the ATP-binding
cassette (ABC) family of transporters (80). The specific roles that
these ABC transporters play in AmB resistance are unknown,
but—similarly to MDR1—they may be involved in lipid translo-
cation and transport functions associated with the many cellular
activities that are shown by ABC proteins located in lipid raft
microdomains (81).

THE DEVELOPMENT OF AmB TOXICITY AND RESISTANCE IN
CHOLESTEROL-CONTAINING MAMMALIAN CELLS

Since the early studies in the fifties, the therapeutic index for the
use of AmB as an antifungal drug has been associated with the
higher binding affinity of AmB for the fungal ergosterol than for
the cholesterol present in mammalian cells (82). Recent efforts to
improve the AmB therapeutic index have yielded a new derivative
(C2=deOAmB), which binds ergosterol but not cholesterol (83).
C2=deOAmB is toxic to yeasts but not to human primary kidney
cells, confirming the role that cholesterol binding to AmB plays in
developing drug nephrotoxicity. In fact, such toxicity in host cells
appears to be a direct consequence of the formation of aqueous
pores. Thus, the exposure of kidney-derived proximal cells to in-
creasing AmB concentrations leads to depletion of ATP and an
increase in the cellular susceptibility to oxidative stress (84), out-
comes that are similar to the action that is performed by AmB in
ergosterol-containing fungal membranes. AmB-treated kidney
cells also exhibited acute increments in the sphingomyelin-phos-
phatidylcholine molar ratios and ceramide content, supporting
the idea of the involvement of lipid raft signaling components in
AmB toxic action (84). In this regard, there is increasing evidence
that activation of MAPKs, which are kinases known to show cross
talk with Ras and other signaling pathways, plays an important
role in drug-induced kidney injury (85).

The reduced nephrotoxicity that is exerted by the liposome-
based AmB formulations (84, 86) can be explained simply by the
observation that that such preparations deliver an amount of AmB
monomers that is sufficient for the formation of aqueous pores in
fungi but not in mammalian cells (see Fig. 4 in reference 87). In
effect, the insertion of AmB into cholesterol-containing mem-
branes can be directly related to the increase in the levels of small
soluble AmB dimers in the external aqueous solution (88). Of

note, a crucial property of liposomes and other lipid-based prep-
arations is that they are rapidly removed from the circulation by
the types of cells within which intracellular pathogens multiply,
i.e., by macrophages and other cells of the reticuloendothelial sys-
tem (4). The cellular uptake of AmB-loaded liposomes by phago-
cytosis and/or the internalization that results from interactions
with membrane receptors greatly facilitates the internal access of
monomeric AmB to the intracellular fungal target.

In contrast to the behavior observed in ergosterol-containing
membranes, the nonaqueous channels that are formed by AmB in
mammalian cells are able to remain as such over a somewhat large
range of concentrations (10). This outcome is due not only to the
AmB/cholesterol interactions, which are much weaker than the
AmB-ergosterol interactions (10), but also to the more complex
dynamics seen with mammalian cholesterol with respect to the
lipid rafts at the plasma membrane and intracellular membranes
(89). An earlier finding revealing the effect of such dynamics in
membrane function was the observation that, upon activation,
macrophages not only were more susceptible to lysis by AmB but
also exhibited increased tumoricidal effects (90). These functional
changes in macrophages were not accompanied by any changes in
the membrane cholesterol content, suggesting that the increased
sensitivity to AmB reflected alterations in lipid membrane orga-
nization and increased mobilization of signaling proteins into
lipid rafts (53, 90). Increased AmB resistance to cell lysis in the
presence of normal membrane cholesterol content in a Chinese
hamster ovary cell mutant has also been reported (91). This type of
AmB resistance is likely due to decreased aqueous pore formation
as a consequence of changes in the organization of cholesterol in
the plasma membrane that lead to a decrease in the number of
phase boundaries between the disordered nonraft and the ordered
raft microdomains (92).

The nonaqueous ion channels that are formed by AmB in cho-
lesterol-containing cells are able to elicit K� efflux at concentra-
tions that are fungicidal (e.g., 0.5 �M) in ergosterol-containing
pathogens (10). In immune cells, such AmB-induced K� effluxes
have been shown to play an important role in the activation of
caspase-1, a key calcium-dependent enzyme whose activation
leads to the conversion of pro-IL-1ß into its mature IL-1ß active
forms in NLRP3 and NLRP1 inflammasomes (93). In fact, AmB
concentrations of as low as 0.625 �M induced the release of IL-1ß
from THP-1 cells (94). Recently, it was shown that the activation
of caspase-1 in the “canonical” inflammasomes leads to the cleav-
age of gasdermin D, which is a key substrate that, upon its own
cleavage, drives pyroptosis, a lytic process that allows the release of
the mature cytokine IL-1ß from cells (95). The release of IL-1ß
from leukocytes and other cells plays a central role in orchestra-
tion of the inflammatory response that can have beneficial effects
in the response to infections.

The subsequent increase in the AmB concentration beyond the
threshold required for the formation of the aqueous pores results
in an abrupt increase in the levels of TNF-� and other proinflam-
matory cytokines and chemokines that are induced by the activa-
tion of TLR receptors (Fig. 1B). Thus, AmB exerts a maximal effect
on the secretion of TNF-� in immune cells at 4 �M (43) and 6.4
�M (44), which are concentrations above the threshold value for
the formation of aqueous pores by AmB (10, 22). In fact, the
differential role of K� efflux in the secretion of IL-1ß compared to
TNF-� is shown clearly in the data obtained in THP-1 cells that
indicated that when the AmB concentration was raised from 0.625

Minireview

5126 aac.asm.org September 2016 Volume 60 Number 9Antimicrobial Agents and Chemotherapy

http://aac.asm.org


�M to 5 �M, the secretion of TNF-� increased by about 30-fold
whereas the secretion of IL-1ß increased by only 4-fold (94). Such
significant differences between the stimulatory effects that are ex-
erted by the two types of AmB channels in immune cells are thus
important to take into account for the development of more-spe-
cific targeted approaches for stimulation of AmB immune and
adjuvant responses (96).

CONCLUSIONS AND PERPECTIVES

The pathways that confer AmB resistance to both fungal and par-
asitic pathogens are all activated in response to the formation of
sterol-containing aqueous pores, confirming the central role that
these ion channels and their interactions with sterols play in the
drug mechanism of action.

In order to avoid AmB-induced cell death, the depletion of
ergosterol from the membranes is required. However, due to the
high fitness costs of ergosterol depletion, AmB-resistant strains
also emerge in the clinic in the presence of normal levels of ergos-
terol.

The response mechanisms that are developed in AmB-R strains
are mainly directed at protection of cells against the ROS-induced
oxidative damage that is caused by the futile AmB-induced ion
cycling leading to ATP depletion. The resistance mechanisms also
block the Ras signaling induced by the aqueous pores formed by
AmB at membrane rafts, which also leads to increased ROS for-
mation.

The unique synergism conferred to AmB by its dual action as a
pore-forming compound that is capable of signaling effects helps
to explain its long-term efficacy as an antifungal drug. However,
such an action is also the principal cause of its nephrotoxic effects.

The use of lipid carriers for decreasing AmB toxicity in host
membrane cells is based on changing the balance between mono-
meric and aggregated forms to enhance the formation of aqueous
pores in ergosterol-containing membranes. The success of this
strategy is also a consequence of the targeted enhancement of mo-
nomeric AmB inside cells by the internalization of the drug-
loaded lipid particles. Development of new protected monomeric
AmB conjugates unable to insert into the membrane but capable
of cellular internalization may also kill pathogens by extracting
ergosterol from membranes (97).

As proposed here, the membrane-thinning effects induced by
the formation of AmB aqueous pores may lead to the activation of
Ras and TLR2/TLR4 signaling receptors in fungal and host im-
mune cells, respectively. This mechanistic insight can facilitate the
development of new drug scaffolds and/or vaccine adjuvants that
target fungal pathogens and enhance responses of host cells.
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