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We characterized clinically occurring and novel mutations in the � subunit of RNA polymerase in Clostridium difficile
(CdRpoB), conferring rifamycin (including rifaximin) resistance. The Arg505Lys substitution did not impose an in vitro fitness
cost, which may be one reason for its dominance among rifamycin-resistant clinical isolates. These observations were supported
through the structural modeling of CdRpoB. In general, most mutations lacked in vitro fitness costs, suggesting that rifamycin
resistance may in some cases persist in the clinic.

The nonabsorbed rifamycin antibiotic rifaximin has been con-
sidered an adjunctive therapy to reduce the recurrence of Clos-

tridium difficile infection following vancomycin treatment (1, 2).
Rifaximin, which is approved for the treatment of traveler’s diar-
rhea, inhibits DNA transcription by selectively binding to the �
subunit of RNA polymerase (RpoB). Substitutions in the rifamy-
cin resistance-determining region (RRDR) of RpoB confer resis-
tance to rifamycins, including rifaximin, in clinical isolates of C.
difficile (3, 4). An arginine to lysine substitution at position 505
(i.e., Arg505Lys) in C. difficile (CdRpoB) is the most common mu-
tation among rifamycin-resistant clinical isolates (3, 5, 6). Other
mutations in clinical isolates also occur at His502, Ser488, and
Ser550. However, it is unknown whether fitness costs influence the
spectra of rifamycin resistance alleles among C. difficile isolates.

Fitness cost is a leading factor that affects the clinical preva-
lence of specific resistance alleles (7, 8). In the present study, we
characterized clinically occurring and novel rifamycin resistance
mutations in terms of their impacts on the growth and competi-
tive fitness of C. difficile and by in silico structural modeling of the
CdRpoB (Fig. 1).

The rifamycin-susceptible C. difficile strains were CD43 and
CD1679 (both epidemic ribotype 027) and were kindly provided
by Scott Curry at the University of Pittsburgh. They were culti-
vated in brain heart infusion tryptone yeast (BHITY) broth or agar
at 37°C in a Whitley A35 anaerobic workstation (Don Whitley
Scientific). The MIC of rifaximin was defined as the lowest con-
centration of drug that prevented growth on BHITY agar (9).
Spontaneous mutants were recovered by plating aliquots of over-
night cultures onto selective agars containing rifaximin at 4� the
MIC. Mutations were identified in an �200-bp PCR amplicon
containing the RRDR (3). The competitive fitness (W) of rifaxi-
min-resistant mutants was determined by pairwise competition
between the wild-type parents and their respective derivative mu-
tants (7, 8). Briefly, aliquots from overnight cultures of wild-type
and mutant bacteria were coinoculated in BHITY broth at a 10:1
ratio (ca. 104:103 CFU/ml) and grown for 24 h. The numbers of
mutant and wild-type bacteria at the start and at the end of the
experiments were determined by plating onto selective agar con-
taining 4� the rifaximin MIC and on nonselective BHITY agar (7,
8). W was calculated from ln[NR(24)/NR(0)]/ln[NS(24)/NS(0)],
where NR(t) and NS(t) indicate the numbers of resistant and sen-

sitive bacteria, respectively, at time t (0 or 24 h) (8). Doubling
times in BHITY broth were calculated in GraphPad Prism 5 from
automated optical density readings at 600 nm (OD600) over 48 h at
37°C in a BioTek 2 microplate reader (10). Effects on virulence
were assessed in the hamster model of C. difficile infection as de-
scribed previously (11) using a spore inoculum of �200 spores.
Animal experiments were approved by the Institutional Animal
Care and Use Committee of the University of Texas at Arlington
and adhered to the USDA Animal Welfare Act (9 CFR, parts 1 to
3). Using the RpoB sequence of C. difficile CD630, a homology
model of CdRpoB was generated from the X-ray crystal structure
of Escherichia coli RNA polymerase in complex with rifampin
(PDB no. 4KMU) in the Schrödinger molecular modeling suite
(12, 13). Changes in the relative binding affinities for rifaximin in
the mutated CdRpoB model were calculated using the Prime MM-
GBSA software in the Schrödinger molecular modeling suite (14).
To assess the impact on RpoB DNA interaction, the DNA and
C-chain RpoB from the Thermus thermophilus X-ray crystal struc-
ture (PDB no. 4GZY) were aligned with the CdRpoB homology
model in the Schrödinger/Maestro alignment software (15). Next,
the DNA subunit was transferred into the CdRpoB model and
refined by restrained minimization to a convergence of heavy
atom root mean square deviation (RMSD) of 0.6 Å. Further
method details may be found in the supplemental material.

In both strains, rifaximin resistance arose at a frequency of
10�8, which is consistent with prior reports (16); rifaximin MICs
against all mutants were �1,024 �g/ml, indicating that high-level
rifaximin resistance is achievable in a single mutational step
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(Table 1). Most studies adopt a breakpoint of �32 �g/ml to sig-
nify rifamycin resistance (5, 17). Several mutants possessed clini-
cally occurring mutations, including His502Asn, His502Tyr,
Arg505Lys, Ser488Tyr, Asp492Tyr, Ser550Phe, and Ser550Tyr (3, 5, 6).

We also identified previously unreported changes, including
Ser507Leu, Gln489Leu, Gly510Arg, and Leu584Phe.

With the exception of Ser507Leu, Asp492Tyr, and Ser550Tyr,
most mutations did not impose fitness costs on C. difficile (Table
1). In vivo studies indicated that the clinically occurring Arg505Lys
was as virulent as the wild type in terms of the time to mortality in

FIG 1 Model of CdRpoB with bound rifaximin. Mutational sites conferring rifaximin resistance are shown in red. Rifaximin is shown with yellow carbon atoms.

TABLE 1 Impact of rifaximin resistance alleles on the fitness and
growth of C. difficile

Strain MIC (�g/ml) Substitution Fitness (W)a

Doubling
time (min)

CD43 (parent) 0.125 None 1.00 97.3 � 4.8
CD43-D1 �1,024 Gln489Leu 0.84 � 0.05 89.4 � 4.1
CD43-D2 �1,024 Asp492Tyr 0.80 � 0.01 100.3 � 9.2
CD43-D3 �1,024 Asp492Tyr 0.80 � 0.08 118.2 � 5.1
CD43-D4 �1,024 Asp492Gly 1.2 � 0.12 92.3 � 6.0
CD43-A1 �1,024 His502Tyr 1.20 � 0.13 NDb

CD43-A2 �1,024 His502Asn 1.00 � 0.13 ND
CD43-D5 �1,024 Arg505Lys 0.99 � 0.008 95.3 � 10.1
CD43-D6 �1,024 Arg505Lys ND 110.0 � 5.1
CD43-D7 �1,024 Gly510Arg 0.85 � 0.12 90.3 � 5.5
CD43-D8 �1,024 Ser488Tyr 0.85 � 0.02 ND
CD43-D9 �1,024 Ser550Tyr 0.67 � 0.05 104.2 � 18.4
CD43-D10 �1,024 Ser550Phe 1.26 � 0.13 ND

CD1769 (parent) 0.0625 None 1.00 97 � 9.5
CD1769-D1 �1,024 Asp492Tyr ND 98.9 � 9.2
CD1769-D2 �1,024 His502Arg 0.91 � 0.3 102.1 � 10.7
CD1769-D3 �1,024 Arg505Lys 1.02 � 0.15 102.0 � 4.4
CD1769-D4 �1,024 Ser507Leu 0.57 � 0.07 267.5 � 37.1
CD1769-D5 �1,024 Leu584Phe 1.24 � 0.07 ND

a By convention, the fitness of the wild type is designated as 1. MICs were determined
using two independent cultures in duplicates. A minimum of three independent
replicates were performed to calculate W and doubling times.
b ND, not determined.

FIG 2 Comparison of virulence of rifaximin-resistant mutants in hamsters.
WT, parent strain CD43; Arg505Lys, mutant strain CD43-D5; Asp492Tyr, mu-
tant strain CD43-D3; Ser550Tyr, mutant strain CD43-D9. No significant dif-
ferences exist between the means as determined by one-way analysis of vari-
ance (ANOVA) (P 	 0.28). The number of animals in each group was n 	 5 for
WT, n 	 6 for Arg505Lys, n 	 5 for Asp492Tyr, and n 	 4 for Ser550Tyr. CD43
mutants bearing His502Asn and His502Tyr strains were unavailable at the time
of the experiments.
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the hamster model of C. difficile infection. Interestingly, the clin-
ically occurring mutations Asp492Tyr and Ser550Tyr that imposed
moderate (20%) and significant (33%) in vitro fitness costs did not
appear to affect in vivo virulence (Fig. 2; see also Fig. S1 in the
supplemental material). This may also imply that the hamster
model of C. difficile infection may be inadequate to assess subtle
differences in fitness costs due to its remarkable susceptibility to C.
difficile (18).

Modeling of the CdRpoB with bound rifaximin suggests that
arginine-505 engages in an energetically favorable, Pi-stacking in-
teraction with the polyene moiety (16Z, 18E) in the central scaf-
fold of rifaximin (Fig. 3A). Therefore, a change to lysine-505 re-
sults in the loss of the Pi-stacking interaction, leading to rifamycin
resistance. According to our computational predictions, a ca. 40
kcal/mol relative energetic cost to rifaximin binding occurs with
lysine-505. From the DNA-bound model, arginine-505 interacts
with the phosphate backbone via a charge-charge interaction (Fig.
3B). Due to the cationic nature of lysine-505, the charge-charge
interaction with bound DNA is maintained. We suggest that the
low fitness costs of Arg505Lys may correspond to minimal effects
on DNA transcription. Similarly, histidine-502 mutations, in-
cluding His502Asn and His502Tyr, are predicted to disrupt an ac-
tive site hydrogen bond network involving glutamine-489 and a
phenolic group on rifaximin (see Fig. S2A in the supplemental
material). This leads to a conformational change in the rifaximin
binding site and an energetic cost between 20 and 30 kcal/mol (see
Fig. S2B and C). Based on our DNA-bound model, the histidine-
502 residue does not directly engage DNA when bound, which
may explain the low fitness cost in C. difficile (see Fig. S2D). The
effects of other mutations on rifaximin binding are shown in Table
S1 in the supplemental material.

The apparent lack of fitness costs for clinically occurring resis-
tance alleles suggests that rifamycin-resistant mutants may in
some cases persist in patients and clinical settings. Indeed, Curry
et al. (3) reported the isolation of rifamycin-resistant C. difficile in
patients who previously received a rifamycin antibiotic in the pre-
ceding 6 months prior to the onset of C. difficile infection. The
isolates recovered contained the change Arg505Lys and the double
substitution Ser488Thr/Arg505Lys or Arg505Lys/Ile548Met (see Fig.
1 for amino acid sites relative to rifaximin). Interestingly, from the
initial study period from 2001 to 2002 to the second study period
in 2005, Curry et al. (3) observed a 10% decrease in the proportion

of rifamycin-resistant C. difficile isolates, which they suggested was
due to a decrease in rifamycin exposure and increased infection
control measures. Carman et al. (17) also reported the rise of
rifaximin resistance during therapy, which resulted from two
strains carrying either His502Tyr or His502Tyr/Pro496Ser substitu-
tions. About 45 days after therapy, the two rifaximin-resistant
isolates were still present at the time of recurrence. From our stud-
ies, we predict that the mutations in the Curry et al. (3) and Car-
man et al. (17) studies either lacked or were associated with low
fitness costs. However, it is unclear why some rifamycin-resistant
clinical isolates contain double resistance mutations in CdRpoB
(3, 5, 19) and if any of these resistance changes may also be com-
pensatory. Nonetheless, our study suggests that in some cases
high-level rifamycin resistance in C. difficile may be maintained in
clinical settings even without selection pressure.
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